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Outline

� Specific issues in design and implementation of 
networked/distributed systems

� Broadcast protocols

� Agreement protocols

� Commit protocols
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Networked/Distributed Systems 
Key Questions

How do we integrate  components (often heterogeneous) with varying 
fault tolerance characteristics into a coherent high availability 
networked system?

� How do you guarantee reliable communication (message delivery)? 
� How do you  synchronize actions of dispersed processors and 

processes?
� How do you ensure that replicated services with independently 

executing components have a consistent view of the overall system?
� How do you contain errors (or achieve fail-silent  behavior of 

components) to prevent error propagation?
� How do you adapt the system architecture to changes in availability 

requirements of the application(s)?
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Failure Classification

� Necessity to cope with machine (node), process, and 
network failures

Crash
Omission

Incorrect 
Computation

Timing

Byzantine
(malicious)

A process 
stops prematurely 
and does nothing 
from that point on

A process 
response 
is functionally 
correct but 
untimely 

A process stops 
prematurely or 
intermittently 
omits to send/
receive messages

A process 
responds 
incorrectly:
either output 
or the state 
transition is
incorrect

A process 
behaves 
randomly or
arbitrarily 
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What Do We Need in Approaching the Problems? 

� Understand and provide solution to replication problem
(in its broad meaning)

– process/data replication

– replica consistency and replica determinism

– replica recovery/reintegration

– redundancy management

� Provide efficient techniques capable of supporting a 
consistent data and coherent behavior between  system 
components despite failures
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What Do We Need in Approaching the Problems? 

� Problems posed by replication

– Replication of processes

– Replication of data

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal 
broadcast), which ensure reliable message delivery to all 
participants (replicas)

– Agreement protocols, which ensures all participants have a 
consistent system view

– Commit protocols, which implement atomic behavior in 
transactional types of systems
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Broadcast Protocols

� Cooperating processes in networked /distributed systems 
often communicate via broadcast

� A failure during a broadcast can lead to inconsistency and 
can compromise the integrity of the system

� Need for supporting reliable broadcast protocols that provide 
strong guarantee on message delivery

� Example protocols include

– reliable broadcast

– FIFO broadcast

– causal broadcast

– atomic broadcast
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Application/Broadcast Layering

Communication Network

Broadcast/
Delivery
Interface

Send/
Receive
Interface

Application Protocol
broadcast(m)

Broadcast Algorithm
send(m)

p
Application Protocol
deliver(m)

Broadcast Algorithm
receive(m)

q
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What Do We Assume?

� The system consists of a set of sites interconnected 
through a communication network

� Computation processes communicate with each other 
by exchanging messages

� Process failures can be detected by timeouts

– Processes suffer crash or omission failures

– Communication is synchronous and each message is 
received within a bounded time interval
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What Do We Assume?

� The network is not partitioned

� Conventional Message-Passing Technologies

– Unreliable datagrams (e.g., UDP)

– Remote procedure call (RPC)

– Reliable data streams (e.g., TCP)

Goal: Provide robust techniques/algorithms for 
supporting consistent data and reliable 
communications in a networked environment
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Reliable Broadcast

� Reliable broadcast guarantees the following 
properties:

– Validity: if a correct process broadcasts a message m, then all 
correct processes eventually deliver m (all messages broadcast 
by correct processes are delivered)

– Agreement: if a correct process delivers a message m, then all 
correct processes eventually deliver m (all correct processes 
agree on the set of messages they deliver),

– Integrity: for any message m, every correct process delivers m
at most once and  only  if m was previously broadcast by a 
sender (no spurious messages are ever delivered)

� Reliable broadcast imposes no restrictions on  
the order of messages delivery
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Reliable Broadcast by Message Diffusion

� Consider an asynchronous system where every two correct 
processes are connected via a path of processes and links 
that never fail

Every process p executes the following:
To execute broadcast(R, m)

tag m with sender(m) and seq#(m) //these tags make m unique
send(m) to all neighbors including p

deliver(R, m) occurs as follows:
upon receive(m) do

if p has not previously executed deliver(R, m)
then 

if sender(m) != p then send(m) to all neighbors
deliver(R, m)
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Reliable Broadcast by Message Forwarding
� Consider the network as a tree

– Root is the initiator of the broadcast, call it S

– If edge from node P to node Q in the tree, then P will forward the 
message to Q

– Tree is a logical structure and has no relation to the physical 
structure of the network 

1. Upon receiving a message, node i sends the message to all 
j  CHILD(i)

2. Node j sends ACK to node i

3. Node j sends message to all its children nodes

4. If node i does not get an ACK from j, it assumes j has failed 
and takes over the responsibility of forwarding message to 
all k  CHILD(j)

5. Each node eliminates duplicates using (S, m.seq_no)
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Reliable Broadcast by Message Forwarding (Cont’d)
� How to handle failure of root node S?

