
1

ECE 60872 1

Distributed Algorithm Primitives:
Broadcast, Agreement, Commit

Saurabh Bagchi
ECE/CS

Purdue University

Fault-Tolerant Computer System Design
ECE 60872

ECE 60872 2

Outline

� Specific issues in design and implementation of
networked/distributed systems

� Broadcast protocols

� Agreement protocols

� Commit protocols

2

ECE 60872 3

Networked/Distributed Systems
Key Questions

How do we integrate components (often heterogeneous) with varying
fault tolerance characteristics into a coherent high availability
networked system?

� How do you guarantee reliable communication (message delivery)?
� How do you synchronize actions of dispersed processors and

processes?
� How do you ensure that replicated services with independently

executing components have a consistent view of the overall system?
� How do you contain errors (or achieve fail-silent behavior of

components) to prevent error propagation?
� How do you adapt the system architecture to changes in availability

requirements of the application(s)?

ECE 60872 4

Failure Classification

� Necessity to cope with machine (node), process, and
network failures

Crash
Omission

Incorrect
Computation

Timing

Byzantine
(malicious)

A process
stops prematurely
and does nothing
from that point on

A process
response
is functionally
correct but
untimely

A process stops
prematurely or
intermittently
omits to send/
receive messages

A process
responds
incorrectly:
either output
or the state
transition is
incorrect

A process
behaves
randomly or
arbitrarily

3

ECE 60872 5

What Do We Need in Approaching the Problems?

� Understand and provide solution to replication problem
(in its broad meaning)

– process/data replication

– replica consistency and replica determinism

– replica recovery/reintegration

– redundancy management

� Provide efficient techniques capable of supporting a
consistent data and coherent behavior between system
components despite failures

ECE 60872 6

What Do We Need in Approaching the Problems?

� Problems posed by replication

– Replication of processes

– Replication of data

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal
broadcast), which ensure reliable message delivery to all
participants (replicas)

– Agreement protocols, which ensures all participants have a
consistent system view

– Commit protocols, which implement atomic behavior in
transactional types of systems

4

ECE 60872 7

Broadcast Protocols

� Cooperating processes in networked /distributed systems
often communicate via broadcast

� A failure during a broadcast can lead to inconsistency and
can compromise the integrity of the system

� Need for supporting reliable broadcast protocols that provide
strong guarantee on message delivery

� Example protocols include

– reliable broadcast

– FIFO broadcast

– causal broadcast

– atomic broadcast

ECE 60872 8

Application/Broadcast Layering

Communication Network

Broadcast/
Delivery
Interface

Send/
Receive
Interface

Application Protocol
broadcast(m)

Broadcast Algorithm
send(m)

p
Application Protocol
deliver(m)

Broadcast Algorithm
receive(m)

q

5

ECE 60872 9

What Do We Assume?

� The system consists of a set of sites interconnected
through a communication network

� Computation processes communicate with each other
by exchanging messages

� Process failures can be detected by timeouts

– Processes suffer crash or omission failures

– Communication is synchronous and each message is
received within a bounded time interval

ECE 60872 10

What Do We Assume?

� The network is not partitioned

� Conventional Message-Passing Technologies

– Unreliable datagrams (e.g., UDP)

– Remote procedure call (RPC)

– Reliable data streams (e.g., TCP)

Goal: Provide robust techniques/algorithms for
supporting consistent data and reliable
communications in a networked environment

6

ECE 60872 11

Reliable Broadcast

� Reliable broadcast guarantees the following
properties:

– Validity: if a correct process broadcasts a message m, then all
correct processes eventually deliver m (all messages broadcast
by correct processes are delivered)

– Agreement: if a correct process delivers a message m, then all
correct processes eventually deliver m (all correct processes
agree on the set of messages they deliver),

– Integrity: for any message m, every correct process delivers m
at most once and only if m was previously broadcast by a
sender (no spurious messages are ever delivered)

� Reliable broadcast imposes no restrictions on
the order of messages delivery

ECE 60872 12

Reliable Broadcast by Message Diffusion

� Consider an asynchronous system where every two correct
processes are connected via a path of processes and links
that never fail

Every process p executes the following:
To execute broadcast(R, m)

tag m with sender(m) and seq#(m) //these tags make m unique
send(m) to all neighbors including p

deliver(R, m) occurs as follows:
upon receive(m) do

if p has not previously executed deliver(R, m)
then

if sender(m) != p then send(m) to all neighbors
deliver(R, m)

7

ECE 60872 13

Reliable Broadcast by Message Forwarding
� Consider the network as a tree

– Root is the initiator of the broadcast, call it S

– If edge from node P to node Q in the tree, then P will forward the
message to Q

– Tree is a logical structure and has no relation to the physical
structure of the network

1. Upon receiving a message, node i sends the message to all
j  CHILD(i)

2. Node j sends ACK to node i

3. Node j sends message to all its children nodes

4. If node i does not get an ACK from j, it assumes j has failed
and takes over the responsibility of forwarding message to
all k  CHILD(j)

5. Each node eliminates duplicates using (S, m.seq_no)

ECE 60872 14

Reliable Broadcast by Message Forwarding (Cont’d)
� How to handle failure of root node S?

