
1

ECE 60872: Fault-Tolerant Computer
System Design

Software Fault Tolerance

Saurabh Bagchi

School of Electrical & Computer Engineering

Purdue University

Some material based on ECE442 at the University of Illinois taught by
Profs. Ravi Iyer & Zbigniew Kalbarczyk

Outline

� Definition and Motivation for Software Fault
Tolerance

� Process pairs

� Robust data structures

2

Purdue University 3 ECE 60872

What is Software Fault Tolerance?

� Three alternative definitions

1. Management of faults originating from defects in design
or implementation of software components

2. Management of hardware failures in software

3. Management of network failures

� We will follow the classical definition (1) due to
Avizienis in 1977

Purdue University 4 ECE
60872

Motivation for Software Fault Tolerance

� Usual method of software reliability is fault avoidance using good
software engineering methodologies

� Large and complex systems fault avoidance not successful

– Rule of thumb fault density in software is 10-50 per 1,000 lines of code
for good software and 1-5 after intensive testing using automated tools

� Redundancy in software needed to detect, isolate, and recover from
software failures

� Hardware fault tolerance easier to assess

� Software is difficult to prove correct

HARDWARE FAULTS SOFTWARE FAULTS

1. Faults time-dependent Faults time-invariant
2. Duplicate hardware detects Duplicate software not effective
3. Random failure is main cause Complexity is main cause

3

Purdue University 5 ECE 60872

Consequences of Software Failure

� General Accounting Office reports $4.2 million lost
annually due to software errors

� Launch failure of Mariner I (1962)

� Destruction of French satellite (1988)

� Problems with Space Shuttle and Apollo missions

� SS7 (signaling system) protocol implementation -
untested patch (mistyped character) (1997)

� Therac 25 (overdose of medical radiation 1000’s of rads
in excess of prescribed dosage)

� Toyota Prius recall (2004) due to bug in embedded
code

Purdue University 6 ECE
60872

Difficulties

� Improvements in software development methodologies
reduce the incidence of faults, yielding fault avoidance

� Need for test and verification

� Formal verification techniques, such as proof of
correctness, can be applied to rather small programs

� Potential exists of faulty translation of user requirements

� Conventional testing is hit-or-miss. “Program testing
can show the presence of bugs but never show their
absence,” - Dijkstra, 1972.

� There is a lack of good fault models for software defects

4

Purdue University 7 ECE
60872

Forms of Software Testing

� Exhaustive testing of reasonable sized applications is impossible

� Approach is to define equivalence classes of inputs so that only one
test case from each class suffices

� Techniques proposed include
– Path testing

– Branch testing

– Interface testing

– Special values testing

– Functional testing

– Anomaly analysis

� Studies have shown path testing and interface testing while difficult
to design afford good coverage for large number of applications

Purdue University 8 ECE
60872

Approaches to Software Fault Tolerance

� ROBUSTNESS: The extent to which software continues to
operate despite introduction of invalid inputs.
Example: 1. Check input data

=>ask for new input
=>use default value and raise flag

2. Self checking software

� FAULT CONTAINMENT: Faults in one module should not
affect other modules.
Example: Reasonable checks

Watchdog timers
Overflow/divide-by-zero detection
Assertion checking

� FAULT TOLERANCE: Provides uninterrupted operation in
presence of program fault through multiple implementations of a
given function

5

Purdue University 9 ECE
60872

Temporal Redundancy

� Reexecution of a program when error is encountered

� Error may be faulty data, faulty execution or incorrect
output

� Reexecution will clear errors arising from temporary
circumstances

� Examples: Noisy communication channel, Full buffers,
Power supply transients, Resource exhaustion in
multiprocess environment

� Provides fault containment

� Possible to apply to applications with loose time
constraints

Purdue University 10 ECE
60872

Multi-Version Software Fault Tolerance

� Use of multiple versions (or “variants”) of a piece of
software

� Different versions may execute in parallel or in
sequence

� Rationale is that multiple versions will fail differently, i.e.,
for different inputs

