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ML in Security

1. ML algorithms used in security tasks: common case
— Spam detection, credit card fraud detection, ...
2. Security of ML algorithms themselves: more recent but
intense activity

— Categorization based on temporal characteristic of attack or
attacker knowledge

— Categorization 1: Training timel'-?! versus test timel
— Categorization 2: Model knowledge by attacker

Bibliography at the end of the slide deck ‘
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Some Types of ML Attacks

* Evasion attacks

* Poisoning attacks

* AML in Deep Neural Networks
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Evasion Attacks

« Adversary who previously chose instance x (which is
now classific ‘From:sa‘r;irr;er@éxample.co;n )ses another

instance x* 0w!!! gn

Feature Weights

v
2. cheap= 1.0
mortgage = 1.5

3. Total score = 2.5 > 1.0 (threshold)
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Evasion Attacks

From: spammer@example.com

1.
2. cheap= 1.0
mortgage = 1.5
Mt. Hood =-1.0
Oregon =-1.0
3. Total score = 0.5 < 1.0 (threshold)
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Modeling Evasion Attacks

Attacker has an “ideal” feature vector x,,,,,

— These are the original malicious feature vectors in training data

Modifying x into another feature vector x ” incurs a cost
Cigear X))
The attacker’s goal is to appear “benign” to the classifier

Observation: Feature space modeling
— Attacker can make arbitrary changes to features
— Cost is meant to capture constraints faced by the attacker

Slide from Yevgeniy Vorobeychik, AAAI 2018
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Attacker Knowledge

* Black-box attacks: Attacks that fool a target model by
adversarial examples made on a substitute model.
— Adversaries do not know internal parameters of target model
— However, using the same training data set, they can train their
own DNN model; Can construct gradients of the target model
with high similarity
* White-box attacks: Attacks that attempt to mislead the
target model using the adversarial examples crafted on
the target model itself
— Adversaries are assumed to have access to the target model
— Can compute the gradients of the target.
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Adversarial Examples

+.007 x

NN prediction: NN prediction:
Panda (70%) Gibbon (99%)

Inference under

Training: X — 6  Inference: 6, — y attack: &, — '
. x’
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Adversarial Examples in the Physical World

(Eykholt et al, 2017) (Goodfellow 2018)

* AE Transferability: It was shown in [Goodfellow-
NIPS14] that AEs crafted to mislead a DNN often also
mislead a substitute model of the DNN
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Some ldeas for Defense

1. Adversarial training: Proactively generating adversarial
examples as part of the training procedure

— Activity in efficiently generating lots of adversarial examples by perturbing
actual data points

— Model is then trained to assign the same label to the adversarial example as
to the original example
2. Defensive distillation: Smooths the model’s decision surface in
adversarial directions exploited by the adversary

— Distillation is a training method where one model is trained to predict
probabilities output by another model that was trained earlier

— First model is trained with “hard” labels (100% probability that an image is
a dog rather than a cat) and then provides “soft” labels (95% probability that
an image is a dog rather than a cat) used to train the second model

— The second “distilled” model is more robust to attacks
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Latest Defense against Adversarial Examples

» Feature Squeezing: [ Xu-Evans-Qi-NDSS18]
* Detect AEs rather than making model robust to AEs

_)m Predicriono A “
dversaria

Input ‘ f

; ; ; Legitimate
Feature Squeezer does quantization of the image.
* Barely change legitimate input.
* Destruct adversarial perturbations
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But the Arms Race Goes On

» Feature Squeezing’s decision threshold needs to be fixed
targeting a particular perturbation level

— It performs poorly for perturbation levels that the threshold is
not targeted for

Distibution of the test statistic

when an image is normal
Distibution of the test statistic
when an |mage isan AE

Detectlon Rate (DR) = 777

False Positive Rate (FPR)
=77

DeC|5|on threshold
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One Possible Solution

Fundamentally, the drawback of FS is that there is a rigid mapping
of perturbation level used to generate AE and L1 norm threshold

