
CHAPTER

8
~

AGREEMENT
~ROTOCOLS

\
8.1 INTRODUCTION

In distributed systems, where sites (or processors) often compete as well as cooperate
to achieve a common goal, it is often required that sites reach mutual agreement. For
example, in distributed database systems, data managers at sites must agree on whether
to commit or to abort a transaction [11]. Reaching an agreement typically requires
that sites have knowledge about the values of other sites. For example, in distributed
commit, a site should know the outcome of local commit at each site.

When the system is free from failures, an agreement can easily be reached among
the processors (or sites). For example, processors can reach an agreement by commu­
nicating their values to each other and then by taking a majority vote or a minimum,
maximum, mean, etc. of those values. However, when the system is prone tc> failure,
this method does not work. This is because faulty processors can send conflicting values
to other processors preventing them from reaching an agreement. In the presence of
faults, processors must exchange their values with other processors and relay the values
received from other processors several times to isolate the effects of faulty processors.
A processor refines its value as it learns of the values of other processors (This entire
process of reaching an agreement is called an agreement protocol).

In this chapter, we study agreement protocols for distributed systems under proces­
sor failures. A very general model of faults is assumed. For example, a faulty processor
may send spurious messages to other processors, may lie, may not respond to received

178

AGREEMENT PROTOCOLS 179

messages correctly, etc. Also, nonfaulty processors do not know which processors are
faulty.

In agreement problems, nonfaulty processors in a distributed system should be able
to reach a common agreement, even if certain components in the system are faulty. The
agreement is achieved through an agreement pmtocol that involves several rounds of
message exchange among the processors.

8.2 THE SYSTEM MODEL

Agreement problems have been studied under the following system model:

• There are n processors in the system and at most m of the processors can be faulty.

• The processors can\directly communicate with other processors by message passing.
Thus, the system is logically fully connected.

• A receiver processor always knows the identity of the sender processor of the mes­
sage.

• The communication medium is reliable (i.e., it delivers all messages without intro­
ducing any errors) and only processors are prone to failures.

For simplicity,. we assume that agreement is to be reached between only two
values, 0 and 1. Results can easily be extended to multivalue agreement [23].

Early solutions to agreement problems assumed that only processors could be
faulty and that communication links did not fail. Limiting faults solely to the processors
simplifies the solution to agreement problems. Recently, agreement problems have been
studied under the failure of communication links only [24] and under the failure of
both processors and communication links [25] In this chapter, we limit the treatment
of agreement problems solely to processor failures.

8.2.1 Synchronous vs. Asynchronous Computations

In a synchronous computation, processes in the system run in lock step manner, where
in each step, a processreceives messages (sent to it in the previous step), performs a
computation, and sends messages to other processes (received in the next step). A step of
a synchronous computation is also referred to as a round. In synchronous computation,
a process knows all the messages it expects to receive in a round. A message delay or
a slow process can slow down the entire. system or computation.

In an asynchronous computation, on the other hand, the computation at processes
does not proceed in lock steps. A process can send and receive messages and perform
computation at any time.

In this chapter, synchronous models of computation are assumed. The assumption
of synchronous computation is critical to agreement protocols. In fact, the agreement
problem is not solvable in an asynchronous system, even for a single processor fail­
ure [10].

'
' ' ~

180 ADVANCED CONCEPTS IN OPERATING SYSTEMS

8.2.2 Model of Processor Failures

In agreement problems, we consider a very general model of processor failures. A pro­
cessor can fail in three modes: crash fault, omission fault, and malicious fault. In a crash
fault, a processor stops functioning and never resumes operation. In an omission fault,
a processor "omits" to send messages to some processors. (These are the messages that
the processor should have sent according to the protocol or algorithm it is executing.)
For example, a processor is supposed to broadcast a message to all other processors,
but it sends the message to only a few processors. In a malicious fault, a processor be­
haves randomly and arbitrarily. Fo\example, a processor may send fictitious messages
to other processors to confuse them. Malicious faults are very broad in nature and thus
most other conceivable faults can be treated as malicious faults. Malicious faults are
also referred to as Byzantine faults.

Since a faulty processor can refuse to send a message, a nonfaulty processor may
never receive an expected message from a faulty processor. In such a situation, we
assume that the nonfaulty processor simply chooses an arbitrary value and acts as if the
expected message has been received [16]. Of course, we assume that such situations,
where a processor refuses to send a message, can be detected by the respective receiver
processors. In synchronous systems, if the duration of each round is known, then this
detection is simple-all the expected messages not received by the end of a round were
not sent.

8.2.3 Authenticated vs. Non-Authenticated Messages

Note that to reach an agreement, processors have to exchange their values and relay the
received values to other processors several times. The capability of faulty processors
to distort what they receive from other processors greatly depends upon the type of
underlying messages.

There are two types of messages: authenticated and non-authenticated. In an
authenticated message system, a (faulty) processor cannot forge a message or change
the contents of a received message (before it relays the message to other processors). A
processor can verify the authenticity of a received message. An authenticated message
is also called a signed message [14].

In a non-authenticated message system, a (faulty) processor can forge a message
and claim to have received it from another processor or change the contents of a received
message before it relays the message to other processors. A processor has no way of
verifying the authenticity of a received message. A non-authenticated message is also
called an oral message [14]. It is easier to reach agreement in an authenticated message
system because faulty processors are capable of doing less damage.