� Case 1: S fails after sending m to all its children
– No problem – protocol takes care of it

� Case 2: S fails before sending m to any of its children
– No problem – broadcast has not even started

� Case 3: S fails after sending m to some, but not all, of its 
children

– A child of S has to take over responsibility

– Multiple children can take over responsibility – each node just 
eliminates duplicates

– When S completes sending to all its children, it can inform its children

OR

– A child receiving the next broadcast message m2 serves as indication 
that S has completed sending m1 to all its children
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FIFO Broadcast

� FIFO Broadcast is a Reliable Broadcast that 
satisfies the following  requirement on message 
delivery

FIFO order: if a process broadcasts a message m
before it broadcasts  a message m’, then no correct 
process delivers m’,  unless it has previously delivered 
m (messages sent by the same sender are delivered in 
the order they were broadcast)
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Build FIFO Broadcast Using Reliable Broadcast  

Every process p executes the following:
Initialization:
msgBag :=  //set of messages that p R-delivered

// but not yet F-delivered
next[q] := 1 for all q //sequence number of next message from q

//that p will F-deliver

To execute broadcast(F, m)
broadcast(R, m)

deliver(F, m) occurs as follows:
upon deliver(R, m) do

q := sender(m)
msgBag := msgBag  {m}
while ( m’  msgBag: sender (m’)== q and seq#(m’)== next[q]) do

deliver(F, m’) 
next[q] := next[q] +1
msgBag := msgBag – {m’}
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FIFO Broadcast (cont.)

� The FIFO Order is not sufficient if a message m depends on 
messages that the sender of m delivered before broadcasting m, 
e.g., let consider a network news application where users distribute 
their articles with FIFO broadcast

– user_1 broadcast an article

– user_2 delivers that article and broadcasts a response that can only be 
properly handled by a user who has the original article

– user_3 delivers user_2’s response before delivering the original article 
from user_1 and consequently misinterprets the response

� Causal broadcast prevents the above problem by introducing the 
notion  of a message depending on another one and ensuring that a 
message is not delivered until all the messages it depends on have 
been delivered
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Causal Broadcast

� Causal Broadcast is a Reliable Broadcast that 
satisfies the following  requirement on message 
delivery

Causal Order: if the broadcast of message m causally 
precedes the broadcast of a message m’, then no correct 
process delivers m’ unless it has previously delivered m
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Causal Broadcast Using FIFO Broadcast 

Every process p executes the following:
Initialization:

prevDlvrs :=  //sequence of messages that C-delivered 

// since its previous C-broadcast

To execute broadcast(C, m)
broadcast(F, <prevDlvrs || m>)

prevDlvrs := 

deliver(C, m) occurs as follows:
upon deliver(F, <m1, m2, …, ml>) for some l do

for i := 1…l do 
if p has not previously executed deliver(C, mi)
then

deliver(C, mi) 
prevDlvrs := prevDlvrs  {mi}
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Causal Broadcast (cont.)

� Causal Broadcast does not impose any order on those messages 
that are not causally related

– consider a replicated database with two copies of a bank account 
client_account residing at different sites. Initially client_account has an 
amount of $1000. 

– A user deposits $150 triggering a broadcast of  msg1 = {add $150 to 
client_account } to the two copies of client_account.

– At the same time, at other site, the bank initiates a broadcast of msg2 = 
{add 8% interest to client_account }

– the two broadcasts are not causally related, the Causal Broadcast 
allows the two copies of client_account to deliver these updates in 
different order and creates inconsistency in the database 

� Atomic Broadcast prevents such problem by providing strong 
message ordering or total order
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Atomic Broadcast

� Atomic Broadcast is a Reliable Broadcast that 
satisfies the following  condition

Total Order: if correct processes r and s both deliver 
messages m and m’, then r delivers m before m’ if and 
only if s delivers m before m’ (messages sent 
concurrently are delivered in identical order to the 
selected destinations)
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Atomic Broadcast Protocol using Message Queues

� Two phase protocol

� Each process has a queue in which it stores received 
messages

� Phase I

1. A sender has a group of receivers to send a message 
to. It multicasts the message to the group, with the 
receiver ids in the message.

2. On receiving a message, a receiver:

� Assigns a priority (highest among all buffered 
messages), marks it undeliverable, and buffers it in the 
message queue.

� Informs the sender of the message priority.



