PHYSICAL REVIEW B 69, 115201 (2004

Valence band effective-mass expressions in trep’d®s* empirical tight-binding model applied
to a Si and Ge parametrization
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Exact, analytic expressions for the valence band effective masses in the spirspfdits* empirical
tight-binding model are derived. These expressions together with an automated fitting algorithm are used to
produce improved parameter sets for Si and Ge at room temperature. Detailed examinations of the analytic
effective-mass expressions reveal critical capabilities and limitations of this model in reproducing simulta-
neously certain gaps and effective masses. [i€] masses are shown to be completely determined by the
[100] and[111] masses despite the introductiondbrbitals into the basis.
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[. INTRODUCTION marson, and Dow,which yielded better reproduction of the
conduction band of diamond and zinc blende semiconductors
Heterostructures with atomically sharp interfaces lie at thealong[100]. Much more recently, Jancet al® have further
heart of advanced semiconductor devices employed for eleémproved the method by adding excitatl orbitals to a
tronic computation and optical detection and emission. Whilemearest-neighbor approach, resulting in superior reproduction
such heterostructures have typically been explored in thef the X-valley transverse masses in these semiconductors.
[1I-V and II-VI material systems, commercial device scaling The progress in the application of the tight-binding
in the Si, Ge, and SiGe material systems has also reachedethod to quantitative device modeling has been slowed by
critical device dimensions of a few tens of nanometers. Othe one major handicap of the method: the difficult parameter
particular interest is also the development of Si-based quarfitting process. One of the strengths of continuum models
tum dot heterostructures for quantum computig. such as effective mass akdp is that they are directly pa-
Proof-of-principle device modeling has typically beenrametrized by observables such as effective masses, band
performed in continuum basis, plane wave approaches sugaps, and band offsets. In contrast, empirical tight-binding
as effective mass ok-p. However, realistic modeling of and empirical pseudopotential methods are based on atomic
technically relevant heterostructures requires the atomistimteraction representations and need to be fitted to these bulk
resolution of interface details, atomic disorder, the incorpo-material properties. The fitting process is difficult on two
ration of finite device boundaries, large local electric fields,levels:(i) the determination whether or not a particular tight-
and coherent coupling between bands. Localized orbital aphinding model can indeed properly reproduce some critical
proaches are attractive since they can model these effectsaterial properties, an(d) the mapping of the large number
without the introduction of an artificial periodicity or an ex- of orbital coupling parameters onto the set of observables.
traordinarily large plane wave basis. The development of analytic expressions for effective
Any realistic electronic heterostructure model, whatevemmasses for various tight-binding mod&f$? along with au-
the underlying basis, must accurately reproduce the expertomated fitting procedurés$, has addressed some of these
mentally verified energy gaps and effective masses for thdifficulties in tight binding.
relevant bands. An approach which delivers a band gap that Of all the observables, the effective masses invariably
is off by a few tens of meV or effective masses that are offprove to be the most troublesome features to reproduce in
by tens of percent can properly model neither the energies adither automated or manual fits. There are two reasons for
guantized states nor the confinement of these states. Tlikis. First, the inverse effective mass(ig to constanisthe
strength of empirical tight-binding models is their ability to second derivative of the band ener&y(k). Second, the
properly model such critical material properties with a local-masses are much more complicated functions of the tight-
ized, atomistic orbital basis. Empirical tight-binding tech- binding parameters than are most of the gaps. In those cases
nigues have therefore developed into the primary choice fowhere they are available, exact, analytic formulas for the
many researchers interested in the quantitative modeling adffective masses have not only aided in better parametriza-
electronic structure on a nanometer scale. tions for tight-binding models, but have also provided much
The past several years have seen a broader recognition iofsight as to the suitability of different models for different
the requirements of proper band structure reproduction, anchaterials. Results for the massed’ah the nearest-neighbor
the result has been a series of improvements to the pioneesp®s* model§ (with and without the spin-orbit coupling
ing work of Slater and KosteérA major enhancement was the second-near-neighbor, spin-orbs* model”® and the
the addition of the excited-like orbital, s*, by Vogl, Hjal-  second- and third-near-neighbor no-spin-driis p> models
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have recently been published. Reference 8 in fact gives the These subspaces of the Hamiltonian as written are conve-
valence band effective masses along [th&0] and[111] di- niently described in terms of zone-center Bloch sums of
rections, which, together with tH@®01] results from Refs. 6 atomiclike orbitals. Since there are two atoms per unit cell in
and 7, demonstrate the capability of thg’s* model to re-  diamond there are two orbitals of a given type per cell, one
produce all of the valence band masses in many materials @h each atom. The 12-dimensional subspaces includegoth
interest. andd-like orbitals, one subspace consisting of orbital types

