
Probabilistic Data Assertions for Catching Silent
Errors in Parallel Programs

Anmol J. Bhattad
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907

Email: bhattad@purdue.edu

Tara Elizabeth Thomas
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907

Email:thoma579@purdue.edu

Abstract—With the advancement in technology and increase
in the amount of data to be analyzed, parallel programs have
become widespread. These programs are complex and any silent
error in the data could have a significant impact on the results.
Hence, it is important to determine the presence of such errors.
In this project, we identify a novel idea of using probabilistic
data assertions based on spatial and temporal locality of physical
variables for C-MPI based parallel programs. We use Neural
networks to learn the patterns and produce these assertions
which can be embedded in the source code. We have shown
the implementation of this technique on a parallel benchmark
program - LULESH. The results show that our technique
effectively detects silent errors.

I. INTRODUCTION

With the advancement in the areas of internet of things,
data storage and analytics, the amount of data generated to be
analyzed has increased exponentially. In this scenario, there
is a trend towards parallel processing so that huge amounts
of data can be processed simultaneously. While dealing with
such large amounts of data processed in parallel, even a
small error in data values can cause serious data integrity
issues because data flow is usually cascaded [1]. This results
in corruption of final output. Hence, it is crucial to ensure
reliability of parallel programs for accuracy, so that that
processor power and time are not spent in vain.

Obvious errors like crashes and system slowdowns in these
programs can be detected easily. There also currently exists
effective techniques to root cause these errors and to aid in
debugging them. However, a lot of data errors are such that
they dont make the system unstable. Hence, they dont lead
to a crash, hang or failure of any sanity test of the system
and might go undetected. These errors are silent data errors.
In fact, the complexity in hardware and software increases
the chances of silent data errors, and hence it is critical to
address these kinds of errors in parallel programs. Silent
errors usually remain undetected unless specifically analyzed
by an expert in the field. Studies [5] have shown that this
could lead to hefty losses and can even be catastrophic when
it comes to critical applications.

There are no effective techniques to predict these kinds
of errors. Traditional techniques include running a program
multiple times, and hence providing temporal redundancy to
ensure that transient errors are eliminated. Another technique
is running the program on multiple sets of machines assuming
that this would eliminate machine hardware specific errors,
if any. However, these techniques are not sufficient and it is
important to come up with more efficient techniques to detect
and notify the user about the possible silent data corruptions.

II. RELATED WORK

There has been significant work done on detecting crash
and slow downs in parallel programs. The work done by
Bronevetsky et al. [2] proposes a tool AutomaDeD which
addresses these issues by using semi-Markov models to
model control flow and timing behavior of applications. It
then identifies the task that first manifested a bug, using
clustering and then identifies the specific code region and
execution. [3] have developed Prodometer, a loop-aware,
progress-dependence analysis tool for parallel programs. It
creates states in Markov model by intercepting MPI calls.
These states represent code executed within and between
MPI calls to be used for debugging. Blockwatch [4] uses
similarity among tasks of a parallel program for runtime error
detection.

Deterministic assertions and invariants have been
traditionally used to ensure data integrity in serial programs.
Diakon [6] identifies and implements techniques for
dynamically inferring invariants. It obtains execution traces
by running an updated source code obtained by instrumenting
serial programs by source to source translation. It then uses
Inductive Logic Programming on the traces to get assertions.
Elkarablieh et. al. [7] repairs a data structure which violates
an assertion by performing a systematic search based on
symbolic execution to repair the structure. Heuristics are used
to minimize mutations and prune searches for better repairs.

To catch silent errors in ODEs and PDEs Benson et. al. [8]
uses values computed by a simple parallel solver and compare
them with the values from the main solver. Berrocal et. al.

[9] presents another technique to catch silent data corruptions
at application level by training the linear predictors to catch
anomalies during execution. The linear predictors are trained
during the run-time. The work by Sharma et. al. [10] models
silent data corruptions in the CPU operations and registers.
They targets stencil computations to train a regression models
for error detection. They suggest improvement in training
procedure to reduce the amount of training data.

III. APPROACH

Many parallel programs deal with variable values spread
out over a region or over time. It is a common practice in
such programs to use different cores to handle the values
of specific parameters of interest like, say temperature or
velocity at different locations [11] [12]. This is prevalent
because calculations and manipulations using these variables
could be done independently to calculate other parameters for
the spatial regions in parallel. These parallel processes, very
often follow synchronous communication, i.e, in each iteration
after having progressed to some stage, they communicate few
of these parameters using some protocol, like MPI.

