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Valence band effective-mass expressions in thesp3d5s* empirical tight-binding model applied
to a Si and Ge parametrization
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Exact, analytic expressions for the valence band effective masses in the spin-orbit,sp3d5s* empirical
tight-binding model are derived. These expressions together with an automated fitting algorithm are used to
produce improved parameter sets for Si and Ge at room temperature. Detailed examinations of the analytic
effective-mass expressions reveal critical capabilities and limitations of this model in reproducing simulta-
neously certain gaps and effective masses. The@110# masses are shown to be completely determined by the
@100# and @111# masses despite the introduction ofd orbitals into the basis.

DOI: 10.1103/PhysRevB.69.115201 PACS number~s!: 71.15.2m, 71.20.2b
th
le
il
th
g

ch
O
a

n
u

f
ist
po
ds
a

fe
-

ve
e
th
th
o
s
T

to
al
h-
fo

g

n
a
e
s

e
tors

tion
rs.
g
by
ter
els
-
band
ing
mic

bulk
o
t-

ical
r
les.
ive

se

bly
e in

for

ht-
ases
the
iza-
ch
nt
r

I. INTRODUCTION

Heterostructures with atomically sharp interfaces lie at
heart of advanced semiconductor devices employed for e
tronic computation and optical detection and emission. Wh
such heterostructures have typically been explored in
III-V and II-VI material systems, commercial device scalin
in the Si, Ge, and SiGe material systems has also rea
critical device dimensions of a few tens of nanometers.
particular interest is also the development of Si-based qu
tum dot heterostructures for quantum computing.1,2

Proof-of-principle device modeling has typically bee
performed in continuum basis, plane wave approaches s
as effective mass ork•p. However, realistic modeling o
technically relevant heterostructures requires the atom
resolution of interface details, atomic disorder, the incor
ration of finite device boundaries, large local electric fiel
and coherent coupling between bands. Localized orbital
proaches are attractive since they can model these ef
without the introduction of an artificial periodicity or an ex
traordinarily large plane wave basis.

Any realistic electronic heterostructure model, whate
the underlying basis, must accurately reproduce the exp
mentally verified energy gaps and effective masses for
relevant bands. An approach which delivers a band gap
is off by a few tens of meV or effective masses that are
by tens of percent can properly model neither the energie
quantized states nor the confinement of these states.
strength of empirical tight-binding models is their ability
properly model such critical material properties with a loc
ized, atomistic orbital basis. Empirical tight-binding tec
niques have therefore developed into the primary choice
many researchers interested in the quantitative modelin
electronic structure on a nanometer scale.

The past several years have seen a broader recognitio
the requirements of proper band structure reproduction,
the result has been a series of improvements to the pion
ing work of Slater and Koster.3 A major enhancement wa
the addition of the exciteds-like orbital, s* , by Vogl, Hjal-
0163-1829/2004/69~11!/115201~10!/$22.50 69 1152
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marson, and Dow,4 which yielded better reproduction of th
conduction band of diamond and zinc blende semiconduc
along @100#. Much more recently, Jancuet al.5 have further
improved the method by adding excitedd orbitals to a
nearest-neighbor approach, resulting in superior reproduc
of the X-valley transverse masses in these semiconducto

The progress in the application of the tight-bindin
method to quantitative device modeling has been slowed
the one major handicap of the method: the difficult parame
fitting process. One of the strengths of continuum mod
such as effective mass andk•p is that they are directly pa
rametrized by observables such as effective masses,
gaps, and band offsets. In contrast, empirical tight-bind
and empirical pseudopotential methods are based on ato
interaction representations and need to be fitted to these
material properties. The fitting process is difficult on tw
levels:~i! the determination whether or not a particular tigh
binding model can indeed properly reproduce some crit
material properties, and~ii ! the mapping of the large numbe
of orbital coupling parameters onto the set of observab
The development of analytic expressions for effect
masses for various tight-binding models,6–10 along with au-
tomated fitting procedures,11 has addressed some of the
difficulties in tight binding.

Of all the observables, the effective masses invaria
prove to be the most troublesome features to reproduc
either automated or manual fits. There are two reasons
this. First, the inverse effective mass is~up to constants! the
second derivative of the band energyEn(k). Second, the
masses are much more complicated functions of the tig
binding parameters than are most of the gaps. In those c
where they are available, exact, analytic formulas for
effective masses have not only aided in better parametr
tions for tight-binding models, but have also provided mu
insight as to the suitability of different models for differe
materials. Results for the masses atG in the nearest-neighbo
sp3s* models6 ~with and without the spin-orbit coupling!,
the second-near-neighbor, spin-orbitsp3s* model,7,8 and the
second- and third-near-neighbor no-spin-orbit9,10 sp3 models
©2004 The American Physical Society01-1
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have recently been published. Reference 8 in fact gives
valence band effective masses along the@110# and @111# di-
rections, which, together with the@001# results from Refs. 6
and 7, demonstrate the capability of thesp3s* model to re-
produce all of the valence band masses in many materia
interest.