Although both the nearest-neighbor, spin-orspPd>s*  {p, 1,p, 1,p; |.dxy |.d,x T.dy, T}, the other like it but
modeP and the second-near-neighbor, spin-orkip®s* with the spins reversed. The four-dimensional subspaces are
model can accurately reproduce the observables of interest purely s-like, one having orbital$s 7,s* 1}, the other with
heterostructuresgeffective masses at gaps Bt X, andL),  the spins reversed. Finally, there is one two-dimensional sub-
there are important reasons to prefer the nearest-neighbapace for each of the orbital typez 2 T, dy2_y2 |,
spin-orbit sp®d®s* model. These reasons become apparentls,2_2 7, anddg,_,2 |.
when one applies each model to strained nanostructures, for The 12< 12 blocks are reduced tox44 using the heavy-,
distortions are handled much more easily in a nearestight-, and split-off hole states which diagonalize tfspin-
neighbor model. This theoretical difficulty has led the nano-orbit) sp®s* tight-binding or thesp® k-p Hamiltonian(see,
electronic modeling tool(NEMO) three-dimensional(3D) for example, Ref. § here applied to thé-like states(sub-
developmenit to be limited to nearest-neighbor interactions, stituting d,, for py, etc) also, as suggested by symmetry
while NEMO 1D still handles nearest- and second-nearesteonsiderations. This choice is motivated by the fact that the
neighbor models$? To fully qualify the capabilities of the spin-orbit Hamiltonian has the same matrix elements as in
sp®d®s* model and to aid its parametrization, exact, analyticthe sp*s* tight-binding model. These transformations are
effective-mass formulas are highly desirable. These formulas
for the valence band effective masses in the directions of 1
[001], [110], and[111] are derived here. We have not been lohw;1)=—[law;T)+ilBu:T)], 1)
able to find analytic formulas for the conduction band masses V2
atL and in theX valleys.

Section Il shows how a series of basis transformations 1 )
block-diagonalizes the Hamiltonian Eiinto blocks no larger |wlu;1)= %Haﬂi D=ilBw ) +2lym; DI, (2
than 2x2, which are sufficiently small that useful formulas
for effective masses can be derived. The method of Ref. 15 is 1
then utilized to derive these exact, analytic, inverse effective- AN — SR\ S\ .
mass formulas for the valance bands alpd@1], [110], and |osopu;1) \/§[|a’u'T> Hpw ) =lyws D)l 3
[111]. Section Il presents the results of the automated
sp’d®s* parameter generation for Si and Ge. Section IV 1
connects the analytic and numerical work in the previous two |ohw;2)=—[|ap;|Y—i|Bu; )], (4)
sections and discusses the ability of g’d°s* model to V2
reproduce faithfully and simultaneously all of these masses.
Section V contains our conclusions. 1

|w|,u;2>=%[Ia,u;l)“|BM;l>—2|W;T>], (5

Il. METHOD

A. Block diagonalization of the Hamiltonian

1

The first step in the process is to diagonalize the spin- |‘”S°'“;2>:73[|“M?l>+'|ﬂﬂ?l>+|?’M3T>], (6)
orbit, nearest-neighbog p*d®s* Hamiltoniar? for diamond
atI". The spin-orbit interaction is assumed to bp-arbital, ~ where in Eqs(1)—(6) orbital designators have been chosen
same-atom only parameter, as in Refs. 5 and 16. Followings (w;a,8,v)=(p;X,Y,2), or (w;a,B,v)=(d;yz,zxXxy),
Ref. 5, a single onsite parameter for dllorbitals is em-  with spin labels{7,]}, and fcc sublattice label.={a,c}.
ployed, and only two-center integrals determine the nearesNote that the states with=p(d) are thep(d)-like compo-
neighbor parameters; the notation follows Ref. 3. Such renents of the heavy-h), light- (I), or split-off (so) sub-
strictions are almost universal in the literature and arespaces to be extracted below.
restated here for completeness. In #1@d®s* basis, thek The roots of the quartic equation are sufficiently compli-
dependence of the Hamiltoniaf (k) is contained in the cated that to obtain useful analytic formulas one must further
functionsg;(k) (see Ref. 4 for definitionsgy(0)=1 while  decompose all of the four-dimensional subspaces. In dia-
0i(0)=0, i=1,2,3. As a result, the HamiltoniaH(0) as mond the two atoms of a unit cell are identical, and further
written is block diagonal, consisting of two 12-dimensional simplification results from changing to a basis of sums and
subspaces, two four-dimensional subspaces, and four twalifferences of states of the same type on the two atoms,
dimensional subspaces. Since Si and Ge possess diamoraminiscent of the bonding and antibonding orbitals of mo-
symmetry, further reduction of the X212 blocks to 4<4 is  lecular physics. For the six subspaces resulting from the
possible; the basis transformations which accomplish this argansformations in Eq€1)—(6), the following change of ba-
discussed below. sis is performed:
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TABLE |. Nearest-neighbofNN) parameters appearing in the inverse mass formulas in terms of the
Slater-KostefRef. 3 two-center integrals. Specific values of the two-center integrals for Si and Ge are given
in Table IV below.