12

ECE 60872 23

Atomic Broadcast Protocol using Message Queues

� Phase II

1. When sender receives responses from all receivers:

� Chooses the highest priority as the final message priority.

� Multicasts the final priority to all receivers.

2. When a receiver receives the final priority:

� Assigns priority to corresponding message.

� Marks the message as deliverable. 

� Orders messages in increasing order of priorities.

� Message is delivered when it reaches head of the queue 
and is marked deliverable.
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Atomic Broadcast Protocol using Message Queues: 
Failure Scenario

� A receiver detects it has a message marked undeliverable and 
sender has failed. It becomes the new sender/coordinator.

1. It asks all receivers about status of message. Three possible 
answers:
I. Message is marked undeliverable and its associated priority.

II. Message is marked deliverable and the final priority of the message.

III. It has not received the message.

2. After receiving responses from all receivers:
I. If message marked deliverable at any receiver, it assigns that as the 

final priority and multicasts it. On receiving this, receivers execute 
phase II.2 actions.

II. Otherwise, the coordinator reinitiates the protocol from phase I.
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Remarks on Broadcasts

� Inconsistency and contamination

– suppose that a process p fails by omitting to deliver a message 
that is delivered by all the correct processes

– state of p might be inconsistent with other correct processes

– p continues to execute and p broadcasts a message m that is 
delivered by all the correct processes

– m might be corrupted because it reflects p’s erroneous state

– correct processes get contaminated by incorporating p’s  
inconsistency into their own state.

Observation:  Broadcast can lead to the 
corruption of the entire system
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Remarks on Broadcasts (cont.)

� To prevent contamination a process can refuse to deliver  
messages from processes whose previous deliveries are not 
compatible with its own

– a message must carry additional information , so that the receiving process 
can determine whether it is safe to deliver the message 

� To prevent inconsistency requires techniques that ensure 
that the faulty process will immediately stop to execute (i.e., 
the process is fail-silent)
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Remarks on Broadcasts (cont.)

� A fault-tolerant broadcast is usually implemented by a broadcast 
algorithm that uses lower-level communication primitives, such as point-
to-point message sends and receives

� The failure models are usually defined in terms of  failures that occur at 
the level of send and receive primitives, e.g., omission to receive 
messages

� How do these failures affect the execution of higher-level primitives, such 
as broadcast and delivery? For example, if a faulty process omits  to 
receive messages, will it simply omit to deliver messages?

� In general broadcasts algorithms are likely to amplify the severity of 
failures that  occur at the low level communication primitives (sends and 
receives).

– e.g., the omission to receive messages may cause  a faulty process to 
deliver messages in the wrong order 
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Primitives for Fault-Tolerance in 
Distributed/Networked Systems 

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal 
broadcast), which ensure reliable message delivery to all 
participants (replicas)

– Agreement protocols, which ensures all participants have a 
consistent system view

– Commit protocols, which implement atomic behavior in 
transactional types of systems
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Agreement Protocols

� In a distributed system, it is often required that processes reach a 
mutual agreement.

� Faulty processes can send conflicting values to other processors 
preventing them from reaching an agreement

� In the presence of faults, processes must exchange their values and 
relay the values received from other processes several times to 
isolate the effects of faulty processes.

� System model

– There are n processes in the system and at most m of them can be 
faulty.

– Processes communicate with one another by message passing and the 
receiver process always knows the identity of the sender process of the 
message.

– The communication network is reliable, i.e., only processes are prone 
to failures.
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Synchronous vs. Asynchronous Computation

� In synchronous computation, processes in the 
system run in lockstep:

– In each step/round, a process receives messages (sent to it in 
the previous step), performs computation, and sends 
messages  to other processes (received in the next step).

– A process knows all the messages it expects to receive in a 
step/round.

� In asynchronous computation, processes do not 
execute in lockstep:
– A process can send and receive messages and perform 

computation at any time

� The synchronous model of computation is assumed 
in further discussion 
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Model of Processor Failures

� Three modes of failures
– Crash fault

– Omission fault

– Byzantine fault

� Crash fault: Processor stops functioning and never resumes 
operation

� Omission fault: Processor “omits” to send messages to 
some processors

� Malicious fault: Processor behaves randomly and arbitrarily 
(Byzantine fault)

� In synchronous model, omission can be detected
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Authenticated vs. Non-Authenticated Messages

� To reach an agreement, processes need to exchange their values 
and relay the received values to other processors.

� A faulty process can distort a message received from other 
processes.

Two Types of Messages:

� Authenticated (signed)

– A faulty process cannot forge a message or change the contents of a 
received message (before it relays the message to other processes).