Although both the nearest-neighbor, spin-orbitsp3d5s*
model5 and the second-near-neighbor, spin-orbitsp3s*
model can accurately reproduce the observables of intere
heterostructures~effective masses at gaps atG, X, and L),
there are important reasons to prefer the nearest-neigh
spin-orbit sp3d5s* model. These reasons become appar
when one applies each model to strained nanostructures
distortions are handled much more easily in a near
neighbor model. This theoretical difficulty has led the nan
electronic modeling tool~NEMO! three-dimensional~3D!
development12 to be limited to nearest-neighbor interaction
while NEMO 1D still handles nearest- and second-neare
neighbor models.13 To fully qualify the capabilities of the
sp3d5s* model and to aid its parametrization, exact, analy
effective-mass formulas are highly desirable. These formu
for the valence band effective masses in the directions
@001#, @110#, and @111# are derived here. We have not be
able to find analytic formulas for the conduction band mas
at L and in theX valleys.

Section II shows how a series of basis transformati
block-diagonalizes the Hamiltonian atG into blocks no larger
than 232, which are sufficiently small that useful formula
for effective masses can be derived. The method of Ref. 1
then utilized to derive these exact, analytic, inverse effect
mass formulas for the valance bands along@001#, @110#, and
@111#. Section III presents the results of the automa
sp3d5s* parameter generation for Si and Ge. Section
connects the analytic and numerical work in the previous
sections and discusses the ability of thesp3d5s* model to
reproduce faithfully and simultaneously all of these mass
Section V contains our conclusions.

II. METHOD

A. Block diagonalization of the Hamiltonian

The first step in the process is to diagonalize the sp
orbit, nearest-neighbor,sp3d5s* Hamiltonian3 for diamond
at G. The spin-orbit interaction is assumed to be ap-orbital,
same-atom only parameter, as in Refs. 5 and 16. Follow
Ref. 5, a single onsite parameter for alld orbitals is em-
ployed, and only two-center integrals determine the near
neighbor parameters; the notation follows Ref. 3. Such
strictions are almost universal in the literature and
restated here for completeness. In thesp3d5s* basis, thek
dependence of the HamiltonianHO (k) is contained in the
functionsgi(k) ~see Ref. 4 for definitions!: g0(0)51 while
gi(0)50, i 51,2,3. As a result, the HamiltonianHO (0) as
written is block diagonal, consisting of two 12-dimension
subspaces, two four-dimensional subspaces, and four
dimensional subspaces. Since Si and Ge possess diam
symmetry, further reduction of the 12312 blocks to 434 is
possible; the basis transformations which accomplish this
discussed below.
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These subspaces of the Hamiltonian as written are con
niently described in terms of zone-center Bloch sums
atomiclike orbitals. Since there are two atoms per unit cel
diamond there are two orbitals of a given type per cell, o
on each atom. The 12-dimensional subspaces include bop-
andd-like orbitals, one subspace consisting of orbital typ
$px ↑,py ↑,pz ↓,dxy ↓,dzx ↑,dyz ↑%, the other like it but
with the spins reversed. The four-dimensional subspaces
purelys-like, one having orbitals$s ↑,s* ↑%, the other with
the spins reversed. Finally, there is one two-dimensional s
space for each of the orbital typesdx22y2 ↑, dx22y2 ↓,
d3z22r 2 ↑, andd3z22r 2 ↓.

The 12312 blocks are reduced to 434 using the heavy-,
light-, and split-off hole states which diagonalize the~spin-
orbit! sp3s* tight-binding or thesp3 k•p Hamiltonian~see,
for example, Ref. 6!, here applied to thed-like states~sub-
stituting dyz for px , etc.! also, as suggested by symmet
considerations. This choice is motivated by the fact that
spin-orbit Hamiltonian has the same matrix elements as
the sp3s* tight-binding model. These transformations are

uvhm;1&5
1

&
@ uam;↑&1 i ubm;↑&], ~1!

uv lm;1&5
1

A6
@ uam;↑&2 i ubm;↑&12ugm;↓&], ~2!

uvsom;1&5
1

)
@ uam;↑&2 i ubm;↑&2ugm;↓&], ~3!

uvhm;2&5
1

&
@ uam;↓&2 i ubm;↓&], ~4!

uv lm;2&5
1

A6
@ uam;↓&1 i ubm;↓&22ugm;↑&], ~5!

uvsom;2&5
1

)
@ uam;↓&1 i ubm;↓&1ugm;↑&], ~6!

where in Eqs.~1!–~6! orbital designators have been chos
as (v;a,b,g)5(p;x,y,z), or (v;a,b,g)5(d;yz,zx,xy),
with spin labels$↑,↓%, and fcc sublattice labelm5$a,c%.
Note that the states withv5p(d) are thep(d)-like compo-
nents of the heavy- (h), light- (l ), or split-off (so) sub-
spaces to be extracted below.

The roots of the quartic equation are sufficiently comp
cated that to obtain useful analytic formulas one must furt
decompose all of the four-dimensional subspaces. In
mond the two atoms of a unit cell are identical, and furth
simplification results from changing to a basis of sums a
differences of states of the same type on the two ato
reminiscent of the bonding and antibonding orbitals of m
lecular physics. For the six subspaces resulting from
transformations in Eqs.~1!–~6!, the following change of ba-
sis is performed:
1-2
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TABLE I. Nearest-neighbor~NN! parameters appearing in the inverse mass formulas in terms o
Slater-Koster~Ref. 3! two-center integrals. Specific values of the two-center integrals for Si and Ge are
in Table IV below.