NN parameter Slater-Koster NN parameter Slater-Koster
Vs,s 4Vssa Vx,y § [Vppa'_vppﬂ]
4 2
Vs,s* 4VSS*0' Vp,d é Vpd(,—‘7§Vpd77
4 1
VS* s* 4VS* s* g U p,d § Vpd(r+ ‘7§Vpdﬂ'
4 8
VS’ p ‘73 Vsprr Wp: d é Vpdﬂ-
4 4
Ver p 7 Vet po Vad 5[3Vaar+ 2Vaan T 4Vas]
v 4 V. v 4 PAVARERY
sd 3 Vewr d.d 3[2Vadrt Vaas]
4 4
Vg — u _ _ _
s*.d ‘/jVs*da d.d g[3Vads— Vaar—2Vas]
4 N —
Viyx é[vppa+2Vppw] Wi, 3\@[Vdd5 Vaar]
1 {Ea V} 10
vn;+)=—[+|pra;n)+|prc:n)], 7 Ho= 10
[pvni=)=—[=|praim+|prein)] @ vV &
with eigenvalues
1
dvn;*)=—[|dva;n)¥|dvc;n)], 8 =
[dvn; x)=—[|dvaim)=|dvein)] ®) E.=E+A, (11)
where n={1,2, wv={h,l,so}. The remaining four- — 1 1 .
. . . — — _ — 2
dimensional subspaces, spanned by shand s* orbitals E—§(Ea+Eb)v EA—§(Ea Ep), A=VE}+V
(one subspace for each spin direcjiane block diagonalized (12)

by the same procedure:
and corresponding eigenvectors

1
on;i>=5[l<fa;x>1|ac;x>], 9 |+) = mala) + 75| b), (13
whereo={s,s*}, x={1,1}. The development that follows | =)=~ ml@)+ na[b), (14
is simplified by a short-hand notation for two 20-dimensional
subspaces, labeling the 12 states of H4$-(3) above, in _ ExtA _ \ 15
addition to the eight statesfor both u={a,c}) {|sl; Ta™ V2JAZ+AE, o= J2JAZTAE, (19

0 L) =y i 1), (BZ2 =P s 1)} the  “1

states,” and the 12 states of Eqg)—(6) above, together The states themselves are found by substituting the quantities
with the eight states {|s];*),|s*1;=).,|(x> in Tables | and Il into the above equations, except for the
=y ;1) (322=r?)u; 1)} the “2 states.” case of the two subspacé¢gx*—y?)a;1),|(x2—y?)c; 1)},

The foregoing basis transformations thus block-{|(3z2—r?)a;1),|(32—r?)c;1)}, for which the results are
diagonalize the original 4040 Hamiltonian into X2 ma-  so simple(due to the degeneracy of the atomiclike orbitals
trices. In what follows below one obtains the same results fothat they are stated separately. Both subspaces have the same
the 1 and 2 states, so in the interest of brevity only results fo2 X2 block Hamiltonian and the resulting eigenvalues and
the 2 states are listed. The Hamiltonian blocks now take theigenvector coefficients are, in the parlance of E#j$) and
same form(in a generic{|a),|b)} basis: (15),
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TABLE II. Abbreviations used with Eqg10)—(15) to get spe- The contributions to the inverse mass are of two ty]ﬁes:
cific eigenvalues and eigenvectors of the 2 blocks in terms of  the incompleteness correctiofthe second-order matrix
the tight-binding parameters. Slater-KostBef. 3 expressions for  d?H/dk? to first order in perturbation theonand couplings
on-site parameters and the abbreviations of Table | for nearesiy gther bandsthe first-order matrixdH/dk to second order
neighbor parameters are used. in perturbation theony It is useful to first list these contri-
butions separately since many of them will appear in the

Abbreviation Slater-Koster/Table | [111] inverse mass formulas as well. The heavy and light
E® E 7V holes have identical incompleteness corrections,
ESY Egx ¥ Vor o [001] _ . ()2 (-))2 () ()
i ' Wiiney 1 = (Y1) Vxx = (¥pa ) Va,d= 241" Yp. Vp.d»
| (inc),l d,l X, X p.! dd d,l Vp,I Vpd
E(t) Ep+)\iVX’X (18)
GO E,—2\=V
+ p X, X . . . .
E® eV while the split-off hole incompleteness term is

001 - - -y (-
WEinc)],sO: ( y&,s)o)zvx,x_ (yfj,s)c)zvd,d_ 278,5)07E)’S)0Vp’d(.
1

~ ~ 4
Es+=Ea*Vaa, Vad= (g) [2VyartVaasl, (160 Next come the couplings of the valence bands to other bands.

