Data Assertions for Catching Silent Errors in

Parallel Programs

Ming Shi, YiChieh Ho

I. INTRODUCTION

Scientific applications often process large amounts of input data and generate output data. There may
be errors in the input data or errors in the algorithm that processes the input data. An example of the
former is that the disk system had an error and an example of the latter is that there is floating point
overflow or underflow. As a result of these kinds of errors, the program may fail in an obvious way,
such as, by crashing, hanging, or failing some sanity checks built into the program. Several people have
worked on detecting such control flow errors and working back to find what the root cause was [1]-[3].
However, the other kind of possibility is what worries scientists that is of the silent error. This means
that the program fails but there is not an obvious manifestation, i.e., a manifestation that is obvious to
the non-expert in that particular science domain. For example, the program may determine that there is a
match of the genetic material extracted from a scene of crime with that of the genetic material obtained
from a suspect, when in reality there is not.

1. Running the application multiple times on the same machine and hoping that the error was a
transient one and goes away.

2. Running the application in multiple copies on different machines and hoping that the same error
does not affect multiple machines, such as, a lack of memory happens on one machine affecting one
copy of the application, but not the others.

3. The most sophisticated technique is to use machine learning to put in data assertions. The idea
is that there will be some training runs, say with data set for which the correct answer is known, or

at a small scale when the applications output can be hand checked. Through these training runs, the

P
sStart

=3

Fig. 1: CoderSurfer Chart

algorithm will learn what are the correct ranges for data values of various variables and then embed
these as data assertions (such as, assert(num_gene_sequences < 10%)) in the program.

We utilize the commonly used code browser tool, that is CodeSurfer to help us find the critical
variables of the silent errors. CodeSurfer is a code browser that understands pointers, indirect function
calls, and whole-program effects. CodeSurfer is the most sophisticated code browser available for C/C++
or x86 machine code; it is the static analysis tool of choice for organizations that manually review
software for critical applications. While CodeSonar is an automated static analysis tool that finds bugs
and generates a report of defects in the code, CodeSurfer is a program-understanding tool that makes
manually analyzing code more efficient. Many program-understanding tools interpret code loosely. In
contrast, CodeSurfer does a precise analysis. Program constructs including preprocessor directives,
macros, and C++ templates (in the case of source code) and machine instructions (in the case of Intel x86
binaries) are analyzed correctly. CodeSurfer calculates a variety of representations that can be explored
through the graphical user interface or accessed through the optional programming API. CodeSurfer
Path Inspector is a CodeSurfer extension that helps you understand sequencing properties in programs.
The CodeSurfer Path Inspector is an optional extension for CodeSurfer that answers complex questions
about the flow of execution, to help you understand a program’s behavior. In an example of query
Construction and Evaluation, twenty-five query templates are provided. Each template is in the form of
a state machine. The user specifies the transitions of the state machine by associating a set of program
points with each transition. In the DNS example above, the query template used is called P occurs before

R and is illustrated below.

II. BACKGROUND

With the advancement in the areas of internet of things, data storage and analytics, the amount of data

generated to be analyzed has increased exponentially. In this scenario, there is a trend towards parallel

processing so that huge amounts of data can be processed simultaneously. While dealing with such large
amounts of data processed in parallel, even a small error in data values can cause serious data integrity
issues because data flow is usually cascaded [5]. This results in corruption of final output. Hence, it is
crucial to ensure reliability of parallel programs for accuracy, so that that processor power and time are
not spent in vain.

Obvious errors like crashes and system slowdowns in these programs can be detected easily. There also
currently exists effective techniques to root cause these errors and to aid in debugging them. However, a
lot of data errors are such that they don’t make the system unstable. Hence, they don’t lead to a crash,
hang or failure of any sanity test of the system and might go undetected. These errors are silent data
errors. In fact, the complexity in hardware and software increases the chances of silent data errors, and
hence it is critical to address these kinds of errors in parallel programs. Silent errors usually remain
undetected unless specifically analyzed by an expert in the field. Studies [6] have shown that this could
lead to hefty losses and can even be catastrophic when it comes to critical applications.

There are no effective techniques to predict these kinds of errors. Traditional techniques include
running a program multiple times, and hence providing temporal redundancy to ensure that transient
errors are eliminated. Another technique is running the program on multiple sets of machines assuming
that this would eliminate machine hardware specific errors, if any. However, these techniques are not
sufficient and it is important to come up with more efficient techniques to detect and notify the user
about the possible silent data corruptions.

There has been significant work done on detecting crash and slow downs in parallel programs. The
work done by Bronevetsky et al. [1] proposes a tool AutomaDeD which addresses these issues by using
semi-Markov models to model control flow and timing behavior of applications. It then identifies the task
that first manifested a bug, using clustering and then identifies the specific code region and execution.
[4] have developed Prodometer, a loop-aware, progress-dependence analysis tool for parallel programs.
It creates states in Markov model by intercepting MPI calls. These states represent code executed within
and between MPI calls to be used for debugging. Blockwatch [2] uses similarity among tasks of a
parallel program for runtime error detection.