A. Principle of locality

It is intuitive that in programs that deal with physical
quantities like pressure, position etc, there would be some
kind of gradient or pattern among these variables along spatial
co-ordinates. For example,if nearby nodes are computing
the temperature values of geographically nearby regions, the
range of values will be small. This is called spatial locality.
Also, if a program calculates values of physical quantities
over steps of time, then we expect the variation to be gradual.
For example, if nearby nodes are computing the temperature
values of a regions at consecutive time periods, the range of
values will be small. This is called temporal locality.

B. Procedure

In this project, we try to make use of this inherent spatial
and temporal locality of variables in parallel programs to
generate probabilistic data assertions, which can serve as
indicators of silent data errors by identifying anomalous
variable values. First, we instrument the relevant parallel
program to dump out the crucial variables which exibit the
principle of locality. We run the program with multiple valid
inputs to generate a large and wide variety of possible values
for these variables. Features are then generated out of this.
Negetive samples are obtained from this set by modelling
one bit error in the values. A big part of this feature set is
used to train and validate a neural network. The remaining
part of the feature set is to test the performance of the neural
network and decide the threshold. Assertions are generated
based on these thresholds and inserted in the code. Figure 1
gives the project overview.

Fig. 1. Overview of the project

C. Selection of Variables

Based on the structure and formulation of the problem
that the program solves, we identify few variables that
might exhibit the principle of locality. We also ensure that
these variables are either output variables or variables that
have a significant impact on the outputs. Hence, any data
corruptions in their values, will result in the deterioration
of the reliability of the program output. These variables are
dependent on the values of several other variables from the
present and/or previous iterations of the program. Thus, any
data corruptions in such variables will peturb the values of
our chosen variables. This indirectly identifies silent data
corruptions in other variables too.

The values taken by these chosen variables are dumped
during runtime. This is achieved by instrumenting the source
code. We ensure that we store both the spatial coordinates and
the iteration numbers while dumping these variable values.
This helps in generating features based on locality.

D. Feature Generation

For each variable calculated at each point in space, our
feature set comprises of the values of the same variable at
all the adjacent points. For instance, in a three-dimensional
space, each point (x, y, z) has 6 neighbours i.e, (x− 1, y, z),
(x + 1, y, z), (x, y − 1, z), (x, y + 1, z), (x, y, z − 1) and
(x, y, z + 1), as shown in figure 2. For a point which lies on
the boundary of the processor’s space, one or more of the
above mentioned adjacent point are present in a neighbouring
processor’s space and needs inter processor communication
to exchange such values and produce the complete feature set
for each of the chosen variables.

For exploiting temporal locality in the variable, at time step
t we take the value of the choosen variable in the previous
iteration or time-step t− 1 also as a feature.

Fig. 2. The neighbours of an element at a unit distance

Other possible features are any program parameters or user
inputs that influence the spatial or temporal distribution of the
variables. For example, if we have a parameter corresponding
to the time-step size, it is intutive to believe that a run
with a larger value of the time-step would result in greater
variation in the value of variables in consecutive iterations,
when compared to a run of the same program with a smaller
time-step value.

With the insights from the discussion above, we use the
dumped values to generate a feature set for each of the
chosen variables. We get one sample feature per variable, per
iteration, for every point in the space where the value of the
variable is calculated.

E. Neural Nets

We use neural networks to generate curve fitting models
for the chosen variables. When we are unaware of the model
of the system, neural networks provide a good approximation
of the relationships between the data and corresponding
features. Hence we use this algorithm for our project.

F. Error Model

Silent errors are typically caused by circuit noise generated
during low power operations in the circuit [14], or radiation
from chip packaging [15]. These errors can be modelled as
one or more bit errors. For evaluating our model, we consider
only single bit errors. The variables that we deal with in such
cases are floating points. While modelling single bit errors
we consider complementing only the exponent bits or the
higher order significand bits, as any change in one bit of the

lower order significand bits would not impact the value of
the variable much.

G. Assertions

Based on the neural network that we tested using positive
and neagative samples, we generate threshholds. We generate
assertions by threshholding the output of the neural nets.
These assertions are inserted in the source code at appropriate
places to catch silent errors. To compute the output of the
neural net for a new sample is not computtionally intensive
and can be easily accomodated during runtime.