The heavy valence band couples to both of the light conduc-
tion bands; with the same strengths the light valence band

1 couples to the heavy conduction bands:
Nsa= MNsb~ - (17) P vy
v2 ) 1
: . . — w = =YV + )9 U
These transformations diagonalize the Hamiltonian at zone v'** EF;)—E,(V? 3 dl Vp ' Vxy™ VpI" Vd "~ dd

center, providing the eigenstates with which the inverse ef- () () 4 (=) (+) 5
fective masses can be calculated. +(va) Yar' T ¥pa Ve )Up.al®s (20)
. 2 1

B. Inverse effective masses along01] Wy 1 :w(§) [7((;1])7Ejj)vx,y+ yg])ygrl)ud’d
The inverse effective masses for the valence bands are b T
calculated using the method of Ref. 15. The heavy, light, and + (V5 S = V5P YUl (21
split-off holes are the four statesn€1,2) |hn;—;—) . ]
(heavy, |In;—;—) (light), and|sor—;—) (split off); see The oth_er heavy valence band couplings are to the split-off
Table Il for specific decompositions for the 2 states. Alongconduction bands,

[001] neither of the matricedH/dk,, dzl;lldk§ couples the

2 2
1 states to the 2 states. Nor for that matter does either matriy . . =——=07" (_)[_ T PAY,
couple the degenerate heavy- and light-hole states within Bl —Eso \3 o psonny

each of the 20-dimensionéle., “1” or “2” ) subspaces. The (=) (+) () ) (=) () 2

i : ’ + + +

inverse effective-mass formulas therefore take the same form o YasUaat (Yar YasoT Vo Yp.sdUpal®s

as in the nondegenerate perturbation theory. (22
TABLE Ill. New states, basis states, eigenvalues, and eigenvector coefficients for the eight two-

dimensional subspaces reduced from the original 12- and four-dimensional subspaces in the notation of
Tables | and 1l and Eq€1)—(15). The names of thg+) eigenstates in the first column correspond to|the

states on the left-hand sides of E¢$3) and (14); the basis states in the second column correspond to the
{|a),|b)} states on the right-hand sides of these equations. The entries of g&Hdamiltonian, Eq(10),

are listed in thee, , E,,, andV columns. The last three columns give specific names for the template energies
in Eq. (11) and coefficients in Eq15). To calculate the eigenstates of a given row, substitute the values from
the third through fifth columns into Eq§10)—(15).

B Basis states Ea E, \Y E. Na U
l2ieix) piziefdizie) D ED Vo, B AD of)
h2i+:x)  (lph2i+)jdh2i+)) - EDEY -Vee o E[V ) A
[so2i+5=) - {lps@it)fdse@it))  EGY B Vg ELL wd s
12,3 %) {Ip12;=).|d12; =)} D ED —vpe ED v )
|h2;—;=) {Iph2;-),|dh2;—)} E® E ~Vpa  E(L W)
|so2;—;=)  {lpse2;i—)ldsa; )} ECY EQ Vg EGL wmd Yo
024+ {Isti+).[s*1:+)} EY ECY Ve  ESL oD ol
[02;=5%) {Isti=)[s*1: =) EY ESY Ve B o) ol

115201-4



VALENCE BAND EFFECTIVE-MASS EXPRESSIONS IN . ..

2 2
Wu,so+:E|(_rE(TT( )[?’dl AT 7p| Yp U4
v S0,—

+(7((j] ')’p,so_ 7?) I)'}’Ers)o p,d]z- (23
The other light valence band couplings are to $Hike (at

zone centerbands,
2 2 -
Wvo++§?ﬁ—y [= 5ol WV o= 750l Ve

Yo Vs at v oG Ve al?, (24)

_ n _
WU,(r+—: [’}/d,l)o-g* )Vs,p_'y((j,l)o'g+)vs*,p

2 2
E-e) (5
+ 750 NV = 75 eV 412, (25
as well as to thal-like (3z2—r?) band:

2 2
_ - 2
W”“S__Ef;j—Ea,— (5)[7‘(’") Wt 75, Waal*. (20

PHYSICAL REVIEW B9, 115201 (2004

2
Mo mp(a 001
m[iﬁﬁi]:gz' 2 [WEinC)],I+Wv,|+++WU,I+7+Wv,SO++
001
+Wv,so+—]1 (32)
my  mgla 2
M-~ 72\ 2 [W(Inc)|+Wv|+++Wv|+ TWy ot +
Mioo1)
+WU,0’+*+WU,5*]Y (33)
my myla\? [001]
m(son = w2\la [W(inc),so+Wso,I+++Wso,|+7+Wso,o++

+WSO,0'+— +Wso,5—]! (34)

wherea is the conventional unit cell cube edge anglis the
free-electron mass. Next we consider the heavy and light
valence band masses alofid 1] and[110].