NN parameter Slater-Koster NN parameter Slater-Koster

Vs,s 4Vsss Vx,y
4

3
@Vpps2Vppp#

Vs,s* 4Vss* s Vp,d
4

3 FVpds2
2

)
VpdpG

Vs* ,s* 4Vs* s* s Up,d
4

3 FVpds1
1

)
VpdpG

Vs,p
4

)
Vsps

Wp,d
8

3
Vpdp

Vs* ,p
4

)
Vs* ps

Vd,d
4

9
@3Vdds12Vddp14Vddd#

Vs,d
4

)
Vsds Ṽd,d

4

3
@2Vddp1Vddd#

Vs* ,d
4

)
Vs*ds

Ud,d
4

9
@3Vdds2Vddp22Vddd#

Vx,x
4

3
@Vpps12Vppp# Wd,d

8

3)
@Vddd2Vddp#
a

k

fo
fo
th

E V

tities
the

ls
same
nd
upnn;6&5
1

&
@6upna;n&1upnc;n&], ~7!

udnn;6&5
1

&
@ udna;n&7udnc;n&], ~8!

where n5$1,2%, n5$h,l ,so%. The remaining four-
dimensional subspaces, spanned by thes and s* orbitals
~one subspace for each spin direction! are block diagonalized
by the same procedure:

usx;6&5
1

&
@ usa;x&7usc;x&], ~9!

wheres5$s,s* %, x5$↑,↓%. The development that follows
is simplified by a short-hand notation for two 20-dimension
subspaces, labeling the 12 states of Eqs.~1!–~3! above, in
addition to the eight states~for both m5$a,c%) $us↓;
6&,us* ↓;6&,u(x22y2)m;↓&,u(3z22r 2)m;↓&% the ‘‘1
states,’’ and the 12 states of Eqs.~4!–~6! above, together
with the eight states $us↑;6&,us* ↑;6&,u(x2

2y2)m;↑&,u(3z22r 2)m;↑&% the ‘‘2 states.’’
The foregoing basis transformations thus bloc

diagonalize the original 40340 Hamiltonian into 232 ma-
trices. In what follows below one obtains the same results
the 1 and 2 states, so in the interest of brevity only results
the 2 states are listed. The Hamiltonian blocks now take
same form~in a generic$ua&,ub&% basis!:
11520
l
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H25F a

V Eb
G ~10!

with eigenvalues

E65Ē6D, ~11!

Ē5
1

2
~Ea1Eb!, ED5

1

2
~Ea2Eb!, D5AED

2 1V2

~12!

and corresponding eigenvectors

u1&5haua&1hbub&, ~13!

u2&52hbua&1haub&, ~14!

ha5
ED1D

A2AD21DED

, hb5
V

A2AD21DED

. ~15!

The states themselves are found by substituting the quan
in Tables I and II into the above equations, except for
case of the two subspaces$u(x22y2)a;↑&,u(x22y2)c;↑&%,
$u(3z22r 2)a;↑&,u(3z22r 2)c;↑&%, for which the results are
so simple~due to the degeneracy of the atomiclike orbita!
that they are stated separately. Both subspaces have the
232 block Hamiltonian and the resulting eigenvalues a
eigenvector coefficients are, in the parlance of Eqs.~11! and
~15!,
1-3
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Ed,65Ed6Ṽd,d , Ṽd,d5S 4

3D @2Vddp1Vddd#, ~16!

hd,a5hd,b5
1

&
. ~17!

These transformations diagonalize the Hamiltonian at z
center, providing the eigenstates with which the inverse
fective masses can be calculated.

B. Inverse effective masses along†001‡

The inverse effective masses for the valence bands
calculated using the method of Ref. 15. The heavy, light,
split-off holes are the four states (n51,2) uhn;2;2&
~heavy!, u ln;2;2& ~light!, and uson;2;2& ~split off!; see
Table III for specific decompositions for the 2 states. Alo
@001# neither of the matricesdHO /dkz , d2HO /dkz

2 couples the
1 states to the 2 states. Nor for that matter does either m
couple the degenerate heavy- and light-hole states wi
each of the 20-dimensional~i.e., ‘‘1’’ or ‘‘2’’ ! subspaces. The
inverse effective-mass formulas therefore take the same f
as in the nondegenerate perturbation theory.

TABLE II. Abbreviations used with Eqs.~10!–~15! to get spe-
cific eigenvalues and eigenvectors of the 232 blocks in terms of
the tight-binding parameters. Slater-Koster~Ref. 3! expressions for
on-site parameters and the abbreviations of Table I for nea
neighbor parameters are used.

Abbreviation Slater-Koster/Table I

E6
(s) Es7Vs,s

E6
(s* ) Es* 7Vs* ,s*

E6
( l ) Ep1l6Vx,x

E6
(so) Ep22l6Vx,x

E6
(d) Ed7Vd,d
11520
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The contributions to the inverse mass are of two type15

the incompleteness correction~the second-order matrix
d2HO /dk2 to first order in perturbation theory! and couplings
to other bands~the first-order matrixdHO /dk to second order
in perturbation theory!. It is useful to first list these contri-
butions separately since many of them will appear in
@111# inverse mass formulas as well. The heavy and lig
holes have identical incompleteness corrections,

w( inc),l
[001] 5~gd,l

(2)!2Vx,x2~gp,l
(2)!2Vd,d22gd,l

(2)gp,l
(2)Vp,d ,

~18!

while the split-off hole incompleteness term is

w( inc),so
[001] 5~gd,so

(2) !2Vx,x2~gp,so
(2) !2Vd,d22gd,so

(2) gp,so
(2) Vp,d .