8.2.4 Performance Aspects

The performance (or the computational complexity) of agreement protocols is generally
determined by the following three metrics: time, message traffic, and storage overhead.
Time refers to the time taken to reach an agreement under a protocol. The time is usually
expressed as the number of rounds needed to reach an agreement. Message traffic is

,.
\

AGREEMENT PROTOCOLS .181

measured by the number of messages exchanged to reach an agreement. Sometimes,
the message traffic is also measured by the total number of bits exchanged to reach an
agreement [5]. Storage overhead measures the amount of information that needs to be
stored at processors during the e~ecution of a protocol.

Next, we discuss three agreement problems for non-authenticated messages under
processor failures.

8.3 A CLASSIFICATION OF AGREEMENT PROBLEMS

There are three well known agreement problems in distributed systems: the Byzantine
agreement problem, the consensus problem, and the interactive consistency problem. In
the Byzantine agreement problem, a single value, which is to be agreed on, is initialized
by an arbitrary processor and all nonfaulty processors have to agree on that value. In the
consensus problem, every processor has its own initial value and all nonfaulty processors
must agree on a single common value. In the interactive consistency problem, every
processor has its own initial value and all nonfaulty processors must agree on a set of
common values.

In all three problems, all nonfaulty processors must reach a common agreement.
In the Byzantine agreement and the consensus problems, the agreement is about a single
value. Whereas in the interactive consistency problem, the agreement is about a set of
common values. In tl1e Byzantine agreement problem, only one processor initializes the
initial value. Whereas in the consensus and the interactive consistency problems, every
processor has its own initial value. Table 8.1 summarizes the starting values and final
outcomes of the three problems.

Next, we define these three agreement problems in a precise manner.

8.3.1 The Byzantine Agreement Problem

In the Byzantine agreement problem, an arbitrarily chosen processor, called the source
processor, broadcasts its initial value to all other processors. A solution to the Byzantine
agreement problem should meet the following two objectives:

Agreement. All nonfaulty processors agree on the same value.

Validity. If the source processor is nonfaulty, then the common agreed upon value
by all nonfaulty processors should be the initial value of the source.

TABLE 8.1
The three agreement problems

Problem-+ Byzantine
Agreement

.Consensus Interactive
Consistency

Who initiates One processor All processors All processors
the value
Final agreement Single value Single value A vector of values

L

,I

I

{'

182 ADVANCED CONCEPTS IN OPERATING SYSTEMS

Two points should be noted: (1) If the source processor is faulty, then all non­
faulty processors can agree on any common value. (2) It is irrelevant what value faulty
processors agree on or whether they agree on a value at all.

8.3.2 The Consensus Problem

In the consensus problem, every processor broadcasts its initial value to all other proces­
sors. Initial values of the processors may be different. A protocol for reaching consensus
should meet the following conditions:

Agreement All nonfaulty processors agree on the same single value.
Validity If the initial value of every nonfaulty processor is v, then the agreed

upon common value by all nonfaulty processors must be v.

Note that if the initial values of nonfaulty processors are different, then all non­
faulty processors can agree on any common value. Again, we don't care what value
faulty processors agree on.

8.3.3 The Interactive Consistency Problem

In the interactive consistency problem, every processor broadcasts its initial value to
all other processors. The initial values of the processors may be different. A protocol
for the interactive consistency problem should meet the following conditions:

Agreement. All nonfaulty processors agree on the same vector, (vb v2, ... , vn).

Validity. If the ith processor is nonfaulty and its initial value is vi, then the ith
value to be agreed on by all nonfaulty processors must be Vi·

Note that if the jth processor is faulty, then all nonfaulty processors can agree on
any common value for Vj. It is irrelevant what value faulty processors agree on.

8.3.4 Relations Among the Agreement Problems

All three agreement problems are closely related [7]. For example, the Byzantine agree­
ment problem is a special case of the interactive consistency problem, in which the
initial value of only one processor is of interest. Conversely, if each of then processors
runs a copy of the Byzantine agreement protocol, the interactive consistency problem
is solved. Likewise, the consensus problem can be solved using the solution of the
interactive consistency problem. This is because all nonfaulty processors can compute
the value that is to be agreed upon by taking the majority value of the common vector
that is computed by an interactive consistency protocol, or by choosing a default value
if a majority does not exist.

Thus, solutions to the interactive consistency and consensus problems can be
derived from the solutions to the Byzantine agreement problem. In other words, the
Byzantine agreement problem is primitive to the other two agreement problems. For
this reason, we will focus solely on the Byzantine agreement problem for the rest of
the chapter.

AGREEMENT PROTOCOLS 183

However, it should by no means be concluded that the Byzantine agreement prob­
lem is weaker than the interactive consistency problem or that the interactive consistency
problem is weaker than the consensus problem. In fact, there is no linear ordering of this
sort among these agreement problems. For example, the Byzantine agreement problem
can be solved using a solution to the consensus problem in the following manner [7]:

I. The source processor sends its value to all other processors, including itself.
2. All the processors, including the source, run an algorithm for the consensus problem

using the values received in the first step as their initial values.

The above two steps solve the Byzantine agreement problem because (1) if the
source processor is nonfaulty, then all the processors will receive the same value in
the first step and all nonfaulty processors will agree on that value as a result of the
consensus algorithm in the second step, and (2) if the source processor is faulty, then
the other processors may not receive the same value in the first step; However, all
nonfaulty processors will agree on the same value in the second step as a result of the
consensus algorithm. Thus, the Byzantine agreement is reached in both cases. However,
the n - 1 extra messages are sent at the first step.