C. Inverse heavy and light masses alonf111] and [110]

The task of finding these inverse mass formulas is rather
more complicated than alor{@®01] since fork along[111]

The split-off valence band couples to the heavy conductionhe matrixdH/dk mixes the 1 and 2 states, and along either

bands,

2 2 )
Wso,h++:7_ﬁ_7E R [— Yd so)’ Viy
TR
+7§) s)oydl)ud d+(7d 507(+)+7p so?’pl))Up d]z
(27)
2 2 (=) (1) (=) (1)
Wsoh+-=ECT —g(| 3 [Ya.507d,1 Vayt ¥p.so¥p1’Ydd

S0, — l,—

+(7d 507(+)_7p so')’dl))Up d]z (29)
the s-like bands,
2 1
Wso,o++:E(—j _E( 7 [— ’)’d SOO' V
SO, — o,+
- ')’51,73)00'(5* )Vs* pt '}’E)Ts)oa'gﬂvs,d
+ VBTS)OUS )Vs* ,d]21 (29)

2 1 (4 _
= E(—j — E(+) (5) [ 7((1,5)00-(5* )Vs,p_ Vg,s)oo-gﬂvs* P
s0,— o=

WSO,0'+ -

(

+ V(F)Ts)oo'g+)vs* da- Ypfs)OUQI)Vs,d]Z, (30)
and thed-like band
2 1 (—) (—) 2
Wsos-=ECT —E. |3 [Ya.soWp,d+ ¥p.soWg,a]"-
S0, — S5, — (31)

direction it mixes the heavy and light holes; the matrix
d?H/dk? also complicates matters. The inverse mass
matrix'® of dimension either % 4 along[111] or 2X 2 along
[110] must be diagonalized. TH&11] calculation is the more
easily performed despite its larger dimensionality and the
results are presented first.

In the second-near-neighbor, spin-ombj’s* model, it is
known that theg[111] inverse mass matrix in the bagig1;
—;=)|h1;—;=)12;—;-),|h2;—; )} takes the forr

M iT 0 (1-i)7
W —iT % (=1+i)7 0
- 0 (—1-i)7 p —ir |’
(1+i)r 0 i o
u,7eRe, (35

which has eigenvectors independentgofand 7. Since the
spin-orbit coupling in the nearest-neightsp®d®s* model is

the same as in thep®s* model, one expects that these very
eigenvectors will diagonalize tHd11] inverse mass matrix

in the spd®s* model also. This is in fact the case. Taking
advantage of the fact that these states diagonalize the inverse
mass matrix allows calculation of the masses as in Sec. [IB
above. Here an additional incompleteness correction is
found,

AwE.lﬁé)l:—[wd. )2V y— (Y5 )20 0= 2955 Up ),
(36)

which is added to the light inverse mass and subtracted from

With the above incompleteness corrections and couplingthe heavy inverse mass. All of the interband terms have been
the [001] inverse valence band effective-mass formulas forcalculated above; they are merely allocated differently be-

the heavy hh), light (Ih), and split-off Goh) holes can be

tween the heavy and light masses. The complete formulas are
written as

thus

115201-5



BOYKIN, KLIMECK, AND OYAFUSO

PHYSICAL REVIEW B 69, 115201 (2004

Mo mo(a)? TABLE IV. Tight-binding parameters for Si and Geame-site
= 72| 7 WE?,?Cl)],l—AWEil:cl)]‘|+va|+++Wv,|+f and two-center integralsin the Slater-Koster notatiofiRef. 3);
Mi111) units are eV.

3 .
+ ZWU"S_ , (37 Parameter Si Ge
Es —2.15168 -1.95617
2

m, myfa 001 1 Ep 4.22925 5.30970
=721 g Wiingy.1+ AW{ing Wy 14+ Wy 5 Eo 19.11650 19.29600

[211] Eq 13.78950 13.58060

+Wv,so+++wv,so+—+Wu,0'+++Wu,0'+— A 0.01989 0.10132

1 Sso —1.95933 —1.39456
W |- (39) s*s* o —4.24135 —3.56680
ss'o —1.52230 —2.01830
From Eqs(37) and(38) it is apparent that the inverse masses S*p" 3.02562 2.73135
obey the sum rule s*po 3.15565 2.68638
sdo —2.28485 —2.64779
my Mg mo Mg s*do —0.80993 —1.12312
oo 11 e 1 | e (O (39 ppo 4.10364 4.28921
(111 Ly Teor)  TH001] ppw —1.51801 ~1.73707
At this point we have all the ingredients needed to calculate pdo —1.35554 —2.00115
the[110] masses. pdm 2.38479 2.10953
Along[110] the 1 and 2 states are not mixed but the heavy ddo —1.68136 —1.32941
and light states are, so that there are two two-dimensional dd« 2.58880 2.56261
inverse mass matrices. Since one is the complex conjugate ofdds —1.81400 —1.95120
the other, only one needs to be diagonalized. For the 1 states
in the basig|I1;—;—),|h1;—;—)}, this matrix is most use-
fully written my 1[ mo mg }
RR) — 5| (R AR
1 V3 mfll%] 2 mEOO)l] mEoo%]
(1) Wiooy ™ 7 9001 17 Fjaaag 1 \/[ mo my |? o Mo Mo r
wid  — . (40 +— —mh — R | Tt - .
Nii1g] V3 B 1 (40 4 Mooy Mooy M1 M1
7 Op111) Wigoyt+ 2 1001 (45)

where

_ 1] 1 1
WOOIZ_[W+W:|! (41)
) Mooy Mooy
P —Wl —(Wl (42)
(oot Mooy Mooy ,
1 1
IEEE [ ) e 43
Mpir My

Remarkably, for this model witl orbitals, thg/110] inverse
masses are functions solely of th@01] and[111] inverse
masses: this is the same as in t#s* model®

Note that the valence band masses are negative. Again, these
results are the same as in thg’s* model. The next section
discusses the implications of these results for the reproduc-
ibility of the model.