We show that using a richer detector can lead to more precise
detection across a wide range of perturbation levels

For a given image x, we consider a quantized image x,, which is
made by quantizing each pixel of x with step size s

Difference of two logits w
vector. Size = S

Simple fully connected NN

x — > DNN

— G(x)

. . Z(x) = G(x) = G(xq) AE detector
Quantized| Quantize each pixel of (" — D(x)
images _
Xq  xisanAE, ifD(x)>T

e xisnormal,ifD(x) <T

’ Reference: https://engineering.purdue.edu/dcsl/publications/papers/2021/hawkeye_spie21.pdf ‘

ECE/CS 13 PURDUE

Preliminary Evaluation

1.00 — 0:15
—e— FGSM (Hawkeye, FPR=0.038)
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2 4 8 T2 4 8
Perturbation level € (unit: &) Perturbation level € (unit: &)
(c) Detection rates in ImageNet. (d) Attack success rates after detection in ImageNet.

HAWKEYE achieves a much lower ASR-AD than FS

Even though DR at low perturbation level is not high, but it is not a
big issue in terms of ASR-AD

ECE/CS 14 PURDUE




Open Research Problems
* How is performance to “natural faults”

— Examples: Brightness-reduced images (simulating images taken at night
time), occlusion by a noise box (simulating an attacker or a water drop
potentially blocking some parts of a camera), and occlusion by multiple tiny
black dots (simulating dirt on camera lens)

* How can this class of techniques be used together with gradient-
masking defenses that have been discredited in general, but often
work well for low perturbation level attacks?

* Fundamentally, it is hard to defend against Adversarial Examples
because it is hard to construct a theoretical model of the AE
crafting process

— AEs are solutions to an optimization problem that is non-linear and non-
convex for many ML models

— Because we don’t have good theoretical tools for describing the solutions to
these complicated optimization problems, it is very hard to make any kind of
theoretical argument that a defense will rule out a set of AEs
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Game Theoretic View of Adversarial ML

Traditional ML: Adversarial ML:
optimization game theory

Minimum Equilibrium

One player, More than one player,
one cost more than one cost

Defender: Minimize the
maximum damage that can be
inflicted by an adversary
Slide from Ian Goodfellow, 2018
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Real-world Problem Context

* Modern critical infrastructures have a large number of assets,
managed by multiple stakeholders.

* The security of these complex systems depends critically on the
interdependencies between these assets.

Goal: Create optimal and strategic allocation of defense resources in
interdependent large-scale networks.
Tools: Machine Learning and Game Theory
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Our Research Direction
* Game-theoretic framework involving attack graph models of
large-scale interdependent systems and multiple defenders
* Each human defender misperceives the probabilities of successful
attack in the attack graph
* We characterize impacts of such misperceptions on the security
investments made by each defender

 The cost of a defender Dy, is: Defender Defender 2

Ck(x) Li
2 Z Lm<lr,ré§px 1_[ w(p; (XD) Pij
Um€EVE " (ui,uj)EP

Defender 3
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Behavioral Weighting Function

* Human perceptions of rewards and losses can differ substantially
from their true values

» These perceptions can have a significant impact on the investments
made to protect the systems that the individuals are managing.

1

* Humans overweight low attack s
probabilities and underweight _°¢
large attack probabilities.

* Example: Prelec [1998]

weighting function:

w(x) = exp(—(=In(x))%)

 where parameter a € (0,1].

o
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What’s Nobel Got to Do With It?

The International
Bestseller

Richard Thaler (2017 Economics Nobel Laureate): "I
discovered the presence of human life in a place not far, far
away, where my fellow economists thought it did not exist:
the economy.”