8.4 SOLUTIONS TO THE BYZANTINE AGREEMENT
PROBLEM

The Byzantine agreement problem was first defined and solved (under processor fail­
ures) by Lamport et al. [14, 16]. Recall that in this problem, an arbitrarily chosen
processor (called the source processor) broadcasts its initial value to all other pro­
cessors. A protocol for the Byzantine agreement should guarantee that all nonfaulty
processors agree on the same value and if the source processor is nonfaulty, then the
common agreed upon value by all nonfaulty processors should be the initial value of
the source. '

It is obvious that all the processors must exchange the values through messages to
reach a consensus. Processors send their values to other processors and relay received
values to other processors [16]. During the execution of the protocol, faulty processors
may confuse other processors by sending them conflicting values or by relaying to them
fictitious values.

The Byzantine agreement problem is also referred to as the Byzantine generals
problem ([4, 14]) because the problem resembles a situation where a team of generals
in an army is trying to reach agreement on an attack plan. The generals are located at
geographically distant positions and communicate only through messengers. Some of
the generals are traitors (equivalent to faulty processers) and try to prevent loyal generals
from reaching an agreement by deliberately transmitting erroneous information.

8.4.1 The Upper Bound on the Number of Faulty Processors

In order to reach an agreement on a common value, nonfaulty processors need to be
free from the influence of faulty processors. If faulty processors dominate in number,

,,
I

I
I

r:,

I

'I'

184 ADVANCED CONCEPTS IN OPERATING SYSTEMS

they can prevent nonfaulty processors from reaching a consensus. Thus, the number of
faulty pr~ssors should not exceed a certain limit if a consensus is to be reached.

Pease et al. [16] showed that in a fully connected network, it is impossible to
reach a consensus if the number of faulty processors, m, exceeds l(n -1)/3 J. Lamport
et al. [14] were the first to give a protocol to reach Byzantine agreement that requires
m + 1 rounds of message exchanges (m is the maximum number of faulty processors).
Fischer et al. [8] showed that. m + 1 is the lower bound on the number of rounds of
message exchanges to reach a Byzantine agreement in a fully connected network where
only processors can fail.

However, if authenticated messages are used, this bound is relaxed and a consensus
can be reached for any number of faulty processors.

8.4.2 An Impossibility Result

We now show that a Byzantine agreement cannot be reached among three processors,
where one processor is faulty [14]. For a rigorous treatment of this impossibility result
for a higher number of processors, readers are referred to [9] and [16].

Consider a system with three processors, po, PI, and P2· For simplicity, we assume
that there are only two values, 0 and 1, on which processors agree and processor p0

initiates the initial value. There are two possibilities: (1), p0 is not faulty or (2) p0 is
faulty.

Case 1: Po is not faulty. Assume p2 is faulty. Suppose that po broadcasts an initial
value of 1 to both PI and p2 • Processor p2 acts maliciously and communicates a value of
0 to processor PI· Thus, PI receives conflicting values from Po and P2· (This scenario is
shown in Fig. 8.1. A faulty processor is depicted by an oval and a nonfaulty processor
is denoted by a circle.) However, since Po is nonfaulty, processor PI must accept 1 as
the agreed upon value if condition 2 (of Sec. 8.3.1) is to be satisfied.

Case II: po is faulty. Suppose that processor po sends an initial value of 1 to p1 'and
0 to P2· Processor P2 will communicate the value 0 to p 1. (This scenario is shown in
Fig. 8.2). As far as· p1 is concerned, this case will look identical to Case I. So any
agreement protocol which works for three processors cannot distinguish between the
two cases and must force PI to accept 1 as the agreed upon value whenever p 1 is faced
with such situations (to satisfy condition 2). However, in Case II, this will work only
if P2 is also made to accept 1 as the agreed upon value.

Using a similar argument, we can show that if p2 receives an initial value of 0
from po, then it must take 0 as the agreed upon value, even if p1 communicates a value

FIGURE 8.1
Processor Po is Non-Faulty.

0

FIGURE 8.2
Processor Po is Faulty.

AGREEMENT PROTOCOLS 185

of 1. However, if this is followed in Case II, P1 will agree on a value of 1 and p2 will
agree on a value of 0, which will violate condition 1 (Sec. 8.3.1) of the solution.

Therefore, no solution exists for the Byzantine agreement problem for three pro­
cessors, which can work under single processor failure.

8.4.3 Lamport-Shostak-Pease Algorithm

Lamport et al.'s algorithm [14], referred to as the Oral Message algorithm OM(m), m
> 0, solves the Byzantine agreement problem for 3m+ 1 or more processors in the
presence of at most m faulty processors. Let n denote the total number of processors
(clearly, n ;::: 3m+ 1). The algorithm is recursively defined as follows:

Algorithm OM(O).

1. The source processor sends its value to every processor.
2. Each processor uses the value it receives from the source. (If it receives no value,

then it uses a default value of 0.)

Algorithm OM(m), m > 0.

1. The source processor sends its value to every processor.
2. For each i, let vi be the value processor i receives from the source. (If it receives

no value, then it uses a default value of 0.). Processor i acts as the new source and
initiates Algorithm OM(m-1) wherein it sends the value vi to each of the n- 2
other processors.

3. For each i and each j (# i), let Vj be the value processor i received from processor
j in Step 2. using Algorithm OM(m-1). (If it receives no value, then it uses a
default value of 0.). Processor i uses the value majority(v1, v2, ... , Vn-1).