Ill. RESULTS: Si AND Ge PARAMETERS

An important component of th&emo theory and soft-
ware development has been representing material properties
such as effective masses and band gaps of the centrally rel-
evant conduction and valence bands at room tempefattire
for the quantitative simulation of electronic structure and
electronic transport in heterostructures. The low-temperature
Si and Ge parametrizations of Jaretal® served as a start-
ing point in the effort to develop the ability to model SiGe

The eigenvalues of the inverse mass matrix give the inalloys and arbitrary distortions of the Si-Si and Ge-Ge

verse effective masses. Diagonalizing E40) one finds

Mg 1| mg my
My 2 [ migo)y mfé‘é‘ij
1 \/ Mo mo |° Mo my |?
(44)

bonds!* Of particular interest has been the representation of
the material properties at room temperature, and where avail-
able experimental room temperature da@re used as a pa-
rametrization target. The parametrizations used were gener-
ated by an automated genetic algorithm approach detailed in
Ref. 11, followed by hand tuning using the formulas pre-
sented in Sec. Il above. Table IV lists our generated tight-
binding parameters for Si and Ge, while Table V gives se-
lected energy band edges, gaps, and effective masses
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TABLE V. Selected energieén eV), k minima(in relative units of the Brillouin zone edgeand effective
massegin units of the free-electron maskr Si and Ge as reproduced by the parameters of Table 1V, along
with target values given our fitting algorithm. Unless otherwise noted, targets are from Ref. 17. In both
materials the_-valley minima occur at the symmetry point. All masses are computed at the corresponding
extrema. Values marked with an asterisk are not well established and as a result were not targeted strongly in
the optimization.

Quantity Si Si target % deviation Ge Ge target % deviation
EL 3.399 3.368 0.9 1.584 1.575 0.6
El 0.0 0.0 0.0 0.770 0.770 0.0
Ao 0.0472 0.045 4.9 0.225 0.300 25.0
E& min 2.383 2.408 0.7 1.448 1.434 1.0
EX min 1.131 1.118 1.2 1.676 1.675 0.1
kL00L] 81.3% 85.0% 4.4 88.5% 85.0% 4.1
mi¢) 0.891 0.916 2.7 0.701 0.990 22.1
mi) 0.201 0.190 5.8 0.201 0.250 0.5
m(®) 3.433 2.000 71% 1.584 1.590 0.4
m(®) 0.174 0.100 740 0.0813 0.0823 1.2
miPoH -0.214 —-0.204 4.9 —0.0488 —0.0457 6.8
{210l -0.152 —-0.147 3.4 —0.0424 —0.0417 1.7
mir14 —-0.144 —-0.139 3.6 —0.0410 —0.0406 1.0
{201 -0.276 -0.275 0.4 -0.173 -0.211 18.0
m+10] —0.581 -0.579 0.3 —0.368 -0.383 3.9
mi+11] —0.734 —-0.738 0.5 —0.531 —0.502 5.8
Meo —0.246 -0.234 5.1 —0.0947 —0.095 0.3

%Reference 18.
bSee Ref. 22.

reproduced by them. Care was taken to simultaneousl{Fig. 2) the lowest conduction band is much nearer the va-
match the critical band edges Bt X,L, and X,,;, on theA lence bands than any of the others. The form of the inverse
line as well as the various anisotropic conduction bandnass formulas suggests that this will have profound conse-
masses al. and X, and the anisotropic valence band quences on the masses reproduced by the model for the two
masses. The present parameters place thegilley higher  materials, and this is indeed the case.

than do those of Ref. 5, since experimental evidefivef.

18) indicates that it should be high&2.40 e\j. Little weight

was assigned to the importance of the conduction band mass = | ) o
atT and the split-off band effective mass: the split-off va- .It is mstrgc’gve to compare the capab|I|t|¢s of the nearest-
lence band splitingd, was also assigned a fairly small neighborsp d“s* model to those of the widely employed
weight. In Ge the conduction band effective masseX at

were optimized with a relatively small importance weight. In

Si the conduction band effective massed atiere not opti-
mized at all. The relative errors in percent are listed in Table
V and indicate values typically less than 5%. The sole ex-
ception is the Ge heavy-hole mass ald@§1], which, as
discussed below, allows little freedom in fittingNote as =
well that Ref. 5 achieves a fairly small value for this mass, >
—0.196.) We consider this accuracy acceptable within the
range of known experimental data.

The resulting bands of Si and Ge in an energy range
around the valence and lowest conduction bands are plotte
in Figs. 1 and 2. Note that the valence bands of Ge are offse
with respect to those of Si to facilitate their use in future
Si/Ge heterostructure calculations.