� Versions are developed from common specifications

� Three main approaches
– Recovery Blocks

– N-version Programming

– N Self-Checking Programming

6

Purdue University 11 ECE
60872

Recovery Blocks

� Checkpoint and restart approach
– Try a version, if error detected through acceptance test, try a different

version

– Ordering of the different versions according to reliability

� Checkpoints needed to provide valid operational state for subsequent
versions

� Acceptance test could be on output or embedded in code

Due to Brian Randell,
first appeared in ToSE 1975

Purdue University 12 ECE
60872

N-Version Programming

� All versions designed to satisfy same basic requirement

� Decision of output comparison based on voting

� Different teams build different versions to avoid
correlated failures

Due to Al Avizienis,
first appeared in CompSAC 1977

Voter

7

Purdue University 13 ECE
60872

N Self-Checking Programming

� Multiple software versions with structural variations of
RB and NVP

� Use of separate acceptance tests for each version

Due to J. C. Laprie,
FTCS 87

Voter

Purdue University 14 ECE
60872

Reliability Analysis of Multi-Version Approaches

� Three postulates of software development:

P1: Complexity Breeds Bugs: Everything else being equal, the more
complex the software project is, the harder it is to make it reliable.

P2: All Bugs are Not Equal: You fix a bunch of obvious bugs quickly,
but finding and fixing the last few bugs is much harder, if you can
ever hunt them down.

P3: All Budgets are Finite: There is only a finite amount of effort
(budget) that we can spend on any project. That is, if we go for n
version diversity, we must divide the available effort n-way.

� R(t) = e-t

� Failure rate 1/Effort (E)

� Failure rate Complexity (C)

8

Purdue University 15 ECE
60872

Reliability of NVP vs. single version

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

Effort

R
e

lia
b

ili
ty

R(simplex)

R(NVP-3)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

Time

R
e

lia
b

ili
ty

R(simplex)

R(NVP-3)

Purdue University 16 ECE
60872

Reliability of RB vs. Simplex

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Effort

R
el

ia
b

ili
ty

R(simplex)

R(RB-3)

R(RB-5)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Effort

R
e

lia
b

ili
ty R(RB-2)

R(RB-2, C=1,0.1)

9

Purdue University 17 ECE
60872

Process Pairs

� Used in HP Himalaya servers as part of their NonStop
Advanced Architecture

� Bragging rights of the architecture
– Run the majority of credit and debit card systems in N.America
– More than US$3 billion of electronic funds transfers daily
– Run many of the E911 systems in North America

� Primary and backup processes on two different
processors

� Primary process executes actively
– Backup process is kept current by periodically sending state of

primary process

� Processors execute fail-stop failure
– When processor failure detected, backup takes over

Purdue University 18 ECE
60872

Process Pairs

� Applicability
– Permanent and transient hardware and software failures

– Loosely coupled redundant architectures

– Message passing process communication

– Well suited for maintaining data integrity in a transactional type of
system

– Can be used to replicate a critical system function or user application

� Assumptions

– Hardware and software modules design to fail-fast, i.e., to rapidly detect
errors and subsequently terminate processing

– Errors can be corrected by re-executing the same software copy in
changed environment

10

Purdue University 19 ECE
60872

Process Pairs Mechanism in
Tandem Guardian OS

Primary Backup

Operating
System

Operating
System

Backup
exists?

Backup
exists?

Checkpoint
• data
• file status
• PC

I/O I/O

I/O

I am alive

Mirrored disks

1. The application executes as Primary

2. Primary starts a Backup on another processor

3. Duplicated file images are also created

4. Primary periodically sends checkpoint information
to Backup

5. Backup reads checkpoint messages and updates its
data, file status, and program counter

- the checkpoint information is inserted in the
corresponding memory locations of the Backup

7. Backup loads and executes if the system reports that
Primary processor is down

- the error detection is done by Primary OS or

- Primary fails to respond to “I am alive” message

8. All file activities by Primary are performed on both
the primary and backup file copies

9. Primary periodically asks the OS if a Backup exists

- if there is no Backup, the Primary can request
the creation of a copy of both the process and
file structure