This algorithm is evidently quite complex. The processors are successively divided
into smaller and smaller groups and the Byzantine agreement is recursively achieved
within each group of processors (Step 2 of "Algorithm OM(m-1)"). Step 3 is executed
during the folding phase of the recursion, where a majority function is applied to select
the majority value out of the values received in a round of message exchange (Step 2).
The function majority (v1, v2, ... , Vn-1) computes a majority value of the values VJ, v2,
... , Vn- 1 if it exists (otherwise, it returns the default value 0).

i
I

186 ADVANCED CONCEPTS IN OPERATING SYSTEMS

The execution of the algorithm OM(m) invokes n - 1 separate executions of
the algorithril OM(m-1), each of which invokes n - 2 executions of the algorithm
OM(m-2), and so on. Therefore, there are (n- 1)(n- 2)(n- 3) ... (n---' m +)'\tseparate
executions of the algorithm OM(k), k = n -1, n- 2, n- 3, ... , n- m + 1. The message
complexity of the algorithm is O(nm).

Example 8.1. Consider a system with four processors, po, Pr, p2, and p3. For sim­
plicity, we assume that there are only two values 0 and 1, furthermore, we assure that
processor p0 initiates the initial value and that processor p2 is faulty.

To initiate the agreement, processor p0 executes algorithm OM(1) wherein it
sends its value 1 to all other processors (Fig. 8.3). At Step 2 of the algorithm OM(l),
after having received the value 1 from the source processor p0, processors p1, p2, and
P3 execute the algorithm OM(O). These executions are shown in Fig. 8.4. Processors p 1

and P3 are nonfaulty and send value 1 to processors {p2, p3} and {pr, p2}, respectively.
Faulty processor P2 sends value 1 to pr and a value 0 to P3 (see Fig. 8.4).

After having received all the messages, processors p 1, p2, and p3 execute Step
3 of the algorithm OM(1) to decide on the majority value. Processor p1 has received
values (1, 1, 1), whose majority value is 1, processor P2 has received values (1, 1,
1), whose majority value is 1, and processor p3 has received values (1, 1, 0), whose
majority value is 1. Thus, both conditions of the Byzantine agreement are satisfied.

Example 8.2. Figure 8.5 shows a situation where processor p0 is faulty and sends
conflicting values to the other three processors. These three processors, under Step 1
of OM(O), send the received values to the other two processors.

After having received all the messages, processors p1, p2, and p3 execute Step 3
of the algorithm OM(l) to decide on the majority value. Note that all three processors
have received values (1, 0, 1), whose majority value is 1, Thus, all three nonfaulty
processors agree on the same value and the required conditions of the Byzantine
agreement are satisfied.

FIGURE 8.3
Processor Po executes the algorithm OM(l)

FIGURE 8.4
Processors Pl, P2, and P3 execute the algorithm OM(O)

AGREEMENT PROTOCOLS 187

FIGURE 8.5
Processors po, PI, p2, and P3 execute OM(l) and OM(O)

8.4.4 Dolev et al.'s Algorithm

Dolev et al. have given a polynomial algorithm for reaching Byzantine agreement [5].
The algorithm is polynomial in message complexity. However, the algorithm requires
up to 2m+ 3 rounds to reach an agreement (more than what is needed in the Lamport­
Shostak-Pease algorithm). Thus, there is a trade off between message complexity and
time delay (rounds).

DATA STRUCTURES. The algorithm uses two thresholds: LOW and HIGH, where
LOW:= m + 1 and HIGH:= 2m+ 1. The basic idea is that any subset of processors of
size LOW will have at least one nonfaulty processor. Therefore, we can prevent faulty
processors from introducing erroneous values by confirming an assertion from at least
LOW number of processors. Note that if an assertion is supported by LOW number
of processors, then it must be supported by at least one nonfaulty processor. Also, any
subset of processors of size HIGH includes a majority of processors, that is, m +),
that are nonfaulty. Therefore, an assertion must be confirmed by at least HIGH number
of processors before assuming an agreement on that assertion.

The algorithm uses two types of messages: a"*" message and a message consisting
of the name of a processor. The "*" denotes the fact that the sender of the message is
sending a value of 1 and the name in a message denotes the fact that the sender of the
message received a "*" from the named processor. (Note that every message contains
the name of its sender processor.)

A processor keeps a record of all the messages it has received. Let W:~ be the
set of processors that have sent message x to processor i. (Note that x is either a
"*"or a processor name.) Thus, each process maintains n + 1 number of W sets. We
refer to W~ as the set of witnesses to message x for processor i. A processor j is a
direct supporter for a processor k if j directly receives "*" from k. When a nonfaulty
processor j directly receives "*" from processor k, it sends message "k" to all other
processors. When processor i receives the message "k" from processor j, it adds j
into W~ because j is a witness to message "k". Process j is an indirect supporter for
processor kif IWil 2 LOW; That is, processor} has received message "k" from at
least LOW number of processors. A processor j confirms processor k if IWi I 2 HIGH;
That is, at least HIGH number of processors told processor j that they received the
value of a 1 from processor k. A process i maintains a set, Ci, of confirmed processors.

188 ADVANCED CONCEPTS IN OPERATING SYSTEMS

\
THE ALGORITHM. In the first round, the source processor sends a "*" message to
all processors (including itself) if its value is 1. If its value is 0, it sends nothing in
the first round. (The default value is 0.) If the processors finally agree on "*", then the
agreed upon value is 1. Otherwise, the agreed upon value is 0.