– A process can verify the authenticity of the received message.

� Non-authenticated (oral)

– A faulty process can forge a message and claim to have received it 
from another processor or change the contents of the received 
message before it relays it to other processes.

– A process has no way to verify the authenticity of the received 
message.
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Agreement Problems - Classification

� The Byzantine Agreement Problem
– A single value is initialized by any arbitrary  process, and all 

nonfaulty processes have to agree on that value

� The Consensus Problem
– Every process has its own initial value, and all correct 

processes must agree on a single, common value.

� The Interactive Consistency Problem
– Every process has its own initial value, and all nonfaulty 

process must agree on a set of common values.
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The Byzantine Agreement Problem

� An arbitrarily chosen process - the source process -
broadcasts its initial value to all other processes.

� Agreement - All nonfaulty processes agree on the same 
value.

� Validity - If the source process is nonfaulty then the 
common value agreed on by all nonfaulty processes 
should be the initial value of the source.
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The Consensus Problem

� Every process broadcasts its initial value  to all other 
processes.
– Initial values  of the processes may be different.

� Agreement - All nonfaulty processes agree on the same 
single value.

� Validity - if the initial value of every nonfaulty process is , 
then the common value agreed  upon by nonfaulty 
processes must be 
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The Interactive Consistency Problem

� Every process broadcasts its initial value  to all other 
processes.
– Initial values  of the processes may be different.

� Agreement - All nonfaulty processes agree on the same 
vector: 
( 1,  2, …,  n) 

� Validity - If the ith process is nonfaulty and its initial value is 
 i, then the ith value to be agreed on by all nonfaulty 
processes must be i
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Relations Among the Agreement Problems

1. Given an algorithm to solve Byzantine agreement, how 
would you solve Interactive Consistency?

2. Given an algorithm to solve Interactive Consistency, how 
would you solve Consensus?

3. Given an algorithm to solve Consensus, how would you 
solve Byzantine Agreement?
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Byzantine Agreement Problem: Solution

The upper bound on the number of  faulty processes

� It can be shown that in a fully connected network it is impossible to 
reach a consensus if the number of faulty processes, m , exceeds 
(n-1)/3 , 

– For example, if n = 3, than m = 0, i.e., having three processes, we 
cannot solve the Byzantine agreement problem even in the event of a 
single error.

– The protocol requires m+1 rounds of message exchange (m is the 
maximum number of faulty processes)

– This is also the lower bound on the number of rounds of message 
exchanged.

� Using authenticated messages, this bound is relaxed, and a 
consensus can be reached for any number of faulty processes.
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Impossibility Results  

� Consider a system with three processes p1, p2, p3

� There are two values, 0 and 1, on which processes agree.

� p0 initiates the algorithm.

� No solution exists for the Byzantine agreement problem for three 
processes, which can work under a single failure

assume p2 is faulty
suppose p0 broadcast 1 to p1 and p2

p2 acts maliciously and sends 0 to p1

p1 must agree on 1 if algorithm is to be satisfied 
p1 receives two conflicting values 
no agreement is possible

P0

P1
P2

0
1

1

0

Case one - p0 is  faulty

P0

P1
P2

1
1

1

0

Case one - p0 is not faulty

suppose p0 sends 1 to p1 and  0 to p2

p2 communicates 0 to p1

p1 receives two conflicting values 
no agreement is possible
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Oral Messages Algorithm OM(m)

� A recursive algorithm solves the Byzantine agreement 
problem for  3m+1 or more processes in the presence  
of at most m faulty processes.

� Algorithm OM(0)

� 1. The source process sends its value to every process.

� 2. Each process uses the value it receives from the 
source (if it receives no value, then it uses a default 
value of 0).



21

ECE 60872 41

Oral Messages Algorithm OM(m)

� Algorithm OM(m),  m > 0

� 1. The source process sends its value to every process.

� 2. For each i, let i be the value processor i receives 
from the source.
– Process i acts as a new source and initiates Algorithm OM(m-1)

wherein it sends the value i to each of the n-2 other processes.

� 3. For each i and each j  i let j be the value process i
received from j in step (2) using Algorithm OM(m-1). (If 
no value is received then default value 0 is used ). 
Process  i uses the value majority  (1 , 2 , …, n-1 ).