� Case 1: S fails after sending m to all its children
– No problem – protocol takes care of it

� Case 2: S fails before sending m to any of its children
– No problem – broadcast has not even started

� Case 3: S fails after sending m to some, but not all, of its
children

– A child of S has to take over responsibility

– Multiple children can take over responsibility – each node just
eliminates duplicates

– When S completes sending to all its children, it can inform its children

OR

– A child receiving the next broadcast message m2 serves as indication
that S has completed sending m1 to all its children

8

ECE 60872 15

FIFO Broadcast

� FIFO Broadcast is a Reliable Broadcast that
satisfies the following requirement on message
delivery

FIFO order: if a process broadcasts a message m
before it broadcasts a message m’, then no correct
process delivers m’, unless it has previously delivered
m (messages sent by the same sender are delivered in
the order they were broadcast)

ECE 60872 16

Build FIFO Broadcast Using Reliable Broadcast

Every process p executes the following:
Initialization:
msgBag :=  //set of messages that p R-delivered

// but not yet F-delivered
next[q] := 1 for all q //sequence number of next message from q

//that p will F-deliver

To execute broadcast(F, m)
broadcast(R, m)

deliver(F, m) occurs as follows:
upon deliver(R, m) do

q := sender(m)
msgBag := msgBag  {m}
while ( m’  msgBag: sender (m’)== q and seq#(m’)== next[q]) do

deliver(F, m’)
next[q] := next[q] +1
msgBag := msgBag – {m’}

9

ECE 60872 17

FIFO Broadcast (cont.)

� The FIFO Order is not sufficient if a message m depends on
messages that the sender of m delivered before broadcasting m,
e.g., let consider a network news application where users distribute
their articles with FIFO broadcast

– user_1 broadcast an article

– user_2 delivers that article and broadcasts a response that can only be
properly handled by a user who has the original article

– user_3 delivers user_2’s response before delivering the original article
from user_1 and consequently misinterprets the response

� Causal broadcast prevents the above problem by introducing the
notion of a message depending on another one and ensuring that a
message is not delivered until all the messages it depends on have
been delivered

ECE 60872 18

Causal Broadcast

� Causal Broadcast is a Reliable Broadcast that
satisfies the following requirement on message
delivery

Causal Order: if the broadcast of message m causally
precedes the broadcast of a message m’, then no correct
process delivers m’ unless it has previously delivered m

10

ECE 60872 19

Causal Broadcast Using FIFO Broadcast

Every process p executes the following:
Initialization:

prevDlvrs :=  //sequence of messages that C-delivered

// since its previous C-broadcast

To execute broadcast(C, m)
broadcast(F, <prevDlvrs || m>)

prevDlvrs := 

deliver(C, m) occurs as follows:
upon deliver(F, <m1, m2, …, ml>) for some l do

for i := 1…l do
if p has not previously executed deliver(C, mi)
then

deliver(C, mi)
prevDlvrs := prevDlvrs  {mi}

ECE 60872 20

Causal Broadcast (cont.)

� Causal Broadcast does not impose any order on those messages
that are not causally related

– consider a replicated database with two copies of a bank account
client_account residing at different sites. Initially client_account has an
amount of $1000.

– A user deposits $150 triggering a broadcast of msg1 = {add $150 to
client_account } to the two copies of client_account.

– At the same time, at other site, the bank initiates a broadcast of msg2 =
{add 8% interest to client_account }

– the two broadcasts are not causally related, the Causal Broadcast
allows the two copies of client_account to deliver these updates in
different order and creates inconsistency in the database

� Atomic Broadcast prevents such problem by providing strong
message ordering or total order

11

ECE 60872 21

Atomic Broadcast

� Atomic Broadcast is a Reliable Broadcast that
satisfies the following condition

Total Order: if correct processes r and s both deliver
messages m and m’, then r delivers m before m’ if and
only if s delivers m before m’ (messages sent
concurrently are delivered in identical order to the
selected destinations)

ECE 60872 22

Atomic Broadcast Protocol using Message Queues

� Two phase protocol

� Each process has a queue in which it stores received
messages

� Phase I

1. A sender has a group of receivers to send a message
to. It multicasts the message to the group, with the
receiver ids in the message.