= counterpoint to expected utility theory
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Some Definitions

* Behavioral defender (colloquially “biased defender”): Makes
security investment decisions under cognitive biases
— Using prospect-theoretic, non-linear probability weighting models, they
misperceive probabilities of a successful attack on edges of the attack graph
* Non-behavioral (colloquially “rational defender”): Makes security
investment decisions based on the classical models of fully rational
decision making
— Correctly perceives the risk on each edge within the attack graph of the CPS
network, and chooses investments accordingly
* Why do we need to consider human cognitive biases in security
decision making?
— Significant investments in security controls, security policies, or changes in
the system architecture involve human decision making
— One player may have partial observability of other player’s actions
— Deception may be used to create mis-perception of attack-defense successes
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Optimization Problem Formulation

* The probability of successfully compromising v;, starting from v,
is given by
Pi,j(xi.j)ngj EXP(—Sz',j Z x;-rfj)
DreD st (v, v;)EEL

* A behavioral defender D; chooses her investments x; * to minimize
her perceived loss

Cr(x) = Z Lm(lggax ﬂ W(Pi.j(xz:f)))

U, EVy m (vi.vj)EP

» The probability weighting function w(p) gives how humans mis-
perceive true probability p

— For example: a commonly believed functional form is the Prelec form where
ae (0, 1] determines the degree of mis-perception

w(p) = exp | - (- log(p)* |
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Intuition for Behavioral vs. Non-behavioral Decisions

*  Min-cut of a graph: Given two assets s and ¢ in

the graph, an edge-cut is a set of edges £, such

that removing them from the graph removes all @ Ls=1
paths from s to #; A min-cut is an edge-cut of e e“@ e
smallest cardinality over all possible edge-cuts @

» Two possible min-cuts: (v, , v,), (v, V5)

Single defender;

e Total loss function for the defender ;
Single target asset

—x +Xx +x +x. —x +X +Xx +.
C(x) = max (e (s, 142124224 4,5)’{3 (xs,1+21,3+x3,4 4.5))

*  Theorem: One can prove (using the KKT conditions of non-linear
programming) that it is optimal for a non-behavioral defender to put all of her
budget only on the min-cut edges, i.e., any solution satisfying x, ; + x, ;= B

— Optimal investment leads to a loss of ¢

« For the behavioral defender total loss function is:

DY SN SN » ST 4 IR SENNNPN » SIS ¢ SN ¢ 4
min max (e B B N N P B B I S W xq.s)
x L
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Intuition for Behavioral vs. Non-behavioral Decisions

* Optimal investment by behavioral defender:

1
X1,2 =X2,4 =X1,3 =X34=2a1X5. @ Ls=1

B—4x1,2 B
Xs1 =X45=—>5 = -
2+4(2@T) @

* There are investments on non-min-cut edges

Single defender;
Single target asset

¢ Loss for behavioral defender > Loss for non-
behavioral defender

e Why this behavior?

o
o

:l iy 4

%o Py

— When considering an undefended edge, the marginal ;s //
reduction of attack probability on that edge as perceived é“ //
by a behavioral defender is much larger than the Z% > /./
marginal reduction of true attack probability ° uzL

— Thus the behavioral defender is incentivized to invest ";// o N .
some non-zero amount on that edge ST eewe
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Other Modeling Factors

* Multi-hop dependence
@ Ls=1 @ @ Ls =1
OO S OIONNOLO o'0 ©

(a) A baseline attack graph. (b) An attack graph created from (a) if the nodes
have two-hop dependencies.

» Spreading behavior of security investments

— Behavioral defender spreads her defensive investments on all edges
throughout the attack graph

— Solution approach: For each defender D, we set x; * > 77,

* Misperception due to information asymmetry or deception
— Hypergames extend the classical game theory model by incorporating the
perception of each player in the game analysis
— Solution approach: We show hypergames is a valuable game-theoretic model to
analyze how to use deception to increase security of inter-dependent systems
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Initial Observations
* Both games (vertex based and path based) have Convex cost
function given a convex decreasing probability function
* Both games have a Pure Nash Equilibrium (PNE) state

* In each game, we can compute the best response by solving a
convex optimization problem

* They have different investment decisions than standard security
game which maximizes expected utility

» A rational player can benefit from a biased player
Both players rational Player 2 biased

Overall Loss =18.1436
Overall Loss = 0.3616
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A network level systen
source (DER) system within the |
the DER.1 failure scenario, wh
physical access attack to the HV

(adapted from [32]).