One feature of the bands Htthat immediately stands out
is the difference in the conduction band structures of the two
materials. Note, in particular, that the lowest conduction FIG. 1. Bands of silicon as reproduced by our parameters given
bands in SiFig. 1) are all nearly degenerate, whereas in Gein Table IV; only the central bands are shown.

IV. DISCUSSION

60 ———

En

X
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6.0

blende heterostructure which is spatially resolvedNnan-
ion andN cation layers, thep*d®s* model requires twice as
much computational effort compared to thg®s* second-
nearest-neighbor model, since the Hamiltonian needs to be
resolved in the recursive Green functidRGF algorithm as

] 2N X (20X 20) blocks compared td\NX (20X 20) blocks.
/_\ Since the RGF scales &8 x B2, whereB is the block size

5 and M the number of blocks, the second-nearest-neighbor
sp’s* model runs twice as fast as the nearest-neighbor
sp’d®s* model?°

For 3D nanoelectronic structures, however, which may

contain arbitrary lattice distortions, trep®d®s* model pro-
vides significant advantages over the second-nearest-

4.0

2.0

Energy [eV]

0.0

20 ¢ neighborsp®s* model. The nearest-neighbor model allows
for a well-defined scaling of the on-site and nearest-neighbor

L interaction$* due to strain-induced distortions. The second-
-4.0 L' I rl IR ‘X‘ ! UK ot - nearest-neighbor model requires a much more complicated

treatment of the second-nearest-neighbor interaction param-
FIG. 2. Bands of germanium as reproduced by our parameter§ters, due to the more complicated three-center integrals.
given in Table IV; only the central bands are shown. Furthermore, the nearest-neighbor model makes the simula-
tion of disordered materials such as alloys and interfaces
sp®s* model. The number of parameters needed for thenuch more straightforward, since at these inhomogeneities
nearest-neighbap>d®s* model is comparable to that of the the physics behind the nearest-neighbor interpolation rules is
second-near-neighbasp®s* model and of course signifi- solid. For second-near-neighbor interactions, however, the
cantly more than that of the nearest-neighbor version. Refetnterpolation rules are far less certain. These fundamental
ence 11 discusses in detail the limitations of the neares@dvantages of the nearest-neighbor model have ledghie
neighborsp®s* model. It can be shown analytically for the 3D developmerif to focus on thesp®d®s* model, rather
nearest-neighbosp®s* model that at theX-point face the than the second-near-neighb®p’s* model; theNEmo 1D
transverse effective mass is infinitely large, i.e., the bands itool supports both models.
that direction are flat. Furthermore, Ref. 11 shows that the In the automated fit of thep*d®s* model we found that
conduction band minimum on th& line must be pushed achieving good results for the heavy- and light-hole masses
about 60% of the way to the Brillouin zone face to be able tain all three directions[001], [110], and [111]) was much
achieve a transverse mass small enough to give the conduaore difficult (in terms of the computer time requinetbr
tion band isosurfaces their desired cigarlike shape. Even s&e than for Si. This is due in large measure to the very
the mass remains about 50% too large, and the impropdtdifferent conduction band structures of these two materials.
position of the conduction band minimum at about 60%In Si, the three lowest conduction bangs @ndd-like) are
rather than 85% results in improperly quantized wavevery close, all lying around 3.4 eV above the valence band
functions® in heterostructures and incorrect reproduction ofmaximum; the lowess-like conduction band is only another
the valley splitting'® Good longitudinal and transverse con- 1.1 eV higher. In contrast, the lowest conduction band of Ge
duction band masses come at the price of severe distortion & s-like and only about 0.8 eV above the valence band maxi-
the valence bands, where the masses are much too éyall mum; the next highestp- andd-like) conduction bands are
factors of 10—2Q and very poor reproduction of the higher approximately another 2 eV higher. Since the hole masses
conduction bands. A simultaneous fit of the conduction andlerived in Secs. IIB and Il C above are largely determined
valence bands in the nearest-neighbpts* model for Siis by the couplings between the valence and conduction bands,
simply impossiblé! rendering thesp®s* nearest-neighbor the conduction band ordering has a major impact on the ease
model useless for realistic calculations for heterostructures iwith which the model can reproduce them; a detailed look at
which conduction and valence bands couple and even fahe components of the various inverse mass formulas reveals
simple devices such as Zener diodes which depend on intehow the different conduction band structure affects the
band tunneling. In contrast, Ref. 11 shows that the secondnasses in the two materials.
nearest-neighbap®s* model can simultaneously reproduce  First consider the light hole masses. Table VI lists the
the valence and conduction band effective masses and reldimensionlessinterband couplings and their corresponding
evant band gaps. energy gaps; also listed are the incompleteness term for
Together, Ref. 11 and this work show that the second{001] and the incompleteness difference term [fbt1]. As
nearest-neighbosp®s* and the nearest-neighbepd®s* one might expect, th@- and d-like valence bands couple
models are comparable in their ability to simultaneously restrongly to thes-like conduction bands, especially the low-
produce valence and conduction band properties. In terms @st. In Ge this one coupling dominates all other terms, since
their use for transport simulatioisn NEMO 1D both models its energy gap(recall that eachw is an energy coupling
require the eigenvalues of a #@0 matrix for the computa- squared divided by an energy gdp less than one-third of
tion of open system boundary conditions. For a (Zlnc  the next smallest gap. Conversely, in Si, the two largest cou-
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TABLE VI. Couplings (dimensionlessand energy gapén eV) of valence bands to various conduction
bands for Ge and Si parameters given in Table IV. Also listed are the dimensionless incompleteness correc-
tion term for[001] and the incompletness correction difference[fttl]; see Eqs(18) and(36).