~19!

Next come the couplings of the valence bands to other ba
The heavy valence band couples to both of the light cond
tion bands; with the same strengths the light valence b
couples to the heavy conduction bands:

wv,l 115
2

El ,2
(2)2El ,1

(1) S 1

3D @2gd,l
(2)gp,l

(1)Vx,y1gp,l
(2)gd,l

(1)Ud,d

1~gd,l
(2)gd,l

(1)1gp,l
(2)gp,l

(1)!Up,d#2, ~20!

wv,l 125
2

El ,2
(2)2El ,2

(1) S 1

3D @gd,l
(2)gd,l

(1)Vx,y1gp,l
(2)gp,l

(1)Ud,d

1~gd,l
(2)gp,l

(1)2gp,l
(2)gd,l

(1)!Up,d#2. ~21!

The other heavy valence band couplings are to the split
conduction bands,

wv,so115
2

El ,2
(2)2Eso,1

(1) S 2

3D @2gd,l
(2)gp,so

(1) Vx,y

1gp,l
(2)gd,so

(1) Ud,d1~gd,l
(2)gd,so

(1) 1gp,l
(2)gp,so

(1) !Up,d#2,

~22!

st-
t two-
ation of

the

rgies
from
TABLE III. New states, basis states, eigenvalues, and eigenvector coefficients for the eigh
dimensional subspaces reduced from the original 12- and four-dimensional subspaces in the not
Tables I and II and Eqs.~1!–~15!. The names of theu6& eigenstates in the first column correspond to theu6&
states on the left-hand sides of Eqs.~13! and ~14!; the basis states in the second column correspond to
$ua&,ub&% states on the right-hand sides of these equations. The entries of each 232 Hamiltonian, Eq.~10!,
are listed in theEa , Eb , andV columns. The last three columns give specific names for the template ene
in Eq. ~11! and coefficients in Eq.~15!. To calculate the eigenstates of a given row, substitute the values
the third through fifth columns into Eqs.~10!–~15!.

u6& Basis states Ea Eb V E6 ha hb

u l2;1;6& $upl2;1&,udl2;1&% E1
( l ) E1

(d) 2Vp,d El ,6
(1) gp,l

(1) gd,l
(1)

uh2;1;6& $uph2;1&,udh2;1&% E1
( l ) E1

(d) 2Vp,d El ,6
(1) gp,l

(1) gd,l
(1)

uso2;1;6& $upso2;1&,udso2;1&% E1
(so) E1

(d) 2Vp,d Eso,6
(1) gp,so

(1) gd,so
(1)

u l2;2;6& $upl2;2&,udl2;2&% E2
( l ) E2

(d) 2Vp,d El ,6
(2) gp,l

(2) gd,l
(2)

uh2;2;6& $uph2;2&,udh2;2&% E2
( l ) E2

(d) 2Vp,d El ,6
(2) gp,l

(2) gd,l
(2)

uso2;2;6& $upso2;2&,udso2;2&% E2
(so) E2

(d) 2Vp,d Eso,6
(2) gp,so

(2) gd,so
(2)

us2;1;6& $us↑;1&,us* ↑;1&% E1
(s)

E1
(s* ) 2Vs,s* Es,6

(1) ss
(1) ss*

(1)

us2;2;6& $us↑;2&,us* ↑;2&% E2
(s)

E2
(s* ) Vs,s* Es,6

(2) ss
(2) ss*

(2)
1-4
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wv,so125
2

El ,2
(2)2Eso,2

(1) S 2

3D @gd,l
(2)gd,so

(1) Vx,y1gp,l
(2)gp,so

(1) Ud,d

1~gd,l
(2)gp,so

(1) 2gp,l
(2)gd,so

(1) !Up,d#2. ~23!

The other light valence band couplings are to thes-like ~at
zone center! bands,

wv,s115
2

El ,2
(2)2Es,1

(1) S 2

3D @2gd,l
(2)ss

(1)Vs,p2gd,l
(2)ss*

(1)Vs* ,p

1gp,l
(2)ss

(1)Vs,d1gp,l
(2)ss*

(1)Vs* ,d#2, ~24!

wv,s125
2

El ,2
(2)2Es,2

(1) S 2

3D @gd,l
(2)ss*

(1)Vs,p2gd,l
(2)ss

(1)Vs* ,p

1gp,l
(2)ss

(1)Vs* ,d2gp,l
(2)ss*

(1)Vs,d#2, ~25!

as well as to thed-like (3z22r 2) band:

wv,d25
2

El ,2
(2)2Ed,2

S 2

3D @gd,l
(2)Wp,d1gp,l

(2)Wd,d#2. ~26!