Purdue University 20 ECE
60872

Evaluation of Process-Pairs

� Done for Tandem’s Guardian OS Studied Tandem
Product Report (TPR) which are used to report product
failures

� Problem classified as software fault only after analysts
have pinpointed the cause

� Classes of software faults (not exhaustive)
– Incorrect computation (3%)

– Data fault (15%)

– Missing operation (20%)

– Side effect of code update (4%)

– Unexpected situation (29%)

– Microcode defect (4%)

11

Purdue University 21 ECE
60872

Results from Evaluation

� Out of total software failures, 138 out of 169 (82%)
caused single processor halt (recoverable). This is a
measure of the software fault tolerance of the system.

� Reasons for multiple processor fault
– Same fault as in the primary: 17/28 (60%)

– Second fault during job recovery: 4/28 (14.3%)

– Second halt is not related to process pairs: 4/28 (14.3%)

Purdue University 22 ECE
60872

Results from Evaluation

� Reasons for uncorrelated software fault
– Backup reexecutes same task, but same fault not exercised:

29%.
• Different memory state

• Race or timing related problem

– Example:
• Privileged process on primary requests a buffer

• Because of high user activity on primary, buffer exhaustion

• Bug in buffer management routine and returns “success”

• Primary privileged process uses uninitialized buffer pointer and
causes processor halt

• Backup process served the request after takeover

• But buffer was available on the backup processor

12

Purdue University 23 ECE
60872

Figure for Cases of Software Fault Tolerance

Purdue University 24 ECE
60872

Results from Evaluation

� Reasons for uncorrelated software fault
– Backup does not reexecute failed request on takeover: 20%.

• Processor monitoring task

• Interactive task

– Effect of error latency: 5%
• Task that caused the error finished before detection

• Example: I/O process for copying buffer from source to destination.

• Copied an additional byte overwriting buffer tag.

• No problem in data transfer.

• The successful data transfer was checkpointed but not the
corrupted buffer tag

• Problem surfaces later when buffer manager verifies buffer.

• No problem when reexecuting on backup.

13

Purdue University 25 ECE
60872

Results from Evaluation

� Process pairs with checkpointing and restart recovers
from 75% of reported software faults that result in
processor failures

� The complexity of process pairs introduces some faults
– 16% of single processor halts were failures of backup processes

� Counter-intuitive result since same software run on both
processors

� Loose coupling between processors, long error latency,
operation using checkpoints and not lock-step

� Are process triples better than process pairs?

Purdue University 26 ECE
60872

Process Pairs
Advantages & Disadvantages

Advantages
– Extremely successful in Tandem OLTP applications

– Tolerates hardware, operating system, and application failures

– High coverage (> 90%) of hardware and software faults

– The backup does not significantly reduce the performance

� Disadvantages

– Necessity of error detection checks and signaling techniques to make
a process fail-fast

– Process pairs are difficult to construct for non-transaction-based
applications

14

Purdue University 27 ECE
60872

Robust Data Structures

� The goal is to find storage structures that are robust in
the face of errors and failures

� What do we want to preserve?

Semantic integrity - the data meaning is not corrupted

Structural integrity - the correct data representation is
preserved

Focus on techniques for preserving the structural integrity

Purdue University 28 ECE
60872

Robust Data Structures (cont.)

� A robust data structure contains redundant data which
allow erroneous changes to be detected, and possibly
corrected
– a change is defined as an elementary (e.g., as single word)

modification to the encoded (data structure representation on a
storage medium) form of a data structure instance

– structural redundancy

• a stored count of the numbers of nodes in a structure instance

• identifier fields

• additional pointers

15

Purdue University 29 ECE
60872

Robust Data Structures (cont.)