� The algorithm is complex
– Message complexity?
– Time complexity?
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Oral Messages Algorithm OM(m): An Example

P0

P2P1 P3

11
1

P0

P2P1 P3

11
1

To initiate the agreement p0

executes OM(1) wherein it sends 1 
to all processes

At step 2 of the OM(1) algorithm, 
p1, p2, p3 execute  the algorithm OM(0)

p1 and p3 are nonfaulty and 
p1 sends 1 to {p2, p3} 
p3 sends 1 to {p1, p2}
p2 is faulty and sends 1 to p1 and 0 to p3

After receiving all messages
p1, p2, p3 execute step 3 of the OM(1) to decide 
the majority value

p1 received {1, 1, 1}  1
p2 received {1, 1, 1}  1
p3 received {1, 1, 0}  1

Both conditions of the Byzantine 
agreement are satisfied

P0

P2P1

11

1 1

1

1

0

1

P0

P2P1 P3

11

1

1 1

1

1

0

1

Consider a system with four processes p0, p1, p2, p3

p0 initiate the algorithm; p2 is faulty
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Oral Messages Algorithm OM(m): An Example
(cont.)

P0

P2P1 P3

11

0

1 1

1

1

0

0

P0 send conflicting values to p1, p2, p3

Under step 2 of OM(0) p1, p2, p3 send 
the received values  to the other two processes

p1, p2, p3 execute step 3 of OM(1) to decide 
on the majority value

p1 received {1, 0, 1}  1
p2 received {0, 1, 1}  1
p3 received {1, 1, 0}  1

Both conditions of the Byzantine 
agreement are satisfied

Consider a system with four processes p0, p1, p2, p3

p0 initiate the algorithm; p0 is faulty
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Protocol with Signed Messages

� Transmitter sends a “signed” message (use digital signature 
from asymmetric cryptography)

� If a node changes the content of message from transmitter 
before forwarding it, the receiver can detect the forgery

� With signed messages, agreement can be reached between 
n=m+2 processes, where m is the number of faulty 
processes

� Each process maintains a set Vi (for process i) that has all 
the unique values that it has received
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Protocol with Signed Messages

� Algorithm SM(m)

1. The transmitter (process 0) signs its value and sends to 
other nodes

2. For each process i:
A. If process i received message v: 0 (i) it sets Vi to {v}; (ii) it sends 

v: 0: i to every other process

B. If process i received message v: 0: j1: … : jk and v  Vi, then (i) it 
adds v to Vi; (ii) if k < m, it sends v: 0: j1: …: jk : i to every process 
other than j1, …, jk

3. For each process i, when it receives no more message, it 
considers the final value as choice(Vi)
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Application of Agreement Algorithms

Fault-Tolerant Clock Synchronization Example

� In distributed systems, it is often necessary for processes to maintain 
synchronized physical clocks.

� Drift of the physical clock requires the clocks at different processes to be 
periodically resynchronized.

� It is assumed that 

– All clocks are initially  synchronized to approximately the same value.

– A nonfaulty process’s clock runs approximately at the correct rate (i.e., one 
second of clock time per second of real time).

– A nonfaulty  process can read the clock value of another nonfaulty process 
with a small error 
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Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm

� The clocks are: 
– Initially synchronized

– Resynchronized often enough so that two nonfaulty clocks never 
differ by more than 

� Each process reads the value of all other processes’ clocks 
and sets its clock value to the average of these values.

� If a clock value differs from a process’s own value by more 
than , the process replaces that value by its own clock 
value when taking the average.
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Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm (cont.)

� Let two processes p and q, use cpr and cqr as the clock values of a third 
process r when computing their averages.

� If r is nonfaulty, then cpr = cqr. Actually |cpr - cqr|  

� If r is faulty then |cpr - cqr|  3

� If p and q computes their averages for the n clocks values:

– use identical values for clocks of n-m nonfaulty processes. 

– The difference in the clock values of m faulty processes used is 
bounded by 3

� The averages computed by p and q differ by at most (3m/n)

n > 3m  (3m/n) < 
Resynchronization brings the clocks closer by a factor of (3m/n)
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Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm (cont.)

� In the algorithm, it was assumed that:
– All processes execute the algorithm instantaneously 

at exactly the same time.

– The error in reading another process’s clock is zero.

� A process may read other processes’ clocks at different time instances

Solution:

� A process computes the average of the difference in clock values and 
increments its clock by the average  increment.