The split-off valence band couples to the heavy conduc
bands,

wso,h115
2

Eso,2
(2) 2El ,1

(1) S 2

3D @2gd,so
(2) gp,l

(1)Vx,y

1gp,so
(2) gd,l

(1)Ud,d1~gd,so
(2) gd,l

(1)1gp,so
(2) gp,l

(1)!Up,d#2,

~27!

wso,h125
2

Eso,2
(2) 2El ,2

(1) S 2

3D @gd,so
(2) gd,l

(1)Vx,y1gp,so
(2) gp,l

(1)Ud,d

1~gd,so
(2) gp,l

(1)2gp,so
(2) gd,l

(1)!Up,d#2, ~28!

the s-like bands,

wso,s115
2

Eso,2
(2) 2Es,1

(1) S 1

3D @2gd,so
(2) ss

(1)Vs,p

2gd,so
(2) ss*

(1)Vs* ,p1gp,so
(2) ss

(1)Vs,d

1gp,so
(2) ss*

(1)Vs* ,d#2, ~29!

wso,s125
2

Eso,2
(2) 2Es,2

(1) S 1

3D @gd,so
(2) ss*

(1)Vs,p2gd,so
(2) ss

(1)Vs* ,p

1gp,so
(2) ss

(1)Vs* ,d2gp,so
(2) ss*

(1)Vs,d#2, ~30!

and thed-like band

wso,d25
2

Eso,2
(2) 2Ed,2

S 1

3D @gd,so
(2) Wp,d1gp,so

(2) Wd,d#2.

~31!

With the above incompleteness corrections and coupli
the @001# inverse valence band effective-mass formulas
the heavy (hh), light (lh), and split-off (soh) holes can be
written as
11520
n

s
r

m0

m[001]
(hh) 5

m0

\2 S a

4D 2

@w( inc),l
[001] 1wv,l 111wv,l 121wv,so11

1wv,so12#, ~32!

m0

m[001]
( lh) 5

m0

\2 S a

4D 2

@w( inc),l
[001] 1wv,l 111wv,l 121wv,s11

1wv,s121wv,d2#, ~33!

m0

m(soh) 5
m0

\2 S a

4D 2

@w( inc),so
[001] 1wso,l 111wso,l 121wso,s11

1wso,s121wso,d2#, ~34!

wherea is the conventional unit cell cube edge andm0 is the
free-electron mass. Next we consider the heavy and l
valence band masses along@111# and @110#.

C. Inverse heavy and light masses along†111‡ and †110‡

The task of finding these inverse mass formulas is rat
more complicated than along@001# since fork along @111#
the matrixdHO /dk mixes the 1 and 2 states, and along eith
direction it mixes the heavy and light holes; the mat
d2HO /dk2 also complicates matters. The inverse ma
matrix15 of dimension either 434 along@111# or 232 along
@110# must be diagonalized. The@111# calculation is the more
easily performed despite its larger dimensionality and
results are presented first.

In the second-near-neighbor, spin-orbitsp3s* model, it is
known that the@111# inverse mass matrix in the basis$u l1;
2;2&,uh1;2;2&,u l2;2;2&,uh2;2;2&% takes the form8

WO 5F m i t 0 ~12 i !t

2 i t m ~211 i !t 0

0 ~212 i !t m 2 i t

~11 i !t 0 i t m

G ,

m,tPRe, ~35!

which has eigenvectors independent ofm and t. Since the
spin-orbit coupling in the nearest-neighborsp3d5s* model is
the same as in thesp3s* model, one expects that these ve
eigenvectors will diagonalize the@111# inverse mass matrix
in the sp3d5s* model also. This is in fact the case. Takin
advantage of the fact that these states diagonalize the inv
mass matrix allows calculation of the masses as in Sec.
above. Here an additional incompleteness correction
found,

Dw( inc),l
[111] 5

2

3
@~gd,l

(2)!2Vx,y2~gp,l
(2)!2Ud,d22gd,l

(2)gp,l
(2)Up,d#,

~36!

which is added to the light inverse mass and subtracted f
the heavy inverse mass. All of the interband terms have b
calculated above; they are merely allocated differently
tween the heavy and light masses. The complete formulas
thus
1-5
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m0

m[111]
(hh) 5

m0

\2 S a

4D 2Fw( inc),l
[001] 2Dw( inc),l

[111] 1wv,l 111wv,l 12

1
3

4
wv,d2G , ~37!

m0

m[111]
( lh) 5

m0

\2 S a

4D 2Fw( inc),l
[001] 1Dw( inc),l

[111] 1wv,l 111wv,l 12

1wv,so111wv,so121wv,s111wv,s12

1
1

4
wv,d2G . ~38!

From Eqs.~37! and~38! it is apparent that the inverse mass
obey the sum rule

m0

m[111]
( lh) 1

m0

m[111]
(hh) 5

m0

m[001]
( lh) 1

m0

m[001]
(hh) . ~39!

At this point we have all the ingredients needed to calcu
the @110# masses.

Along @110# the 1 and 2 states are not mixed but the hea
and light states are, so that there are two two-dimensio
inverse mass matrices. Since one is the complex conjuga
the other, only one needs to be diagonalized. For the 1 s
in the basis$u l1;2;2&,uh1;2;2&%, this matrix is most use-
fully written

WO [110]
(1) 5F w̄[001]2

1

4
d [001] 2 i

)

4
d [111]

i
)

4
d [111] w̄[001]1

1

4
d [001]

G , ~40!

where

w̄[001]5
1

2 F 1

m[001]
( lh) 1

1

m[001]
(hh) G , ~41!

d [001]5
1

m[001]
( lh) 2

1

m[001]
(hh) , ~42!

d [111]5
1

m[111]
( lh) 2

1

m[111]
(hh) . ~43!