� Consider data structure which consists of a header and
a set of nodes
– the header contains

• pointers to certain nodes of the instance or to parts of itself
• counts
• identifier fields

– a node contains
• data items
• structural information: pointers and node type identifier fields

� Error detection and correction
– in-line checks may be introduced into normal system code to

perform error detection and possibly correction, during regular
operation

Purdue University 30 ECE
60872

Link Lists

� Non-robust data structure
– in each node store a pointer to the next node of the list

– place a null pointer in the last node

header node node

data data
next NULLnext

0-detectable and 0-correctable
changing one pointer to NULL can
reduce any list to empty list

16

Purdue University 31 ECE
60872

Robust Data Structures
Single-Linked List Implementation

– Additions for improving robustness
• an identifier field to each node

• replace the NULL pointer in the last node by a pointer to the header of the
list

• stores a count of the number of nodes

header node node

data data

next next

H -ID ID ID

next

count =3

1-detectable and 0-correctable
•change to the count can be detected by comparing it against the number of nodes

found by following pointers
•change to the pointer may be detected by a mismatch in count number or

the new pointer points to a foreign node (which cannot have a valid identifier)

Purdue University 32 ECE
60872

Robust Data Structures
Double-Linked List Implementation

� Additions for improving robustness
– a pointer added to each node, pointing to the predecessor of the

node on the list

header node node

data data

next next

H -ID ID ID

next

count =3

previous previous previous

2-detectable and 1-correctable
the data structure has two independent, disjoint sets of pointers,
each of which may be used to reconstruct the entire list

17

Purdue University 33 ECE
60872

Error Correcting in Double-Linked List

� Scan the list in the forward direction until an identifier field error or
forward/backward pointer mismatch is detected

� When this happens scan the list in the reverse direction until a
similar error is detected

� Repair the data structure
Header Node Node

data data

B C (F)

H -ID ID ID

A

count =3

C A B

Node

ID

?

?

?

?

A CB

The forward scan detects a mismatch
in Node B and sets
Local_PtrB = B (local node’s pointer)
Next_PtrB = F (pointer to the next node)
The reverse scan detects a mismatch
in Node C and sets
Local_PtrC = C (local node’s pointer)
Back_PtrC = B (pointer to the previous node)

Correction
(Local_PtrB == Back_PtrC)

Next_PtrB := Local_PtrC

i.e., (Next_PtrB = C)

F

Purdue University 34 ECE
60872

Application of Robust Data Structures for
Semantic Error Checking

� Application to checking index corruption in B-trees

� See class presentation

18

Purdue University 35 ECE
60872

Robust Data Structures
Concluding Remarks

� Commonly used techniques for supporting robust data structures
– techniques which preserve structural integrity of data

• binary trees, heaps, fifos, queues, stacks
• linked data structures

– content-based techniques
• checksums, encoding

� Limitations
– not transparent to the application
– best in tolerating errors which corrupt the structure of the data (not the

semantic)
– increased complexity of the update routines may make them error

prone
– erroneous changes to the data structure may be propagated by correct

update routines
– faulty update routines may provoke correlated erroneous changes to

several fields

Purdue University 36 ECE
60872

References

� “11 of the most costly software errors in history” Raygun, Jan 2022.
� D. K. Pradhan, ed., “Fault Tolerant Computer System Design”,

Chapter 7: Fault Tolerance in Software
� Multi-version software

– Lui Sha, “Using Simplicity to Control Complexity,” IEEE Software,
Jul/Aug 01, pp. 20-28.

– Wilfredo Torres-Pomales, “Software Fault Tolerance: A Tutorial,”
Technical Report: NASA-2000-tm210616, 2000.

� Process pairs
– Inhwan Lee, R.K. Iyer: “Software dependability in the Tandem

GUARDIAN system”, IEEE Transactions on Software Engineering,
May 1995.

� Robust data structures
– David J. Taylor, David E. Morgan, James P. Black: “Redundancy in

Data Structures: Improving Software Fault Tolerance.” TSE 6(6): 585-
594 (1980)

– K. Fujimura, P. Jalote, “Robust search methods for B-trees”, FTCS-18,
June 1988.