2. On receiving a message, a receiver:

� Assigns a priority (highest among all buffered
messages), marks it undeliverable, and buffers it in the
message queue.

� Informs the sender of the message priority.

12

ECE 60872 23

Atomic Broadcast Protocol using Message Queues

� Phase II

1. When sender receives responses from all receivers:

� Chooses the highest priority as the final message priority.

� Multicasts the final priority to all receivers.

2. When a receiver receives the final priority:

� Assigns priority to corresponding message.

� Marks the message as deliverable.

� Orders messages in increasing order of priorities.

� Message is delivered when it reaches head of the queue
and is marked deliverable.

ECE 60872 24

Atomic Broadcast Protocol using Message Queues:
Failure Scenario

� A receiver detects it has a message marked undeliverable and
sender has failed. It becomes the new sender/coordinator.

1. It asks all receivers about status of message. Three possible
answers:
I. Message is marked undeliverable and its associated priority.

II. Message is marked deliverable and the final priority of the message.

III. It has not received the message.

2. After receiving responses from all receivers:
I. If message marked deliverable at any receiver, it assigns that as the

final priority and multicasts it. On receiving this, receivers execute
phase II.2 actions.

II. Otherwise, the coordinator reinitiates the protocol from phase I.

13

ECE 60872 25

Remarks on Broadcasts

� Inconsistency and contamination

– suppose that a process p fails by omitting to deliver a message
that is delivered by all the correct processes

– state of p might be inconsistent with other correct processes

– p continues to execute and p broadcasts a message m that is
delivered by all the correct processes

– m might be corrupted because it reflects p’s erroneous state

– correct processes get contaminated by incorporating p’s
inconsistency into their own state.

Observation: Broadcast can lead to the
corruption of the entire system

ECE 60872 26

Remarks on Broadcasts (cont.)

� To prevent contamination a process can refuse to deliver
messages from processes whose previous deliveries are not
compatible with its own

– a message must carry additional information , so that the receiving process
can determine whether it is safe to deliver the message

� To prevent inconsistency requires techniques that ensure
that the faulty process will immediately stop to execute (i.e.,
the process is fail-silent)

14

ECE 60872 27

Remarks on Broadcasts (cont.)

� A fault-tolerant broadcast is usually implemented by a broadcast
algorithm that uses lower-level communication primitives, such as point-
to-point message sends and receives

� The failure models are usually defined in terms of failures that occur at
the level of send and receive primitives, e.g., omission to receive
messages

� How do these failures affect the execution of higher-level primitives, such
as broadcast and delivery? For example, if a faulty process omits to
receive messages, will it simply omit to deliver messages?

� In general broadcasts algorithms are likely to amplify the severity of
failures that occur at the low level communication primitives (sends and
receives).

– e.g., the omission to receive messages may cause a faulty process to
deliver messages in the wrong order

ECE 60872 28

Primitives for Fault-Tolerance in
Distributed/Networked Systems

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal
broadcast), which ensure reliable message delivery to all
participants (replicas)

– Agreement protocols, which ensures all participants have a
consistent system view

– Commit protocols, which implement atomic behavior in
transactional types of systems

15

ECE 60872 29

Agreement Protocols

� In a distributed system, it is often required that processes reach a
mutual agreement.

� Faulty processes can send conflicting values to other processors
preventing them from reaching an agreement

� In the presence of faults, processes must exchange their values and
relay the values received from other processes several times to
isolate the effects of faulty processes.

� System model

– There are n processes in the system and at most m of them can be
faulty.

– Processes communicate with one another by message passing and the
receiver process always knows the identity of the sender process of the
message.

– The communication network is reliable, i.e., only processes are prone
to failures.

ECE 60872 30

Synchronous vs. Asynchronous Computation

� In synchronous computation, processes in the
system run in lockstep:

– In each step/round, a process receives messages (sent to it in
the previous step), performs computation, and sends
messages to other processes (received in the next step).

– A process knows all the messages it expects to receive in a
step/round.

� In asynchronous computation, processes do not
execute in lockstep:
– A process can send and receive messages and perform

computation at any time

� The synchronous model of computation is assumed
in further discussion

16

ECE 60872 31

Model of Processor Failures

� Three modes of failures
– Crash fault

– Omission fault

– Byzantine fault

� Crash fault: Processor stops functioning and never resumes
operation

� Omission fault: Processor “omits” to send messages to
some processors

� Malicious fault: Processor behaves randomly and arbitrarily
(Byzantine fault)

� In synchronous model, omission can be detected

ECE 60872 32

Authenticated vs. Non-Authenticated Messages

� To reach an agreement, processes need to exchange their values
and relay the received values to other processors.