In subsequent rounds, a processor sends its messages to all other processors,
receives messages from other processors, and then decides what messages to send in
the next round. Recall that when a nonfaulty processor j receives a "*" message from
processor k, it sends message "k" to all other processors in the next round indicating that
it is a direct supporter of processor "k". Next, we introduce the initiation operation,
which is tantamount to sending a "*" message to all other processors. A processor
initiates under the following conditions:

• It initiates in the second round if it receives a "*" from the source in round 1.

• It initiates in the K + 1st round if at the end of Kth round the cardinality of the
set of the confirned processors (not including the source) is at least LOW+ max(O,
L K /2 J-2) (referred to as the condition of initiation).

The following four rules describe the operation of the Do lev et al.' s algorithm [5]:

1. In the first round, the source broadcasts its value to all other processors.

2. In a round k > 1, a processor broadcasts the names of all processes for which it is
either a direct or indirect supporter and which it has not previously broadcast. If the
condition of initiation was true at the end of the previous round, it also broadcasts
the "*" message unless it has previously done so.

3. If a processor confirms HIGH number of processors, it commits to a value of 1.

4. After round 2m+3, if the value 1 is committed, the processors agree on 1; otherwise,
they agree on 0.

DISCUSSION. The algorithm has two interesting features: initiation and committing.
A processor commits if it confirms HIGH number of processors; That is, each of these
HIGH confirmed processors has been witnessed to have sent a "*" by HIGH number of
processors. Since there are at least m + 1 nonfaulty processors in any HIGH number of
processors, a processor commits if it determines that at least m + 1 nonfaulty processors
have witnessed that at least m+ i nonfaulty confirmed processors sent a"*"· This means
m + 1 nonfaulty processors have indeed initiated (i.e., have broadcast a "*").

The initiation is a very interesting concept as it causes a chain reaction of the
initiation operation to make nonfaulty processors eventually dominate the faulty pro­
cessors. A processor initiates in the second round if it receives a "*" from the source
in the first round. A processor can initiate after the first round, only if it has confirmed
sufficiently many processors. This number is LOW for the first four rounds and after
that it increases by one for every two rounds. The algorithm and the condition for initi­
ation are so designed that if LOW number of nonfaulty processors initiate, an avalanche
of initiation begins, causing all nonfaulty processors to initiate and commit.

~·'

r

AGREEMENT PROTOCOLS 1,89

Example 8.3. Consider a situation with 3m+ 1 processors out of which m processors
are faulty. Suppose the source is nonfaulty and broadcasts a "*" in the first round,
In the second round, 2m nonfaulty processors will initiate (i.e., broadcast "*"). In
the third round, 2m + 1 nonfaulty processors (including the source) will broadcast
messages containing the name of the processors (direct supporter messages) informing
that they have witnessed a "*" from 2m other nonfaulty processors. Thus, in the fourth
round, the witness set of all 2m + 1 nonfaulty processors will contain all 2m + 1
nonfaulty processors and they all will commit to a value of 1 in the fourth round.
Thus, if the source is nonfaulty, an agreement is reached in four rounds [5].

If the source is faulty, it may send a "*" to only a few processors. In this case, at
least all the nonfaulty processors which received a "*" in the first round will initiate in
the second round. Note that until LOW number of nonfaulty processors initiate, there
is no guarantee that the confirmed set at a processor will reach size LOW, triggering an
initiation at some other nonfaulty processor. Some faulty processors can always behave
like nonfaulty processors that receive "*" from the source and collaborate with nonfaulty
processors to help them trigger initiation at other nonfaulty processors. However, there
is no guarantee of this. On the other hand, if a faulty source sends a "*" to at least
LOW nllmber of nonfaulty processors in the first round, then an avalanche of initiation
at nonfaulty processors occurs, resulting in the commit of all nonfaulty processors.

EXTENSION TO CASE N > 3M + 1. So far, it has been assumed that out of n =
3m+ 1 processors, exactly m processors are faulty. Now we extend the result for the
case where n > 3m + 1; that is, the number of nonfaulty processors is more than the
lower bound.

When the number of processors n is greater than 3m+ 1, the application of
the above algorithm will exchange more messages than necessary. To reduce the total
number of messages exchanged to reach a consensus, 3m+ 1 processors are designated
as active processors (including the source) and the rest of the processors are called
passive processors. Th~passive processors do not send any messages and a processor
ignores a message about or from a passive processor. (Note that some faulty processors
can forge messages.)

All active processors follow the above described algorithm. They send "*" mes­
sages to all processors (active as well as passive), but send all other messages containing ·
names only to all other active processors. A passive processor agrees on 1 if it receives
a "*" from HIGH number of active processors; Otherwise, it agrees on 0. All the active
processors will reach the Byzantine agreement after 2m+ 3 rounds. It is shown in [5]
that both active and passive processors together reach the Byzantine agreement as a
result of the above algorithm.

8.5 APPLICATIONS OF AGREEMENT ALGORITHMS

Algorithms for agreement problems find applications in problems where processors
should reach an agreement regarding their values in the presence of malicious failures.
We next discuss two such applications, viz., clock synchronization in distributed systems
and atomic commit in distributed databases.