Remarkably, for this model withd orbitals, the@110# inverse
masses are functions solely of the@001# and @111# inverse
masses: this is the same as in thesp3s* model.8

The eigenvalues of the inverse mass matrix give the
verse effective masses. Diagonalizing Eq.~40! one finds

m0

m[110]
( lh) 5

1

2 F m0

m[001]
( lh) 1

m0

m[001]
(hh) G

2
1

4
AF m0

m[001]
( lh) 2

m0

m[001]
(hh) G2

13F m0

m[111]
( lh) 2

m0

m[111]
(hh) G2

,

~44!
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m0

m[110]
(hh) 5

1

2 F m0

m[001]
( lh) 1

m0

m[001]
(hh) G

1
1

4
AF m0

m[001]
( lh) 2

m0

m[001]
(hh) G2

13F m0

m[111]
( lh) 2

m0

m[111]
(hh) G2

.

~45!

Note that the valence band masses are negative. Again, t
results are the same as in thesp3s* model. The next section
discusses the implications of these results for the reprod
ibility of the model.

III. RESULTS: Si AND Ge PARAMETERS

An important component of theNEMO theory and soft-
ware development has been representing material prope
such as effective masses and band gaps of the centrally
evant conduction and valence bands at room temperature12,13

for the quantitative simulation of electronic structure a
electronic transport in heterostructures. The low-tempera
Si and Ge parametrizations of Jancuet al.5 served as a start
ing point in the effort to develop the ability to model SiG
alloys and arbitrary distortions of the Si-Si and Ge-G
bonds.14 Of particular interest has been the representation
the material properties at room temperature, and where a
able experimental room temperature data17 are used as a pa
rametrization target. The parametrizations used were ge
ated by an automated genetic algorithm approach detaile
Ref. 11, followed by hand tuning using the formulas pr
sented in Sec. II above. Table IV lists our generated tig
binding parameters for Si and Ge, while Table V gives
lected energy band edges, gaps, and effective ma

TABLE IV. Tight-binding parameters for Si and Ge~same-site
and two-center integrals! in the Slater-Koster notation~Ref. 3!;
units are eV.

Parameter Si Ge

Es 22.15168 21.95617
Ep 4.22925 5.30970
Es* 19.11650 19.29600
Ed 13.78950 13.58060
l 0.01989 0.10132
sss 21.95933 21.39456
s* s* s 24.24135 23.56680
ss* s 21.52230 22.01830
sps 3.02562 2.73135
s* ps 3.15565 2.68638
sds 22.28485 22.64779
s* ds 20.80993 21.12312
pps 4.10364 4.28921
ppp 21.51801 21.73707
pds 21.35554 22.00115
pdp 2.38479 2.10953
dds 21.68136 21.32941
ddp 2.58880 2.56261
ddd 21.81400 21.95120
1-6
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TABLE V. Selected energies~in eV!, k minima~in relative units of the Brillouin zone edge!, and effective
masses~in units of the free-electron mass! for Si and Ge as reproduced by the parameters of Table IV, a
with target values given our fitting algorithm. Unless otherwise noted, targets are from Ref. 17. In
materials theL-valley minima occur at the symmetry point. All masses are computed at the correspo
extrema. Values marked with an asterisk are not well established and as a result were not targeted str
the optimization.

Quantity Si Si target % deviation Ge Ge target % deviation

Ec
G 3.399 3.368 0.9 1.584 1.575 0.6

Ev
G 0.0 0.0 0.0 0.770 0.770 0.0

D0 0.0472 0.045 4.9 0.225 0.300 25.0
Ec,min

L 2.383 2.400a 0.7 1.448 1.434 1.0
Ec,min

X 1.131 1.118 1.2 1.676 1.675b 0.1
kmin

[001] 81.3% 85.0% 4.4 88.5% 85.0% 4.1
mX,l

(e) 0.891 0.916 2.7 0.701 0.900* 22.1
mX,t

(e) 0.201 0.190 5.8 0.201 0.200* 0.5
mL,l

(e) 3.433 2.000 71.7* 1.584 1.590 0.4
mL,t

(e) 0.174 0.100 74.0* 0.0813 0.0823 1.2
mlh

[001] 20.214 20.204 4.9 20.0488 20.0457 6.8
mlh

[110] 20.152 20.147 3.4 20.0424 20.0417 1.7
mlh

[111] 20.144 20.139 3.6 20.0410 20.0406 1.0
mhh

[001] 20.276 20.275 0.4 20.173 20.211 18.0
mhh

[110] 20.581 20.579 0.3 20.368 20.383 3.9
mhh

[111] 20.734 20.738 0.5 20.531 20.502 5.8
mso 20.246 20.234 5.1 20.0947 20.095 0.3

aReference 18.
bSee Ref. 22.
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reproduced by them. Care was taken to simultaneou
match the critical band edges atG, X,L, andXmin on theD
line as well as the various anisotropic conduction ba
masses atL and Xmin and the anisotropic valence ban
masses. The present parameters place the SiL valley higher
than do those of Ref. 5, since experimental evidence~Ref.
18! indicates that it should be higher~2.40 eV!. Little weight
was assigned to the importance of the conduction band m
at G and the split-off band effective mass; the split-off v
lence band splittingD0 was also assigned a fairly sma
weight. In Ge the conduction band effective masses atXmin
were optimized with a relatively small importance weight.
Si the conduction band effective masses atL were not opti-
mized at all. The relative errors in percent are listed in Ta
V and indicate values typically less than 5%. The sole
ception is the Ge heavy-hole mass along@001#, which, as
discussed below, allows little freedom in fitting.~Note as
well that Ref. 5 achieves a fairly small value for this ma
20.196.) We consider this accuracy acceptable within
range of known experimental data.