� A faulty process can distort a message received from other
processes.

Two Types of Messages:

� Authenticated (signed)

– A faulty process cannot forge a message or change the contents of a
received message (before it relays the message to other processes).

– A process can verify the authenticity of the received message.

� Non-authenticated (oral)

– A faulty process can forge a message and claim to have received it
from another processor or change the contents of the received
message before it relays it to other processes.

– A process has no way to verify the authenticity of the received
message.

17

ECE 60872 33

Agreement Problems - Classification

� The Byzantine Agreement Problem
– A single value is initialized by any arbitrary process, and all

nonfaulty processes have to agree on that value

� The Consensus Problem
– Every process has its own initial value, and all correct

processes must agree on a single, common value.

� The Interactive Consistency Problem
– Every process has its own initial value, and all nonfaulty

process must agree on a set of common values.

ECE 60872 34

The Byzantine Agreement Problem

� An arbitrarily chosen process - the source process -
broadcasts its initial value to all other processes.

� Agreement - All nonfaulty processes agree on the same
value.

� Validity - If the source process is nonfaulty then the
common value agreed on by all nonfaulty processes
should be the initial value of the source.

18

ECE 60872 35

The Consensus Problem

� Every process broadcasts its initial value to all other
processes.
– Initial values of the processes may be different.

� Agreement - All nonfaulty processes agree on the same
single value.

� Validity - if the initial value of every nonfaulty process is ,
then the common value agreed upon by nonfaulty
processes must be 

ECE 60872 36

The Interactive Consistency Problem

� Every process broadcasts its initial value to all other
processes.
– Initial values of the processes may be different.

� Agreement - All nonfaulty processes agree on the same
vector:
( 1,  2, …,  n)

� Validity - If the ith process is nonfaulty and its initial value is
 i, then the ith value to be agreed on by all nonfaulty
processes must be i

19

ECE 60872 37

Relations Among the Agreement Problems

1. Given an algorithm to solve Byzantine agreement, how
would you solve Interactive Consistency?

2. Given an algorithm to solve Interactive Consistency, how
would you solve Consensus?

3. Given an algorithm to solve Consensus, how would you
solve Byzantine Agreement?

ECE 60872 38

Byzantine Agreement Problem: Solution

The upper bound on the number of faulty processes

� It can be shown that in a fully connected network it is impossible to
reach a consensus if the number of faulty processes, m , exceeds
(n-1)/3 ,

– For example, if n = 3, than m = 0, i.e., having three processes, we
cannot solve the Byzantine agreement problem even in the event of a
single error.

– The protocol requires m+1 rounds of message exchange (m is the
maximum number of faulty processes)

– This is also the lower bound on the number of rounds of message
exchanged.

� Using authenticated messages, this bound is relaxed, and a
consensus can be reached for any number of faulty processes.

20

ECE 60872 39

Impossibility Results

� Consider a system with three processes p1, p2, p3

� There are two values, 0 and 1, on which processes agree.

� p0 initiates the algorithm.

� No solution exists for the Byzantine agreement problem for three
processes, which can work under a single failure

assume p2 is faulty
suppose p0 broadcast 1 to p1 and p2

p2 acts maliciously and sends 0 to p1

p1 must agree on 1 if algorithm is to be satisfied
p1 receives two conflicting values
no agreement is possible

P0

P1
P2

0
1

1

0

Case one - p0 is faulty

P0

P1
P2

1
1

1

0

Case one - p0 is not faulty

suppose p0 sends 1 to p1 and 0 to p2

p2 communicates 0 to p1

p1 receives two conflicting values
no agreement is possible

ECE 60872 40

Oral Messages Algorithm OM(m)

� A recursive algorithm solves the Byzantine agreement
problem for 3m+1 or more processes in the presence
of at most m faulty processes.

� Algorithm OM(0)

� 1. The source process sends its value to every process.

� 2. Each process uses the value it receives from the
source (if it receives no value, then it uses a default
value of 0).

21

ECE 60872 41

Oral Messages Algorithm OM(m)

� Algorithm OM(m), m > 0

� 1. The source process sends its value to every process.

� 2. For each i, let i be the value processor i receives
from the source.
– Process i acts as a new source and initiates Algorithm OM(m-1)

wherein it sends the value i to each of the n-2 other processes.

� 3. For each i and each j  i let j be the value process i
received from j in step (2) using Algorithm OM(m-1). (If
no value is received then default value 0 is used).
Process i uses the value majority (1 , 2 , …, n-1).

� The algorithm is complex
– Message complexity?
– Time complexity?