190 ADVANCED CONCEPTS IN OPERATING SYSTEMS

8.5.1 Fault-Tolerant Clock Synchronization

In distributed systems, it is often necessary that sites (or processes) maintain physical
clocks that are synchronized with one another. Since physical clocks have a drift prob­
lem, they must be periodically resynchronized. Such periodic synchronization becomes
extremely difficult if the Byzantine failures are allowed. This is because a faulty pro­
cess can report different clock values to different processes. The description of clock
synchronization in this section is based on the work of Lamport and Melliar-Smith [13].
We make the following assumptions regarding the system:

A1: All clocks are initially synchronized to approximately the same values.
A2: A nonfaulty process's clock runs at approximately the correct rate. (The

correct rate means one second of clock time per second of real time. No assumption is
made about a faulty clock.)

A3: A nonfaulty process can read the clock value of another nonfaulty process
with at most a small error E.

A clock synchronization algorithm should satisfy the following two conditions:

• At any time, the values of the clocks of all nonfaulty processes must be approxi­
mately equal. '

• There is a small bound on the amount by which the clock of a nonfaulty process is
changed during each resynchronization.

The latter condition implies that resynchronization does not cause a clock value
to jump arbitrarily far, thereby preventing the clock rate from being too far from the
real time.

We discuss two clock synchronization algorithms, namely, the interactive conver~
gence algorithm and the interactive consistency algorithm, which are fault-tolerant to.
the Byzantine failures. The former gets its name because it causes the nonfaulty clocks·
to converge and the latter gets its name because all nonfaulty processes obtain mutually
consistent views of all the clocks. Both the algorithms can tolerate up to m process
failures in a network of at least 3m + 1 processes.

The Interactive Convergence Algorithm

The interactive convergence algorithm assumes that the clocks are initially synchro­
nized and that they are resynchronized often enough so that two nonfaulty clocks never
differ by more than 8. The algorithm works as follows:

The Algorithm. Each process reads the value of all other processes' clocks and sets
its clock value to the average of these values. However, if a clock value differs from
its own clock value by more than 8, it replaces that value by its own clock value when
taking the average.

Clearly, the algorithm is conceptually very simple. It does not safeguard against the
problem of two-faced clocks wherein a faulty clock reports different values to different

,,

~.

AGREEMENT PROTOCOLS 191

processes. We next show that, nonetheless, the algorithm brings the clocks of nonfaulty
processes closer. Let two processes p and q, respectively, use Cpr and Cqr as the clock
values of a third process r when computing their averages. If r is nonfaulty, then Cpr

= Cqr· If r is faulty, then lcpr - Cqrl :::; 38 (because the difference in the clock values
of any two processes is bounded by 8). When p and q compute their averages for the n
clocks values, they both use identical values for the clocks of n-m nonfaulty processes
and the difference in the clock values of m faulty processes they use is bounded by 38.

Consequently, the averages computed by p and q differ by at most (3mjn)8. Since n
> 3m, clearly (3mjn)8 < 8. Thus, each resynchronization brings the clocks closer by
a factor of (3m/n). This implies that we can keep the clocks synchronized within any

"· desired degrtie by resynchronizing them often enough using the algorithm.
In the above discussion of this algorithm, two assumptions have been made:

• All processes execute the algorithm instantaneously at exactly the same time.
• The error in reading another process's clock is zero.

Since a process may not execute the. algorithm instantaneously, it may read other
processes' clocks at different time instants. This problem can be circumvented by hav­
ing a process compute the average of the difference in clock values (rather than using
absolute clock<values) and incrementing its clock by the average increment. (Clock
differences larger than 8 are replaced by 0.) However, this requires the following as­
sumption:

A3': A nonfaulty process can read the difference between the clock value of
another nonfaulty process and its own with at most a small error E.

If the clock-reading error is E, then the difference in the clock values read by a '
process can be as large as 8 +E. Therefore, only clock differences larger than 8 + E are
replaced by 0 while computing the average increment.

The Interactive Consistency Algorithm

The interactive consistency algorithm adds two improvements: first, it takes the median
of the clock values rather than the mean. The median provides a good estimate of the
clock value, as the number of bad clocks will be low. Second, it avoids the problem of
two-faced clocks (which report different values to different processes) by using a more
sophisticated technique to obtain clock values of the processes.

Two processes will compute approximately the same median if they obtain ap­
proximately the same set of clock values for other processes. Therefore, the following
conditions apply:

C1: Any two processes obtain approximately the same value for a process p's
clock (even if pis faulty).

Not only should all processes compute the same value, but their values should be
close to the clock values of nonfaulty processes. Therefore, the following condition:

192 ADVANCED CONCEPTS IN OPERATING SYSTEMS

C2: If q is a nonfaulty process, then every nonfaulty process obtains approximately
the correct value for process q' s clock.

Thus, if a majority of the processes are nonfaulty, the median of all the clock
values is either approximately equal to a good clock's value or it lies between the
values of two good clocks.

Note that conditions Cl and C2 are very similar to the Agreement and Validity
conditions of the interactive consistency problem of Sec. 8.3.3. Therefore, the interactive
consistency algorithm for clock synchronization works in the following manner: first,
all the processes execute an algorithm for the interactive consistency problem to collect

, the values of the clocks of other processes, which satisfy conditions Cl and C2. Second,
{{very process uses the median of the collected values to compute its new clock value.

·-'. The first step can be executed by having every process independently run an instance of
the oral message protocol, OM(m), for the Byzantine problem, where a process sends
a copy of its clock to every process as its initial value. When the algorithm OM(m)
has stopped at every process, every process has clock values for all other processes,
which satisfy conditions Cl and C2. At this point, every process computes the median
of these values and sets its clock to the median.