IV. IMPLEMENTATION

Many of the physical sciences or engineering problems
involve solving ordinary differential equations or partial
differential equations in multiple variables. One such problem
is solving the hydrodynamics equations, which basically
describes how materials respond when subject to forces.
Since solving these equations is a complex problem involving
the same set of variables like pressure, internal energy,
velocity, volume etc, at different points using the same set
of equations, it is a good candidate for implementation as a
parallel program. We have selected a computer simulation
that solves such a problem to demonstrate our technique for
this project.

A. LULESH

LULESH MPI [13] is a C-MPI based benchmark code
that solves the Sedov Blast equations. It represents a typical
hydrocode that approximates the hydrodynamics equations by
partitioning the equations spatially. Even though LULESH is
specific about the problem it solves, it is a representative of
the numerical algorithms, the programming style and the data
transfers in typical C++/MPI codes.

It is based on an unstructured hexahedral mesh and splits
the variables spatially for volumetric elements based on the
mesh. A node on a mesh is a point where mesh lines interesct.
The whole region of interest is divided symmetrically into
multiple domains, totaling the number of processors used.
In the default implementation, each domain is subdivided
into p3 volumetric elements, where p is the problem size
specified by the user. The algorithm configures the mesh
structure, defines the boundaries and sets initial values to
the physical variables. It then evolves by integrating the
equations in time. Each domain is processed in parallel and
required variable values are communicated after each iteration.

We identified LULESH as a potential benchmark to
evaluate our idea for the project because it is representative
of codes for a wide variety of parallel applications, having
both the spatial and temporal locality. The LULESH
algorithm computes the forces at each node to calculate the

accelerations, and then integrates it to find the velocity and
position values at the node. The value of position at nodes
along x, y and z directions (variables called as domain.x,
domain.y and domain.z) and the volume of each volumetric
element (variable called as determ) were identified as
important outputs of the code and we chose these variables
to generate the assertions.

We then instrument the code by altering the source code
of LULESH to dump the above mentioned variables for
all processors. The LULESH-MPI default code was run for
problem sizes 3, 4, 5, 6 and 7 using 8 parallel processors to
dump the values of the chosen variables along with the nodal
coordinates and iteration numbers. Then we extract features
using the variable values at the nearby nodes and the variable
value at the same node during the previous time-step for all
the above runs, as discussed in section III-D.

We merge the data from the runs for different problem sizes
and randomly create disjoint training, validation and testing
data sets. We separate out 70% of the samples for training,
15% for validation and remaining 15% of the samples for
testing. We train a neural network with 2 layers in Matlab
with the training and validation data. To test the robustness
of the neural net, we generate negative samples to mimic
one bit errors in floating point. This is done by randomly
choosing one of the bits of the variables (data type double)
and complementing it. The size of the negative test samples
is same as the positive test samples. We run the positive
and negative test samples through the neural net to get the
predicted output, x′ of the variable. This is compared with
the actual value, x by calculating the relative error, e,
e = |x−x′|

x+ε ,
where ε is a very small number to ensure numerical stability.
The ROC curves are obtained by thresholding the error e at
different values.

Then we extract the neural net parameters of the trained
models to get the mathematical expressions for generating
probabilistic assertions. The threshold is decided based on
the ROC curves we obtained above.

V. RESULTS

We build the dataset for each of the above mentioned
variables over different problem sizes. There are 846248
samples for each of the variables in the global dataset. This
set is divided into training, validation and testing. Negetive
test data set is generated by inverting one random bit in each
sample of the testing data set. The variables considered are
of double-precision floating point data type. We peturb only
the most significant 8 bits of the significand and all the bits
of the exponent.

To study the performance of our scheme we evaluate the
performance of our models over the positive and negetive test

samples.As mentioned above, we calculate the relative error
e by comparing the actual values and the values predicted
by the neural net model. These errors are then thresholded
at different values and we find the true positive and false
positive rates and plot the ROC curves.

We use a two layer neural net curve fitting model, with
one hidden layer and one output layer. To study the impact
of the performance of our technique with different number
of neuron in the hidden layer, we ran experiments with 3, 5
and 10 neurons (nNeuron = 3, 5, 10). Figures 3 shows the
performance over the four variables, domain.x 3a, domain.y
3b, domain.z 3c and determ 3d. We see that the neural net
with 10 hidden neurons outperforms the ones with 5 and 3.
We observe that the difference between the true positive rates
with different nNeuron reduces with the increase in the
false positive rate.