ECE 60872 42

Oral Messages Algorithm OM(m): An Example

P0

P2P1 P3

11
1

P0

P2P1 P3

11
1

To initiate the agreement p0

executes OM(1) wherein it sends 1
to all processes

At step 2 of the OM(1) algorithm,
p1, p2, p3 execute the algorithm OM(0)

p1 and p3 are nonfaulty and
p1 sends 1 to {p2, p3}
p3 sends 1 to {p1, p2}
p2 is faulty and sends 1 to p1 and 0 to p3

After receiving all messages
p1, p2, p3 execute step 3 of the OM(1) to decide
the majority value

p1 received {1, 1, 1}  1
p2 received {1, 1, 1}  1
p3 received {1, 1, 0}  1

Both conditions of the Byzantine
agreement are satisfied

P0

P2P1

11

1 1

1

1

0

1

P0

P2P1 P3

11

1

1 1

1

1

0

1

Consider a system with four processes p0, p1, p2, p3

p0 initiate the algorithm; p2 is faulty

22

ECE 60872 43

Oral Messages Algorithm OM(m): An Example
(cont.)

P0

P2P1 P3

11

0

1 1

1

1

0

0

P0 send conflicting values to p1, p2, p3

Under step 2 of OM(0) p1, p2, p3 send
the received values to the other two processes

p1, p2, p3 execute step 3 of OM(1) to decide
on the majority value

p1 received {1, 0, 1}  1
p2 received {0, 1, 1}  1
p3 received {1, 1, 0}  1

Both conditions of the Byzantine
agreement are satisfied

Consider a system with four processes p0, p1, p2, p3

p0 initiate the algorithm; p0 is faulty

ECE 60872 44

Protocol with Signed Messages

� Transmitter sends a “signed” message (use digital signature
from asymmetric cryptography)

� If a node changes the content of message from transmitter
before forwarding it, the receiver can detect the forgery

� With signed messages, agreement can be reached between
n=m+2 processes, where m is the number of faulty
processes

� Each process maintains a set Vi (for process i) that has all
the unique values that it has received

23

ECE 60872 45

Protocol with Signed Messages

� Algorithm SM(m)

1. The transmitter (process 0) signs its value and sends to
other nodes

2. For each process i:
A. If process i received message v: 0 (i) it sets Vi to {v}; (ii) it sends

v: 0: i to every other process

B. If process i received message v: 0: j1: … : jk and v  Vi, then (i) it
adds v to Vi; (ii) if k < m, it sends v: 0: j1: …: jk : i to every process
other than j1, …, jk

3. For each process i, when it receives no more message, it
considers the final value as choice(Vi)

ECE 60872 46

Application of Agreement Algorithms

Fault-Tolerant Clock Synchronization Example

� In distributed systems, it is often necessary for processes to maintain
synchronized physical clocks.

� Drift of the physical clock requires the clocks at different processes to be
periodically resynchronized.

� It is assumed that

– All clocks are initially synchronized to approximately the same value.

– A nonfaulty process’s clock runs approximately at the correct rate (i.e., one
second of clock time per second of real time).

– A nonfaulty process can read the clock value of another nonfaulty process
with a small error 

24

ECE 60872 47

Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm

� The clocks are:
– Initially synchronized

– Resynchronized often enough so that two nonfaulty clocks never
differ by more than 

� Each process reads the value of all other processes’ clocks
and sets its clock value to the average of these values.

� If a clock value differs from a process’s own value by more
than , the process replaces that value by its own clock
value when taking the average.

ECE 60872 48

Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm (cont.)

� Let two processes p and q, use cpr and cqr as the clock values of a third
process r when computing their averages.

� If r is nonfaulty, then cpr = cqr. Actually |cpr - cqr|  

� If r is faulty then |cpr - cqr|  3

� If p and q computes their averages for the n clocks values:

– use identical values for clocks of n-m nonfaulty processes.

– The difference in the clock values of m faulty processes used is
bounded by 3

� The averages computed by p and q differ by at most (3m/n)

n > 3m  (3m/n) < 
Resynchronization brings the clocks closer by a factor of (3m/n)

25

ECE 60872 49

Fault-Tolerant Clock Synchronization
Interactive Convergence Algorithm (cont.)

� In the algorithm, it was assumed that:
– All processes execute the algorithm instantaneously

at exactly the same time.

– The error in reading another process’s clock is zero.

� A process may read other processes’ clocks at different time instances

Solution:

� A process computes the average of the difference in clock values and
increments its clock by the average increment.

– Clock differences larger than  are replaced by 0.