8.5.2 Atomic Commit in DDBS

In the problem of atomic commit, sites of a DDBS must agree whether to commit or
abort a transaction. In the first phase of the atomic commit, sites execute their part of a
distributed transaction and broadcast their decisions (commit or abort) to all other sites.
In the second phase, each site, based on what it received from other sites in the first
phase, decides whether to commit or abort its part of the distributed transaction.

Since every site receives ari identical response from all other sites, they will
reach the same decision. However, if some sites behave maliciously, they can send a
conflicting response to other sites, causing them to make conflicting decisions.

In these situations, we can use algorithms for the Byzantine agreement to insure
that all nonfaulty processors reach a common decision about a distributed transaction.
It works as follows: In the first phase, after a site has made a decision, it starts the '
Byzantine agreement. In the second phase, processors determine a common decision
based on the agreed vector of values.

8.6 SUMMARY

In distributed systems, it is often required that sites (or processors) reach a mutual
agreement. However, when Byzantine faults are permitted, solutions to the agreement
problem are nontrivial because faulty processors may behave maliciously, preventing
other processors from reaching a common agreement. In Byzantine failures, a faulty
processor may send spurious messages to other processors, may lie, may not respond
to received messages correctly, etc.

In this chapter, we studied agreement problems under a synchronous model of
computation, where processors run in a lock step manner. The agreement problem is

AGREEMENT PROTOCOLS 193

not solvable in an asynchronous system even for a single processor failure. In an asyn­
chronous computation, computation at processors does not proceed in lock steps. There
are two types of messages: authenticated vs. non-authenticated. In the authenticated
message system, a faulty processor cannot forge a message or change the contents of a
received message before it relays the message to other processors. In a non-authenticated
message system, a faulty processor can forge a message and claim to have received
it from another processor or change the contents of a received message before it re­
lays the message to other processors. This chapter discussed agreement problems for
non-authenticated messages under processor failures.

The agreement problems can be classified into three classes, namely, the Byzantine
agreement problem, the consensus problem, and the interactive consistency problem. In
the Byzantine agreement problem, a source processor initializes a value and all nonfaulty
processors must agree on that value (if the source is non-faulty). In the consensus
problem, every processor has its own initial value and all nonfaulty processors must
agree on a common single value. In the interactive consistency problem, every processor
has its own initial value and all non-faulty processors must agree on a set of common
values.

In all three problems, all nonfaulty processors must reach a common agreement.
In the Byzantine agreement and consensus problems, the agreement concerns a single
value. Whereas in the interactive consistency problem, the agreement concerns a set of
common values. In the Byzantine agreement problem, only one processor can initialize
the initial value. Whereas in the consensus and the interactive consistency problems,
every processor has its own initial value. The three agreement problems are related and
the Byzantine agreement problem is primitive to the other two agreement problems.

An algorithm for Byzantine agreement must guarantee that all nonfaulty proces­
sors agree on the same value and if the source processor is nonfaulty, the common
agreed upon value by all nonfaulty processors should be the initial value of the source.
Obviously, all the processors must exchange values through messages to reach a cgn­
sensus. Processors send their values to other processors and relay received values to
other processors. A major problem is that during the execution of the protocol, faulty
processors may confuse other processors by sending them conflicting values or may not
relay the correct value. '

In order to reach an agreement on a common value, nonfaulty processors should be
free from the influence of faulty processors. If faulty processors dominate in number,
they can prevent nonfaulty processors from reaching a consensus. Thus, the number
of faulty processors should not exceed a limit if a consensus is to be reached. It is
impossible to reach a consensus if the number of faulty processors, m, exceeds l(n-
1) /3 J. (If authenticated messages are used, this bound is less rigid and a consensus
can be reached for any number of faulty processors.) It has been shown that m + 1 is
the lower bound on the number of rounds of message exchanges to reach a Byzantine
agreement in a fully connected network where only processors can fail.

Lamport et al. [14] were the first to present an algorithm to solve the Byzantine
agreement problem for 3m + 1 or more processors in the presence of at most m
faulty processors. In the algorithm, processors are recursively divided into smaller and
smaller groups and the Byzantine agreement is recursively achieved within each group

,,I

194 REFERENCES

of processors. The message complexity of this algorithm is O(nm) and it requires m+ 1
rounds to reach the consensus. Do1ev et al. gave a polynomial algorithm for reaching
the Byzantine agreement [5]. Their algorithm is polynomial in message complexity, but
it requires up to 2m+ 3 rounds to reach an agreement (which is more than double
the rounds needed in the Lamport et al.'s algorithm). Thus, there is a tradeoff between
message complexity and time delay (rounds).

Algorithms for agreement problems find applications in problems where proces­
sors should reach an agreement in the presence of malicious failures. Example of these
applications include clock synchronization, atomic commit in DDBS, and fault toler­
ance.

8.7 FURTHER READING

Two surveys on the Byzantine agreement problem appear in papers by Fischer (7] and
Strong-Dolev [21]. For the extension of binary-value Byzantine agreement to multi value
agreement, readers should see a paper by Turpin and Coan [23]. Yan et al. [24, 25],
have extended the agreement protocols to Byzantine link failures. Chor and Coan [2]
and Rabin [17] discuss the problem of randomized Byzantine generals. Turek and
Shasha [22] present an up-to-date survey of the consensus problem.