Ge Si
my (a|® my(a|?
|- w =W
ﬁz 4 Egap ﬁz 4 Egap
v,0+ — —19.118 0.814 —3.588 4.511
v,S0+ — —4.821 2.739 —3.268 3.399
v,l+— —2.184 2.990 —1.608 3.450
v,o0++ —-0.734 34.831 —-0.676 37.256
v,SO0+ + —-0.373 18.459 —-0.175 19.169
v,l++ —0.190 18.512 —0.088 19.178
v,0— —0.063 8.579 —-0.225 9.305
inc: 1, [00]] 1.787 1.513
inc: 1, [111] 1.249 1.012

plings are roughly the same siZeas are the three lowest present model the spin-orbit coupling is modeled by a same-
energy gaps. In Si, therefore, three terms strongly influencatom, p-orbital-only parameterThus, where precise experi-
the light-hole mass as compared to a single term in Ge. As mental results on effective masses are available, the suitabil-
result, the model does not permit the Ge light-hole mass tity of this model for diamond semiconductors can be
change much in going frof001] to [111], while it tends to  checked with the sum rule Eq39) and the inverse mass
change that of Si relatively more due to the transfer of theelations Eqs(44) and (45).

valence band couplings to the split-off conduction bands

from the heavy hole alon001] to the light hole along V. CONCLUSIONS
[111]—compare Eqs(32) and (38). This observation is re- . .
flected both experimentally and theoreticalifable V) Exact, analytic formulas for the inverse valence band ef-

: C111) 1001] : 1117 fective masses alonfp01], [110], and[111] for the spin-
where in Si mi- ~0.6amj, ", while for Ge mj orbit, nearest-neighbosp®d®s* Hamiltonian® for diamond
at” have been derived. These formulas are helpful in manual
Br automated fits of the bands. These results show the rela-
Eionships between the valence band masses aj60d],

~0.89m[P%!: the absolute change in Si is almost 14 times
that in Ge. Even though the experimental data indicate
relatively small change in the Ge light-hole mass, the fac

that this mass is dominated by a single term makes fitting thFllO] and[111], as well as the intimate connection between

expenmental V?'“es significantly harder in Ge than _in Si these masses and the ordering and position of the various
The conduction band structure of the two materials alsq onduction bands. This connection has an interesting corol-

affects the heavy-hole masses. Table V shows that in bot

materials the heavy-hole mass increases significantly in mag; ry for automated fitting procedures: The connection be-
nitude on going from[001] to [111], and the change is ween the conduction band position and ordering and the

X X valence band masses alof@01], [110], and[111] means
?ﬁ:lﬁgg]e??;?léilétzﬁ da?g gg;ﬂuéitt:;;ng\;grre?ne Lhaasri]zz)sr ?r']that fitting both energy gaps and curvatures will help ensure
P {But cannot guarantee since no model is perfectly complete

trend (Table V), since the Iar_gest component of t.[@i)l] proper ordering of the bands at the zone center. A parametri-
heavy-hole mass is the coupling to the lowest split-off con-!

. : . . zation of thesp®d®s* model for unstrained Si and Ge is
Ejflclt_]lor:;sasnd'l,'f\:;lshI\cjgrsﬁgfgaerscwa;[-gie)1i]nmrﬁzzsbl(;€cr':§:el(rj] tl?ye h resented. In the parametrization particular care was given to

model is therefore more compatible with Si than with Ge,. - reproduction of the lowest conduction bands and upper
. > compatible ‘valence bands which are relevant to semiconductor hetero-
and thus explains the difficulty in fitting the Ge heavy-hole

structure modeling, and deviations from the desired target
masses alonfp01] .and[lll]. Thus these formulas show th(_a values of typically less than 5% were found.
important connection between the conduction band position
and ordering and the valence band masses dl6ad] and
[111].

The analytical mass equations detail clearly that in spite  The work described in this publication was carried out in
of the inclusion ofd orbitals the[110] masses are functions part at the Jet Propulsion Laboratory, California Institute of
solely of those alon§001] and[111]. This result is the same Technology under a contract with the National Aeronautics
as one finds in thep®s* models or indeed ifk-p perturba- and Space Administration. Funding was provided under
tion theory based oe- andp-like orbitals.(Note that in the grants from ARDA, ONR, and JPL.
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