ECE 60872 50

Interactive Consistency by Running the
Byzantine Agreement Protocol, Example 1

Consider a system, which consists of four processes: p0, p1, p2, p3

Initial values in the processes: v1=1, v2=1, v3=1, v0=1

P0 sender : P1 received

P2

P3

P1 sender : P1

P2

P3

P2 sender : P1

P2

P3

P3 sender : P1

P2

P3

p0 p1 p2 p3

P0

P1 P3
P2

1 11

1
0

0

Vectors in each process Final decision

P1={0,1,1,1} ==> 1

P2={0,1,1,1} ==> 1

P3={0,1,1,1} ==> 1

majority

own
value

0 0 1

0 0 1

1 0 0

0/1 1 1

0/1 1 1

0/1 1 1

0/1 1 1

0/1 1 1

0/1 1 1

Src

26

ECE 60872 51

Interactive Consistency by Running the
Byzantine Agreement Protocol, Example 2

P1={0,1,1,1,0} ==> 1

P2={0,1,1,1,0} ==> 1

P3={0,1,1,1,0} ==> 1

P4={0,1,1,1,0} ==> 1

P0

P1 P3
P2

1 11

10
0

1

P4 0

1

P0 sender : P1 received

P2

P3

P4

P1 sender : P1

P2

P3

P4

P2 sender : P1

P2

P3

P4

P3 sender : P1

P2

P3

P4

P4 sender : P1

P2

P3

P4

p0 p1 p2 p3 p4

0 0 1 1

0 0 1 1

1 0 0 1

1 0 0 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 0 0 0

0/1 0 0 0

0/1 0 0 0

Vectors in each process Final decision

ECE 60872 52

Interactive Consistency by Running the
Byzantine Agreement Protocol, Example 3

Vectors in each process Final decision

P1={0,1,1,1,0} ==> 1

P2={0,1,1,1,0} ==> 1

P3={0,1,1,1,0} ==> 1

P0

P1 P3
P2

1 11

00
0

P4={0,1,1,1,0} ==> 1

0

P4 0

1

P0 sender : P1 received

P2

P3

P4

P1 sender : P1

P2

P3

P4

P2 sender : P1

P2

P3

P4

P3 sender : P1

P2

P3

P4

P4 sender : P1

P2

P3

P4

p0 p1 p2 p3 p4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 1 1 1

0/1 0 0 0

0/1 0 0 0

0/1 0 0 0

27

ECE 60872 53

Primitives for Fault-Tolerance in
Distributed/Networked Systems

� Techniques include:

– Broadcast protocols (e.g., atomic broadcast, causal
broadcast), which ensure reliable message delivery to all
participants (replicas)

– Agreement protocols, which ensures all participants have a
consistent system view

– Commit protocols, which implement atomic behavior in
transactional types of systems

ECE 60872 54

Commit Protocols

� The commit problem occurs when a set of processes need to agree
on whether or not to perform some action that may not be possible
for some of the participants

� The initial uncertainty is overcome by:

– determine whether or not all the participant will be able to perform the operation

– communicate the outcome of the decision to the participants in a reliable way

� The operation can be committed if the participants can all perform
it

� Once a commit is reached, this requirements will hold even if some
participants fail and later recover

� If one or more participants are unable to perform the operation, the
operation as a whole aborts, i.e, no participant should perform it

28

ECE 60872 55

Atomic Actions – Process Interaction Example

1. Suppose P1 and P2 share a memory location X and
both modify X

2. Suppose P1 locks X before P2

3. P1 updates X and releases the lock

4. If P1 fails after P2 has seen the change

made to X by P1

then

P2 must be aborted or rolled back

to recover the correct system state

a) P2 should not interact with P1 until this can be
done safely

b) P1 should be atomic, i.e., the effect of P1 on the
system should look like an uninterrupted operation

Process P1

….
…..
Lock(X)
X := X + Z;
Unlock(X);
….
…..
failure

Process P2

….
….
Lock(X)
X := X + Y;
Unlock(X);
….
…..

ECE 60872 56

Two-Phase Commit Protocol - Assumptions

� The system consist of a set of sites/nodes interconnected
through a communication network

� Computation processes communicate with each other by
exchanging messages

� Processes suffer crash or omission failures

� Communication is reliable and each message is received
within  time units after being sent

� One of the cooperating processes acts as a coordinator

� Coordinator cooperates with other processes called cohorts

� Stable storage is available at each site/node

29

ECE 60872 57

Two-Phase Commit Protocol (2PCP)

� At the beginning of a transaction, the coordinator sends a start
transaction message to every cohort.