– Clock differences larger than  are replaced by 0.
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Interactive Consistency by Running the 
Byzantine Agreement Protocol, Example 1

Consider a system, which consists of four processes: p0, p1, p2, p3

Initial values in the processes: v1=1, v2=1, v3=1, v0=1

P0 sender : P1 received

P2

P3

P1 sender : P1

P2

P3

P2 sender : P1

P2

P3

P3 sender : P1

P2

P3

p0 p1 p2 p3

P0

P1 P3
P2

1 11

1
0

0

Vectors in each process                 Final decision

P1={0,1,1,1} ==> 1

P2={0,1,1,1} ==> 1

P3={0,1,1,1} ==> 1

majority

own
value

0                0      1

0       0               1

1       0       0      

0/1       1               1

0/1       1       1      

0/1                1      1

0/1       1       1      

0/1              1        1

0/1       1               1

Src
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Interactive Consistency by Running the 
Byzantine Agreement Protocol, Example 2

P1={0,1,1,1,0} ==> 1

P2={0,1,1,1,0} ==> 1

P3={0,1,1,1,0} ==> 1

P4={0,1,1,1,0} ==> 1

P0

P1 P3
P2

1 11

10
0

1

P4 0

1

P0 sender : P1 received

P2

P3

P4

P1 sender : P1

P2

P3

P4

P2 sender : P1

P2

P3

P4

P3 sender : P1

P2

P3

P4

P4 sender : P1

P2

P3

P4

p0 p1 p2 p3 p4

0                   0       1        1

0         0                 1        1

1         0        0                 1

1         0        0       1           

0/1                1       1       1

0/1       1                1       1

0/1       1       1       1         

0/1               1        1        1

0/1       1      1                 1

0/1       1      1        1         

0/1       1                1       1

0/1       1      1                 1

0/1       1      1        1         

0/1               0        0       0

0/1       0                0       0

0/1       0      0                 0

Vectors in each process                 Final decision
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Interactive Consistency by Running the 
Byzantine Agreement Protocol, Example 3

Vectors in each process            Final decision

P1={0,1,1,1,0} ==> 1

P2={0,1,1,1,0} ==> 1

P3={0,1,1,1,0} ==> 1

P0

P1 P3
P2

1 11

00
0

P4={0,1,1,1,0} ==> 1

0

P4 0

1

P0 sender : P1 received

P2

P3

P4

P1 sender : P1

P2

P3

P4

P2 sender : P1

P2

P3

P4

P3 sender : P1

P2

P3

P4

P4 sender : P1

P2

P3

P4

p0 p1 p2 p3 p4

0                  0        0         0

0        0                  0         0

0        0        0                   0

0        0        0        0           

0/1                1       1       1

0/1       1                1       1

0/1       1       1       1         

0/1               1        1        1

0/1       1      1                 1

0/1       1      1        1         

0/1       1                1       1

0/1       1      1                 1

0/1       1      1        1         

0/1               0        0       0

0/1       0                0       0

0/1       0      0                 0
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Primitives for Fault-Tolerance in 
Distributed/Networked Systems 

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal 
broadcast), which ensure reliable message delivery to all 
participants (replicas)

– Agreement protocols, which ensures all participants have a 
consistent system view

– Commit protocols, which implement atomic behavior in 
transactional types of systems
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Commit Protocols

� The commit problem occurs when a set of processes need to agree 
on whether or not to perform some  action that may not be possible 
for some of the participants

� The initial uncertainty is overcome by:

– determine whether or not all the participant will be able to perform the operation

– communicate the outcome of the decision to the participants in a reliable way

� The operation can be committed if the participants can all perform 
it

� Once a commit is reached, this requirements will hold even if some 
participants fail and later recover

� If one or more participants are unable to perform the operation, the 
operation as a whole aborts, i.e, no participant should perform it
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Atomic Actions – Process Interaction Example

1. Suppose P1 and P2 share a memory location X and
both modify X

2. Suppose P1 locks X before P2

3.  P1 updates X and releases the lock

4.  If P1 fails after P2 has seen the change 

made to X by P1

then 

P2 must be aborted or rolled back 

to recover the correct system state

a) P2 should not interact with P1 until this can be 
done safely

b) P1 should be atomic, i.e., the effect of P1 on the
system should look like an uninterrupted operation

Process P1

….
…..
Lock(X)
X := X + Z;
Unlock(X);
….
…..
failure

Process P2

….
….
Lock(X)
X := X + Y;
Unlock(X);
….
…..
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Two-Phase Commit Protocol - Assumptions

� The system consist of a set of sites/nodes interconnected 
through a communication network

� Computation processes communicate with each other by 
exchanging messages

� Processes suffer crash or omission failures

� Communication is reliable and each message is received 
within  time units after being sent

� One of the cooperating processes acts as a coordinator

� Coordinator cooperates with other processes called cohorts 

� Stable storage is available at each site/node
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Two-Phase Commit Protocol (2PCP)

� At the beginning of a transaction, the coordinator sends a start 
transaction message  to every cohort.