Figure 4 shows the comparision of the ROCs for the
selected four variables, for nNeuron = 10. We see that
the true positive rate at 0.15 false positive rate is determ -
81.14%, domain.x- 96.82%, domain.y- 97.22%, domain.z-
95.69%. We see that the accuracy is higher for position
variables than the volume. This might be because of the
intricacies involved in calculation of determ.

VI. CONCLUSION

We suggest a novel scheme for generating assertions in
parallel programs to catch silent data errors. After identifying
and dumping the variables of interest over different runs of a
C++-MPI program, we use neural nets to build a model for
each variable. These models serve as assertions, for which,
the thresholds are decided by evaluating the prediction of
neural nets over positive and negative test samples.

VII. FUTURE WORK

The negative samples are generated and tested offline.
To better understand the impact of assertions in detecting
silent data errors, we could have a fault injector to malign
the parallel code during runtime to model one bit errors.
The performance and robustness of the assertions could
be better tested by injecting errors in other variables and
studying the impact. We will also evaluate our technique on
other benchmarks like CoMD [12]. We also look forward to
devise a scheme for automatic variable identification and code
instrumentation so that the complete process can be automated.

REFERENCES

[1] Fiala, David, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt
Ferreira, and Ron Brightwell. ”Detection and correction of silent data
corruption for large-scale high-performance computing.” In Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, p. 78. IEEE Computer Society Press,
2012.

(a) ROC for the variable domain.x (b) ROC for the variable domain.y

(c) ROC for the variable domain.z (d) ROC for the variable determ
Fig. 3. Performance of nueral nets for variables with varying number of nuerons in the hidden layer

Fig. 4. ROC of different variables with nNuerons=10

[2] Bronevetsky, Greg, Ignacio Laguna, Saurabh Bagchi, Bronis R. De
Supinski, Dong H. Ahn, and Martin Schulz. ”AutomaDeD: Automata-
based debugging for dissimilar parallel tasks.” In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on, pp.
231-240. IEEE, 2010.

[3] Mitra, Subrata, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin
Schulz, and Todd Gamblin. ”Accurate application progress analysis for
large-scale parallel debugging.” In ACM SIGPLAN Notices, vol. 49, no.
6, pp. 193-203. ACM, 2014.

[4] Wei, Jiesheng, and Karthik Pattabiraman. ”BLOCKWATCH: Leveraging
similarity in parallel programs for error detection.” In Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International
Conference on, pp. 1-12. IEEE, 2012.

[5] Constantinescu, Cristian, Ishwar Parulkar, Rick Harper, and Sarah Micha-
lak. ”Silent Data CorruptionMyth or reality?.” In Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pp. 108-109. IEEE, 2008.

[6] Ernst, Michael D., Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. ”The Daikon
system for dynamic detection of likely invariants.” Science of Computer
Programming 69, no. 1 (2007): 35-45.

[7] Elkarablieh, Bassem, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.
”Assertion-based repair of complex data structures.” In Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering, pp. 64-73. ACM, 2007.

[8] Benson, Austin R., Sven Schmit, and Robert Schreiber. ”Silent error
detection in numerical time-stepping schemes.” International Journal of
High Performance Computing Applications (2014): 1094342014532297.

[9] Berrocal, Eduardo, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan,
and Franck Cappello. ”Lightweight silent data corruption detection based
on runtime data analysis for hpc applications.” (2014).

[10] Sharma, Vishal Chandra, Ganesh Gopalakrishnan, and Greg Bronevet-
sky. ”Detecting Soft Errors in Stencil based Computations.” Geophysics
48, no. 11 (1983): 1514-1524.

[11] ”Hydrodynamics Challenge Problem”, Lawrence Livermore National
Laboratory, LLNL-TR-490254, Livermore, CA

[12] http://exmatex.github.io/CoMD/
[13] Karlin, Ian, Jeff Keasler, and Rob Neely. ”Lulesh 2.0 updates and

changes.” Livermore, CAAugust (2013).
[14] Borkar, Shekhar. ”Design challenges of technology scaling.” Micro,

IEEE 19, no. 4 (1999): 23-29.
[15] Sanda, Pia N., Jeffrey W. Kellington, Prabhakar Kudva, Ronald Kalla,

Ryan B. McBeth, Jerry Ackaret, Ryan Lockwood, John Schumann,
and Christopher R. Jones. ”Soft-error resilience of the IBM POWER6
processor.” IBM Journal of Research and Development 52, no. 3 (2008):
275-284.