Phase 1

� Coordinator
 send a Commit_Request to every cohort

 wait with a timeout for replies from all cohorts

 Cohorts
 on receiving Commit_Request

if the transaction execution is successful

write Undo and Redo log on the stable storage

send an Agreed message to the coordinator

otherwise send an Abort to the coordinator

 wait forever for Commit or Abort from the coordinator

ECE 60872 58

Two-Phase Commit Protocol (cont.)

Phase 2

� Coordinator
 if all cohorts reply Agreed

write Commit into the log

send Commit to all cohorts and wait forever for Acknowledgments from

cohorts

if all cohorts respond with Acknowledgment write a Complete record

to the log

 if some cohort responds with ABORT or timeouts (does not respond
within a timeout interval)

send Abort to all the cohorts, undo database changes (using UNDO

log) and log Complete record

 when the Complete record is written, delete the live transaction state.

30

ECE 60872 59

Two-Phase Commit Protocol (cont.)

Phase 2

� Cohorts
 on receiving a Commit write a Complete record and send an

Acknowledgment to the coordinator

 on receiving an Abort undo the transaction (using the Undo log) and log
the Complete record

when the Complete record is written, delete the live transaction state.

ECE 60872 60

Site/Node Failures

� Coordinator crashes before having written the Commit record:
– On recovery, the coordinator broadcasts an Abort message to all cohorts.

– All cohorts who agreed to commit undo the transaction using Undo log.

– Others Abort the transaction.

– Cohorts are blocked until they receive an Abort message.

� Coordinator crashes after writing Commit but before writing the
Complete record: ???

� Coordinator crashes after writing Complete record:
– On recovery, there is nothing to be done for the transaction.

31

ECE 60872 61

Site/Node Failures (cont.)

� A cohort crashes in Phase 1:
– The coordinator can abort the transaction, as it did not receive a reply from

the crashed cohort.

� A cohort crashes in Phase 2 (after writing Undo and Redo log):
– ???

� The two-phase commit protocol guarantees global atomicity.

� The protocol can block: How?

ECE 60872 62

Non-blocking Commit Protocol

� Need a commit protocol that:
– Is non-blocking

– Tolerates site failures

� Implies independent recovery
– Operational sites should agree on outcome of transaction by examining local

state

– Failed sites upon recovery should reach same decision as operational sites

� Assumptions:
– The network is reliable.

– Point-to-point communication is possible between any two operational
nodes.

– The network can detect a node failure (e.g., by a timeout) and report it to the
site trying to communicate with the failed site (fail-stop failure mode)

32

ECE 60872 63

Two-Phase Commit Protocol
Finite State Automate

ri

qi

ci

ai

Coordinator Cohort i

q1

c1a1

r1

Commit_Request
sent to all cohorts

Agreed from all cohorts

Commit sent
to all cohorts

Abort from
one or more
cohort(s)

Abort
sent to all
cohorts

Commit
received from
coordinator

Abort
received from
coordinator

Commit_Request
received

Agreed
sent to
coordinator

Commit_Request
received

Abort
sent to
coordinator

ECE 60872 64

How Is Blocking of a 2PCP Eliminated?

� Concurrency Set

– Let si depict the state of the node i

– A concurrency set of si (C(si)) is the set of all the states of
every node that can be concurrent with si

– Consider a system with two nodes (one coordinator and one
cohort):
C(r2) = {c1, a1, r1}, and C(q2) = {q1, r1}

� If a protocol contains the local state of a site with both
abort and commit states in its concurrency set, then
under independent recovery conditions it is not
resilient to an arbitrary single failure.

33

ECE 60872 65

How Is Blocking of a 2PCP Eliminated?

� In the 2PCP, only states ri (i  1) have both abort and
commit in their C(ri)

� This can be resolved by introducing a buffer state bi in the
finite state automaton representing 2PCP, e.g., a system
containing only two sites:

C(r1) = {q2, a2, r2} and C(r2) = {a1, b1, r1}

The extended 2PCP is non-blocking in case of a single site
failure and a failed site can perform independent recovery

ECE 60872 66

How Is Blocking of a 2PCP Eliminated?
Three-Phase Commit Protocol (3PCP)

Commit_Request
sent to all cohorts

ri
Agreed from all cohorts

Commit sent
to all cohorts

Abort from
one or more
cohort(s)

Abort
sent to all
cohorts

qi

ci

ai

Commit_Request
received

Abort
sent to
coordinator

Commit_Request
received

Agreed
sent to
coordinator

Abort
received from
coordinator

Commit
received from
coordinator

Coordinator Cohort i

q1

c1

a1

r1

b1
Ack received from
all cohorts

Prepare
sent to all cohorts

bi

Prepare message
received

Ack
sent to
coordinator

34

ECE 60872 67

Failure Transitions

� The failed site should be able to reach a final decision based solely on
its local state.