Phase 1

� Coordinator
 send a Commit_Request to every cohort

 wait with a timeout for replies from all cohorts

 Cohorts
 on receiving Commit_Request

if the transaction execution is successful 

write Undo and Redo log on the stable storage

send an Agreed message to the coordinator

otherwise send an Abort to the coordinator

 wait forever for Commit or Abort from the coordinator

ECE 60872 58

Two-Phase Commit Protocol (cont.)

Phase 2

� Coordinator
 if all cohorts reply Agreed

write Commit into the log

send Commit to all cohorts and wait forever for Acknowledgments from

cohorts

if all cohorts respond with Acknowledgment write a Complete record 

to the log

 if some cohort responds with ABORT or timeouts (does not respond 
within a timeout interval) 

send Abort to all the cohorts, undo database changes (using UNDO

log) and log Complete record

 when the Complete record is written, delete the live transaction state.
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Two-Phase Commit Protocol (cont.)

Phase 2

� Cohorts
 on receiving a Commit write a Complete record and send an

Acknowledgment to the coordinator 

 on receiving an Abort undo the transaction (using the Undo log) and log 
the Complete record

when the Complete record is written, delete the live transaction state. 
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Site/Node Failures

� Coordinator crashes before having written the Commit record:
– On recovery, the coordinator broadcasts an Abort message to all cohorts.

– All cohorts who agreed to commit undo the transaction using Undo log.

– Others Abort the transaction.

– Cohorts are blocked until they receive an Abort message.

� Coordinator crashes after writing Commit but before writing the 
Complete record: ???

� Coordinator crashes after writing Complete record:
– On recovery, there is nothing to be done for the transaction.
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Site/Node Failures (cont.)

� A cohort crashes in Phase 1:
– The coordinator can abort the transaction, as it did not receive a reply from 

the crashed cohort.

� A cohort crashes in Phase 2 (after writing Undo and Redo log):
– ???

� The two-phase commit protocol guarantees global atomicity.

� The protocol can block:  How?
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Non-blocking Commit Protocol

� Need a commit protocol that:
– Is non-blocking  

– Tolerates site failures

� Implies independent recovery
– Operational sites should agree on outcome of transaction by examining local 

state

– Failed sites upon recovery should reach same decision as operational sites

� Assumptions:
– The network is reliable. 

– Point-to-point communication  is possible between any two operational 
nodes. 

– The network can detect a node failure (e.g., by a timeout) and report it to the 
site trying to communicate with the failed site (fail-stop failure mode)
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Two-Phase Commit Protocol 
Finite State Automate

ri

qi

ci

ai

Coordinator Cohort i

q1

c1a1

r1

Commit_Request
sent to all cohorts

Agreed from all cohorts

Commit sent
to all cohorts

Abort from
one or more 
cohort(s)

Abort
sent to all
cohorts

Commit
received from 
coordinator

Abort
received from 
coordinator

Commit_Request
received

Agreed
sent to 
coordinator

Commit_Request
received

Abort
sent to
coordinator
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How Is Blocking of a  2PCP Eliminated? 

� Concurrency Set

– Let si depict the state of the node i

– A concurrency set of si (C(si )) is the set of all the states of 
every node that can be concurrent with si

– Consider a system with two nodes (one coordinator and one 
cohort): 
C(r2) = {c1, a1, r1}, and C(q2) = {q1, r1}

� If a protocol contains the local state of a site with both 
abort and commit states in its concurrency set, then 
under independent recovery conditions  it is not 
resilient to an arbitrary single failure.
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How Is Blocking of a  2PCP Eliminated?

� In the 2PCP, only states ri (i  1) have both abort and 
commit in their C(ri)

� This can be resolved by introducing a buffer state bi in the 
finite state automaton representing 2PCP, e.g., a system 
containing only two sites:

C(r1) = {q2, a2, r2} and C(r2) = {a1, b1, r1}

The extended 2PCP is non-blocking in case of a single site 
failure and a failed site can perform independent recovery
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How Is Blocking of a  2PCP Eliminated? 
Three-Phase Commit Protocol (3PCP)

Commit_Request
sent to all cohorts

ri
Agreed from all cohorts

Commit sent
to all cohorts

Abort from
one or more 
cohort(s)

Abort
sent to all
cohorts

qi

ci

ai

Commit_Request
received

Abort
sent to
coordinator

Commit_Request
received

Agreed
sent to 
coordinator

Abort
received from 
coordinator

Commit
received from 
coordinator

Coordinator Cohort i

q1

c1

a1

r1

b1
Ack received from
all  cohorts

Prepare
sent to all cohorts

bi

Prepare message 
received

Ack
sent to
coordinator
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Failure Transitions

� The failed site should be able to reach a final decision based solely on 
its local state.