The problem of fault-tolerant clock synchronization in distributed systems has
been widely studied.•Ramanathan and Shin [18] give a comprehensive survey of clock
synchronization techniques in distributed systems. Techniques for fault-tolerant clock
synchronization appear in papers by Cristian [3], Halpern et al. [12], Ramanathan et
al. [19], and Srikanth and Toueg [20]. Consensus-based fault-tolerant distributed sys­
tems have been studied by Babaoglu [1]. Application of the Byzantine agreement in
distributed transaction commit can be found in papers by Dolev and Strong [6]. and
Mohan et. al. [15].

PROBLEMS

8.1. Show that Byzantine agreement cannot always be reached among four processors if
two processors are faulty.

8.2. Show how a solution to the consensus problem can be used to solve the interactive
consistency problem.

8.3. Prove that in Dolev et al.'s algorithm for case n > 3m+ 1, if the active processors
agree on the value 1, then the passive processors will also agree on the value of 1.

REFERENCES

1. Babaoglu, 0., "On the Reliability of Consensus-Based Fault-Tolerant Distributed Computing
Systems," ACM Transactions on Computer Systems, Nov. 1987.

2. Chor, B., and B. Coan, "A Simple and Efficient Randomized Byzantine Agreement Algorithm,"
IEEE Transactions on Software Engineering, June 1985.

3. Cristian, F., "A Probabilistic Approach to Distributed Clock Synchronization," Proc. ofthe 9th
International Conf on Distributed Computing Systems, June 1989.

4. Dolev, D., "The Byzantine Generals Strike Again," Journal of Algorithms, Jan. 1982.

7r

I

r'f (
I·

i
. ,,.

I
.,,
l',j

li

I I

II
I'

,II:

:!

fl
j,l
i.

,'II

•(I

i:J

··' •I q.

il
:I

. I

1·1
,(I

,.

i'

:I
I

I I

5.

6.

7.

8.

9.

10.

REFERENCES 195

Dolev, D., M. Fischer, Rob Fowler, Nancy Lynch, and Ray Strong, "An Efficient Algorithm
for Byzantine Agreement without Authentication," Information and Control, 1982 .
Dolev, D., and R. Strong, "Distributed Commit with Bounded Waiting," Proc. of the 2nd IEEE
Symposium on Reliability in Distributed Software and Database Systems, July 1982.
Fischer, M. J., "The Consensus Problems in Unreliable Distributed Systems (a Brief Survey),"
Proc. ofthe 1983 Intl. FTC-Conference, Aug. 1983.
Fischer, M. J., and N. A. Lynch, "A Lower Bound on Time to Assure Interactive Consistency,"
Information Processing Letters, June 1982, pp. 183-186.
Fischer, M. J., N. A. Lynch, and M. Merritt, "Easy Impossibility Proofs for Distributed Con­
sensus Problems," Distributed Computing, Jan. 1986.
Fischer, M. J., N. A. Lynch, and M. S. Paterson, "Impossibility of Distributed Consensus with
One Faulty Process," Proc. of 2nd ACM Symposium on Principles of Database Systems, Mar.
1983.

11. Gray, J. N., "Notes on Database Operating Systems," Operating Systems: An Advanced Course,
Springer-Verlag, New York, 1978, pp. 393-481.

12. Halpern, J., B. Simons, and R. Strong, "An Efficient Fault-Tolerant Algorithm for Clock Syn­
chronization," Proc. of the 3rd ACM Symposium on Principles of Distributed Computing, 1984.

13. Lamport, and P. M. Melliar-Smith, "Synchronizing Clocks in the Presence of Faults,'' Journal
of the ACM, Jan. 1985.

14. Lamport, L., R. Shostak, and M. Pease, "The Byzantine Generals Problem," ACM Transactions
on Programming Languages and Systems, July 1982.

15. Mohan, C., R. Strong, and S. Finkelstein, "Method for Distributing Transaction Commit and
Recovery Using Byzantine Agreement within Clusters of Processors," Proc. of the 2nd ACM
Symposium on Distributed Computing, Aug. 1983.

16. <Pease, M., R. Shostak, and L. Lamport, "Reaching Agreement in the Presence of Faults,"
Journal of the ACM, Apr. 1980.

17. Rabin, M., "Randomized Byzantine Generals," Proc. of the 24th Symposium on Foundations of
Computer Science, 1983 .

18. Ramanathan, P., D .. Kandlur, and K. G. Shin, "Hardware-Assisted Software Clock Synchro­
nization for Homogeneous Distributed Systems," IEEE Transactions on Computers, Apr. 1990.

19. Ramanathan, P., and K. G. Shin, "Fault-Tolerant Clock Synchronization in Distributed Systems,"
IEEE Computer, Oct. 1990.

20. Srikant, T. K., and S. Toueg, "Optimal Clock Synchronization," Journal of the ACM, Jan. 1987.
21. Strong, R., and D. Dolev, "Byzantine Agreement," Proc. of the Spring Compean '83, Mar.

1983.

22. Turek, J., and D. Shasha, "The Many Faces of Consensus in Distributed 'Systems," IEEE
Computer, June 1992.

23. Turpin, R., and B. Coan, "Extending Binary Byzantine Agreement to Multivalued Byzantine
Agreement," Information Processing Letters, Feb. 1984.

24. Yan, K. Q, and Y. H. Chin, "An Optimal Solution for Consensus Problem in an Unreliable
Communication System," Proc. of the Intl. Conf. on Parallel Processing, Aug. 1988.

25. Yan, K. Q, Y. H. Chin, and S. C. Wang, "Optimal Agreement Protocol in Malicious Faulty
Processors and Faulty Links," to appear in IEEE Trans. on Data and Knowledge Engineering.