The resulting bands of Si and Ge in an energy ran
around the valence and lowest conduction bands are plo
in Figs. 1 and 2. Note that the valence bands of Ge are o
with respect to those of Si to facilitate their use in futu
Si/Ge heterostructure calculations.

One feature of the bands atG that immediately stands ou
is the difference in the conduction band structures of the
materials. Note, in particular, that the lowest conduct
bands in Si~Fig. 1! are all nearly degenerate, whereas in
11520
ly
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~Fig. 2! the lowest conduction band is much nearer the
lence bands than any of the others. The form of the inve
mass formulas suggests that this will have profound con
quences on the masses reproduced by the model for the
materials, and this is indeed the case.

IV. DISCUSSION

It is instructive to compare the capabilities of the neare
neighborsp3d5s* model to those of the widely employe

FIG. 1. Bands of silicon as reproduced by our parameters gi
in Table IV; only the central bands are shown.
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sp3s* model. The number of parameters needed for
nearest-neighborsp3d5s* model is comparable to that of th
second-near-neighborsp3s* model and of course signifi
cantly more than that of the nearest-neighbor version. Re
ence 11 discusses in detail the limitations of the near
neighborsp3s* model. It can be shown analytically for th
nearest-neighborsp3s* model that at theX-point face the
transverse effective mass is infinitely large, i.e., the band
that direction are flat. Furthermore, Ref. 11 shows that
conduction band minimum on theD line must be pushed
about 60% of the way to the Brillouin zone face to be able
achieve a transverse mass small enough to give the con
tion band isosurfaces their desired cigarlike shape. Even
the mass remains about 50% too large, and the impro
position of the conduction band minimum at about 60
rather than 85% results in improperly quantized wa
functions19 in heterostructures and incorrect reproduction
the valley splitting.19 Good longitudinal and transverse co
duction band masses come at the price of severe distortio
the valence bands, where the masses are much too sma~by
factors of 10–20!, and very poor reproduction of the highe
conduction bands. A simultaneous fit of the conduction a
valence bands in the nearest-neighborsp3s* model for Si is
simply impossible,11 rendering thesp3s* nearest-neighbo
model useless for realistic calculations for heterostructure
which conduction and valence bands couple and even
simple devices such as Zener diodes which depend on in
band tunneling. In contrast, Ref. 11 shows that the seco
nearest-neighborsp3s* model can simultaneously reproduc
the valence and conduction band effective masses and
evant band gaps.

Together, Ref. 11 and this work show that the seco
nearest-neighborsp3s* and the nearest-neighborsp3d5s*
models are comparable in their ability to simultaneously
produce valence and conduction band properties. In term
their use for transport simulations13 in NEMO 1D both models
require the eigenvalues of a 40340 matrix for the computa-
tion of open system boundary conditions. For a 1D~zinc

FIG. 2. Bands of germanium as reproduced by our parame
given in Table IV; only the central bands are shown.
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blende! heterostructure which is spatially resolved inN an-
ion andN cation layers, thesp3d5s* model requires twice as
much computational effort compared to thesp3s* second-
nearest-neighbor model, since the Hamiltonian needs to
resolved in the recursive Green function~RGF! algorithm as
2N3(20320) blocks compared toN3(20320) blocks.
Since the RGF scales asM3B3, whereB is the block size
and M the number of blocks, the second-nearest-neigh
sp3s* model runs twice as fast as the nearest-neigh
sp3d5s* model.20

For 3D nanoelectronic structures, however, which m
contain arbitrary lattice distortions, thesp3d5s* model pro-
vides significant advantages over the second-near
neighborsp3s* model. The nearest-neighbor model allow
for a well-defined scaling of the on-site and nearest-neigh
interactions14 due to strain-induced distortions. The secon
nearest-neighbor model requires a much more complica
treatment of the second-nearest-neighbor interaction par
eters, due to the more complicated three-center integ
Furthermore, the nearest-neighbor model makes the sim
tion of disordered materials such as alloys and interfa
much more straightforward, since at these inhomogene
the physics behind the nearest-neighbor interpolation rule
solid. For second-near-neighbor interactions, however,
interpolation rules are far less certain. These fundame
advantages of the nearest-neighbor model have led theNEMO

3D development12 to focus on thesp3d5s* model, rather
than the second-near-neighborsp3s* model; theNEMO 1D
tool supports both models.