� The decision-making process is modeled using  failure transitions.

� A failure transition occurs at a failed site/node at the instant it fails or 
immediately after it recovers from the failure.

The Rule:

� For each nonfinal state s (i.e., qi, ri, bi) in the protocol,
– If C(s) contains a Commit, then assign a failure transition from s to 

a commit state.

– Otherwise, assign a failure transition from s to an abort state.
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Timeout Transitions

� Consider what an operational site does in the event of another site’s 
failure.

� If site/node i is waiting for a message from site j (i.e., j  S(i)) and j has 
failed, then site/node i times out. 

� Based on the expected message type, site/node i can determine in what 
state site j failed.

The Rule:

� For each non-final state s,

– If site j is  in S(s) and node j has a failure transition to a commit (abort) state, 
then assign the time out transition from state s to a commit (abort) 
state.
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Finite State Automate to Illustrate Timeout and 
Failure Transitions

Commit_Request
sent to all cohorts

ri

Agreed from 
all cohorts

Commit
sent to all cohorts

Abort from 
one or more 
cohort(s)

qi

ci

ai

Commit_Request
received

Abort
sent to
coordinator

Commit_Request
received

Agreed
sent to 
coordinator

Abort
from 
coordinator

Commit
received from 
coordinator

Coordinator Cohort i

q1

c1

a1

r1

b1
Ack received
from all cohorts

Prepare
sent
to all cohorts

bi

Prepare
received

Ack
sent to
coordinator

Abort
sent to all
cohorts

T

F

F

F

Failure/Timeout Transition
F, T

Abort
from 
coordinator

Abort
sent to all 
cohorts

T

F
T

T

F

T

F T
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Three-Phase Commit Protocol (3PCP)

� All nodes are in the state q.

� If the coordinator fails  while in state q1 all cohorts 

– Time out (waiting for  the Commit_Request message)

– Perform time out transition and abort the transaction

� Upon recovery, the coordinator performs the failure 
transition from state q1 and aborts the transaction.
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Three-Phase Commit Protocol (3PCP): Phase 1

� Error-free execution identical to the Phase 1 of the 
2PCP 

� In the event of a site/node failure (the coordinator is 
in state r1 each cohort is either in state a, r, or q),

– In state a - a cohort has already sent an Abort message to the 
coordinator

– In states r or q - if a cohort fails, the coordinator 

• times out waiting  for the Agreed message from the failed cohort

• aborts the transaction and sends abort message to all cohorts
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Three-Phase Commit Protocol (3PCP): Phase 2

� Coordinator sends  a Prepare message to all the cohorts if all the 
cohorts sent Agreed messages in Phase 1.

� Otherwise the coordinator sends  an Abort message  to all cohorts.

� Upon receiving a Prepare message a cohort  sends an 
Acknowledgment (Ack) message to the coordinator.

� If coordinator fails  before sending the Prepare message
(in state r1) 

– It aborts the transaction on recovery.

– The cohorts time out waiting for the Prepare message and abort the transaction.
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Three-Phase Commit Protocol (3PCP): Phase 3

� On receiving Ack messages from all cohorts, the coordinator sends 
a Commit message to all the cohorts.

� A cohort on receiving a Commit message, commits the transaction.

� If the coordinator fails before sending the Commit message (in 
state b1) 

– It commits the transaction upon recovery.

– The cohorts time out waiting for commit message and commit the transaction 
from state  b1.

� If the cohort fails before sending an Ack message

– The coordinator times out, aborts the transaction, and sends the Abort to all 
cohorts.

– The failed cohort aborts the transaction on recovery.
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Why Cohorts Need a Buffer State (bi)

� Assuming that bi is not present,

– Let the coordinator be in b1 waiting for Ack form cohorts.

– Cohort 2 (in state r2) sends an Ack and commits the transaction.

– Cohort 3 (in state r3) fails, then both the coordinator and cohort 3 (upon 
recovery) abort the transaction.

� The result is an inconsistent outcome for the transaction.

� Adding bi (i  1), we ensure that no state has both Abort and 
Commit states in its concurrency set.



38

ECE 60872 75

Reference

� Material for the topic from: 
– “Fault Tolerance in Distributed Systems” by 

Pankaj Jalote, Prentice Hall. Chapter 4 –
Broadcast.

– “Advanced Concepts in Operating Systems” 
by Singhal and Shivaratri, McGraw Hill. 
Chapter 8 – Agreement.

– “Advanced Concepts in Operating Systems” 
by Singhal and Shivaratri, McGraw Hill. 
Chapter 13 – Commit Protocols.