Sample System Applications

waN

{oth

Router / Firswall

Switch

PV Sauipment The attack graph for a SCADA-based con-
trol network, adapted from [27]. The attacker’s start-
2 has an associated loss
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Figure 13: The ratio of loss esti- Figure 14: The ratio of loss esti-
mated by [57] to the (true) loss es- mated by [57] to the (true) loss es-
timated by BASCPS for different timated by BASCPS for different
behavioral levels, with 1 = 0. spreading levels, with a = 1.
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Insights about Behavioral Decision Making

System Parameter

Insights from Behavioral Decision Making

Defense Budget

The adverse effects of behavioral decision making are most severe with moderate defense budgets (Figure 10). In particular, at
either extreme of sufficiently large or extremely limited budgets, the amount of the budget, rather than its allocation, is most
crucial in determining the system’s security, so the effects of behavioral decision making become secondary.

Interdependency The impact of behavioral suboptimal decision making on the system is magnified as the degree of the interdependency between
subnetworks belonging to different defenders increases (Figures 15, 19).
CPS Size The impact of behavioral suboptimal decision making is magnified as the number of nodes in the CPS grows (Figures 11, 20).

Budget distribution

The negative effect of behavioral decision-making is more pronounced with asymmetric budgets among the defenders (Fig-
ures 12, 25).

Defense Mechanism

Selfish defense decisions together with behavioral decisions significantly increase security risk. Cooperative (or joint) defense
among the defenders has the potential of overcoming the effects of suboptimal behavioral decision making. This even improves
security outcomes over rational but selfish decision making (Figures 12, 21).

Central Planning

‘We compare the outcomes of decentralized decision making by individual defenders with those of investment decisions by a
central planner, such as through a federal regulatory authority, tasked with minimizing social loss of the whole system. Central
planning is most beneficial for improving CPS security when the defenders have a higher degree of behavioral bias and when
the security budget is high (Figure 26).

Sensitivity

Behavioral decision making leads to investing less security resources on the parts of the network that are more sensitive to
investments (i.e., probability of attack comes down faster with additional security investment) when there are few critical assets
to be protected (Figure 16).
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Human Subject Experiments

Critical Edge
.
212 —— a=1 £iusl —— n=0 5.4
0| —— a8 1) — et £
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Figure 4: Histogram of human sub- Figure 5: Average of all subjects’ Figure 6: Histogram of human sub- Figure 7: Average of all subjects’in-
jects” investments on the critical investments on the critical edge jects’i on the on the edge vs
edge. The vertical red lines show vsexperiment rounds. The upward edge. The vertical red lines show experiment rounds. There is only a
the optimal allocations at specific trend indicates that on average, the optimal allocations at specific weak downward trend in subjects’
behavioral levels (). subjects are learning. spreading levels (7). spreading behavior.

 Fully rational players tend to invest in min-cut edges
» Behavioral players also invest in non critical edges and have a spreading
behavior
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Take Aways and Open Challenges

* Adversarial ML algorithms need to be considered
— To defend against malicious tampering of the model or the data

— To protect against natural failures for high reliability scenarios: Autonomous
vehicles, Air traffic control, Surgery robots, ...

* Game theory can be applied to understand the effects of misperceptions, whether
natural or maliciously induced
— For inter-dependent systems, possibly with multiple defenders
— Extensions to classical models needed
— Behavioral game theory for handling misperceptions
— Hypergame theory for handling different degrees of misinformation among players
*  Open Challenges
1. Laws of secure ML algorithms? Even under highly specific conditions
2. Game theory being used to analyze dynamic scenarios. Respond in real-time.

3. Induce beneficial misperception to lead to secure deployments.
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