In the automated fit of thesp3d5s* model we found that
achieving good results for the heavy- and light-hole mas
in all three directions~@001#, @110#, and @111#! was much
more difficult ~in terms of the computer time required! for
Ge than for Si. This is due in large measure to the v
different conduction band structures of these two materi
In Si, the three lowest conduction bands (p- andd-like! are
very close, all lying around 3.4 eV above the valence ba
maximum; the lowests-like conduction band is only anothe
1.1 eV higher. In contrast, the lowest conduction band of
is s-like and only about 0.8 eV above the valence band ma
mum; the next highest (p- andd-like! conduction bands are
approximately another 2 eV higher. Since the hole mas
derived in Secs. II B and II C above are largely determin
by the couplings between the valence and conduction ba
the conduction band ordering has a major impact on the e
with which the model can reproduce them; a detailed look
the components of the various inverse mass formulas rev
how the different conduction band structure affects
masses in the two materials.

First consider the light hole masses. Table VI lists t
~dimensionless! interband couplings and their correspondi
energy gaps; also listed are the incompleteness term
@001# and the incompleteness difference term for@111#. As
one might expect, thep- and d-like valence bands couple
strongly to thes-like conduction bands, especially the low
est. In Ge this one coupling dominates all other terms, si
its energy gap~recall that eachw is an energy coupling
squared divided by an energy gap! is less than one-third o
the next smallest gap. Conversely, in Si, the two largest c

rs
1-8



n
correc-

VALENCE BAND EFFECTIVE-MASS EXPRESSIONS IN . . . PHYSICAL REVIEW B69, 115201 ~2004!
TABLE VI. Couplings ~dimensionless! and energy gaps~in eV! of valence bands to various conductio
bands for Ge and Si parameters given in Table IV. Also listed are the dimensionless incompleteness
tion term for @001# and the incompletness correction difference for@111#; see Eqs.~18! and ~36!.

Ge Si

m0

\2 Sa4D
2

w
Egap

m0

\2 Sa4D
2

w
Egap

v,s12 219.118 0.814 23.588 4.511
v,so12 24.821 2.739 23.268 3.399
v,l 12 22.184 2.990 21.608 3.450
v,s11 20.734 34.831 20.676 37.256
v,so11 20.373 18.459 20.175 19.169
v,l 11 20.190 18.512 20.088 19.178
v,d2 20.063 8.579 20.225 9.305

inc: l , @001# 1.787 1.513
inc: l , @111# 1.249 1.012
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plings are roughly the same size,21 as are the three lowes
energy gaps. In Si, therefore, three terms strongly influe
the light-hole mass as compared to a single term in Ge. A
result, the model does not permit the Ge light-hole mas
change much in going from@001# to @111#, while it tends to
change that of Si relatively more due to the transfer of
valence band couplings to the split-off conduction ban
from the heavy hole along@001# to the light hole along
@111#—compare Eqs.~32! and ~38!. This observation is re-
flected both experimentally and theoretically~Table V!
where in Si mlh

[111]'0.67mlh
[001] , while for Ge mlh

[111]

'0.89mlh
[001] ; the absolute change in Si is almost 14 tim

that in Ge. Even though the experimental data indicat
relatively small change in the Ge light-hole mass, the f
that this mass is dominated by a single term makes fitting
experimental values significantly harder in Ge than in Si.

The conduction band structure of the two materials a
affects the heavy-hole masses. Table V shows that in b
materials the heavy-hole mass increases significantly in m
nitude on going from@001# to @111#, and the change is
smaller in both relative and absolute terms for Ge than for
The model reflects and to some extent overemphasizes
trend ~Table VI!, since the largest component of the@001#
heavy-hole mass is the coupling to the lowest split-off co
duction band, which appears in the@001# mass but not in the
@111# mass. This very large change in mass dictated by
model is therefore more compatible with Si than with G
and thus explains the difficulty in fitting the Ge heavy-ho
masses along@001# and@111#. Thus these formulas show th
important connection between the conduction band posi
and ordering and the valence band masses along@001# and
@111#.

The analytical mass equations detail clearly that in sp
of the inclusion ofd orbitals the@110# masses are function
solely of those along@001# and@111#. This result is the same
as one finds in thesp3s* models or indeed ink•p perturba-
tion theory based ons- andp-like orbitals.~Note that in the
11520
e
a

to

e
s

a
t
e

o
th
g-

i.
his

-

e
,

n

e

present model the spin-orbit coupling is modeled by a sa
atom,p-orbital-only parameter.! Thus, where precise exper
mental results on effective masses are available, the suit
ity of this model for diamond semiconductors can
checked with the sum rule Eq.~39! and the inverse mas
relations Eqs.~44! and ~45!.

V. CONCLUSIONS

Exact, analytic formulas for the inverse valence band
fective masses along@001#, @110#, and @111# for the spin-
orbit, nearest-neighborsp3d5s* Hamiltonian5 for diamond
at G have been derived. These formulas are helpful in man
or automated fits of the bands. These results show the r
tionships between the valence band masses along@001#,
@110#, and@111#, as well as the intimate connection betwe
these masses and the ordering and position of the var
conduction bands. This connection has an interesting co
lary for automated fitting procedures: The connection
tween the conduction band position and ordering and
valence band masses along@001#, @110#, and @111# means
that fitting both energy gaps and curvatures will help ens
~but cannot guarantee since no model is perfectly compl!
proper ordering of the bands at the zone center. A param
zation of thesp3d5s* model for unstrained Si and Ge i
presented. In the parametrization particular care was give
the reproduction of the lowest conduction bands and up
valence bands which are relevant to semiconductor het
structure modeling, and deviations from the desired tar
values of typically less than 5% were found.
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