� The decision-making process is modeled using failure transitions.

� A failure transition occurs at a failed site/node at the instant it fails or
immediately after it recovers from the failure.

The Rule:

� For each nonfinal state s (i.e., qi, ri, bi) in the protocol,
– If C(s) contains a Commit, then assign a failure transition from s to

a commit state.

– Otherwise, assign a failure transition from s to an abort state.

ECE 60872 68

Timeout Transitions

� Consider what an operational site does in the event of another site’s
failure.

� If site/node i is waiting for a message from site j (i.e., j  S(i)) and j has
failed, then site/node i times out.

� Based on the expected message type, site/node i can determine in what
state site j failed.

The Rule:

� For each non-final state s,

– If site j is in S(s) and node j has a failure transition to a commit (abort) state,
then assign the time out transition from state s to a commit (abort)
state.

35

ECE 60872 69

Finite State Automate to Illustrate Timeout and
Failure Transitions

Commit_Request
sent to all cohorts

ri

Agreed from
all cohorts

Commit
sent to all cohorts

Abort from
one or more
cohort(s)

qi

ci

ai

Commit_Request
received

Abort
sent to
coordinator

Commit_Request
received

Agreed
sent to
coordinator

Abort
from
coordinator

Commit
received from
coordinator

Coordinator Cohort i

q1

c1

a1

r1

b1
Ack received
from all cohorts

Prepare
sent
to all cohorts

bi

Prepare
received

Ack
sent to
coordinator

Abort
sent to all
cohorts

T

F

F

F

Failure/Timeout Transition
F, T

Abort
from
coordinator

Abort
sent to all
cohorts

T

F
T

T

F

T

F T

ECE 60872 70

Three-Phase Commit Protocol (3PCP)

� All nodes are in the state q.

� If the coordinator fails while in state q1 all cohorts

– Time out (waiting for the Commit_Request message)

– Perform time out transition and abort the transaction

� Upon recovery, the coordinator performs the failure
transition from state q1 and aborts the transaction.

36

ECE 60872 71

Three-Phase Commit Protocol (3PCP): Phase 1

� Error-free execution identical to the Phase 1 of the
2PCP

� In the event of a site/node failure (the coordinator is
in state r1 each cohort is either in state a, r, or q),

– In state a - a cohort has already sent an Abort message to the
coordinator

– In states r or q - if a cohort fails, the coordinator

• times out waiting for the Agreed message from the failed cohort

• aborts the transaction and sends abort message to all cohorts

ECE 60872 72

Three-Phase Commit Protocol (3PCP): Phase 2

� Coordinator sends a Prepare message to all the cohorts if all the
cohorts sent Agreed messages in Phase 1.

� Otherwise the coordinator sends an Abort message to all cohorts.

� Upon receiving a Prepare message a cohort sends an
Acknowledgment (Ack) message to the coordinator.

� If coordinator fails before sending the Prepare message
(in state r1)

– It aborts the transaction on recovery.

– The cohorts time out waiting for the Prepare message and abort the transaction.

37

ECE 60872 73

Three-Phase Commit Protocol (3PCP): Phase 3

� On receiving Ack messages from all cohorts, the coordinator sends
a Commit message to all the cohorts.

� A cohort on receiving a Commit message, commits the transaction.

� If the coordinator fails before sending the Commit message (in
state b1)

– It commits the transaction upon recovery.

– The cohorts time out waiting for commit message and commit the transaction
from state b1.

� If the cohort fails before sending an Ack message

– The coordinator times out, aborts the transaction, and sends the Abort to all
cohorts.

– The failed cohort aborts the transaction on recovery.

ECE 60872 74

Why Cohorts Need a Buffer State (bi)

� Assuming that bi is not present,

– Let the coordinator be in b1 waiting for Ack form cohorts.

– Cohort 2 (in state r2) sends an Ack and commits the transaction.

– Cohort 3 (in state r3) fails, then both the coordinator and cohort 3 (upon
recovery) abort the transaction.

� The result is an inconsistent outcome for the transaction.

� Adding bi (i  1), we ensure that no state has both Abort and
Commit states in its concurrency set.

38

ECE 60872 75

Reference

� Material for the topic from:
– “Fault Tolerance in Distributed Systems” by

Pankaj Jalote, Prentice Hall. Chapter 4 –
Broadcast.

– “Advanced Concepts in Operating Systems”
by Singhal and Shivaratri, McGraw Hill.
Chapter 8 – Agreement.

– “Advanced Concepts in Operating Systems”
by Singhal and Shivaratri, McGraw Hill.
Chapter 13 – Commit Protocols.