In this project, we will work with an open source parallel program written in C-MPI. MPI programs

T
Different \

Inputs
N _,

{._1
M

~ , \

(\ Instmmented A \
| Program = _ Run }:[)I C{}"ﬂm |
G) FtcsL.Its)
) i B
F ™
Dumped ‘
. DataFile

H

il _ 3
‘ Data with ‘
Errors

'\ #

(\ ff 5\1
Kiﬂ Run }:D{ Wrong Results |
\ | \ |
b A S -

Fig. 2: Architecture of Our Solution Approach

H

run on multiple machines and sometime operate on massive data sets. The goal for this year will be to
develop a technique to identify what are the critical variables that need to be monitored and on which
assertions will be created. This will involve using static analysis and possibly dynamic analysis and
machine learning to identify which variables have the greatest impact on the end result of a program. As
a stretch goal, we will want to identify the original variable that was in error that caused the invariant
to be violated.

A project done in this class two years back created invariants that were learned through some training
runs using a Deep Neural Network. These invariants were then inserted into the program for detecting
the fail silent error. It leveraged the insight that the values of the same variable at nearby nodes are
likely to be similar, or the pattern may be easily discernible. For example, if nearby nodes are computing
the temperature values of geographically nearby regions, you would expect the range of values will be

small.

10
11
12
13
14
15

III. SOLUTION APPROACH

Our high-level idea of changing input error which influence the final result:

// Lulesh Workflow

class Domain:
double x , y, z ; // coordinates
double dx , dy , dz ; // velocities
double ddx , ddy , ddz ; //accelerations
double fx , fy , fz ; // forces

double mass ; // mass

int main() {

Domain domain ;

while (time constraint){

Calculation(domain) ;

CodeSurfer is used to identify and nevigate the deep structure of a program.

We have two feasible approaches. The first is Backward slicing up to the code line that we receive
the final result.

Forward Slicing has the Pros that it is efficient. Since it Directly calculates the number of times of
the chosen variable that really affects the final results. However it is not very accurate.

The second is to Combine the forward slicing with the backward slicing. Then we can evaluate the
criticality of the variables by measuring its position and the checking.

The second idea is much more elegant. We do Backward Slicing + Forward Slicing.

Pros: Check the exact meaning of the selecting variables after doing forward slicing from the code
line it is being use for the final result.

Cons: Complex (Not very efficient).

Node
Node | | | Compare
Data Netwark = eaicted
| Node Vale
Neighbors | X — TR
for Preliotei Va3
Node with
error
Fig. 3: Analysing Framework
Finding Candidates A subset of Critical variables
By CodeSurfer x1, X2, 3...x_n}
For each Candidate:
Result

X_I — |Error Insertion| — |Execution| —

]

Calculate the Expected A Final Origin Energy

(Energy)

Fig. 4: Updated Solution Approach

IV. DETAILED DESIGN
A. Error Model

We first flip one of all 64 bits of a double-precision floating-point. We assume,

1. an uniform probability of each bit flipping.

2. Only one error occurs in the entire program.

3. Uniform probability of each iteration an error occurs.

We define the critical variables as the variables with the largest expected difference between original

output and erroneous output.

B. Target Program

We use the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (Lulesh). Hydrody-
namics, which describes the motion of materials relative to each other when subject to forces. LULESH
approximates the hydrodynamics equations discretely by partitioning the spatial problem domain into a
collection of volumetric elements defined by a mesh.

We show the details about how we inject errors in Fig. 7.

C. Details about the exact solution framework

Idea I: Baseline - Brute-force:

We can test all possible conditions (each iteration and bit). This is very precise however very time-
consuming. For example, for 64 bits, 100 iterations, 40 variables, and 1 sec / execution, we need to run
for 64 % 100 * 40 * 1 = 256000sec = T1lhours. Moreover, in reality, there may be more iterations and
more possible variables.

Idea II: Sampling Brute-force:

For example, we inject error every 10 iterations, and only selecting 15 most significant bits. Similarly,
for the considering case where there exists 15 bits, 10 iterations, 10 variables, 1 sec / execution, we
need 15%x10x10x 1 = 1500seconds = 25minutes to get the results. It is neither accuracy nor efficient.

Idea III: Hierarchical Searching:

while (Timing Condition || Number of lterations){
Calculate{ structure Domain) ;

Timelncrement();

)

structure Domain {
double velocity ;

double accelerations ;

double energy ;

Fig. 5: Lulesh Structure

while (Timing Condition || Number of Iterations){
if(current_iteration == target _teration)
Error_injection (target_variable , target_bit) ;
Calculate(structure Domain) ;

Timelncrement();

Fig. 6: Lulesh Structure

Given a condition, testing all the variables. Then, select a few variables into the second testing with
the second error condition. First Round : Flipping the 63rd bit at the 10th iteration. Selecting 10 variables
with the largest expected error. Second Round: Flipping the 62nd bit at 10th iteration.

Hence, for all these ideas, number of times of a variable involving in a computation appears to follow
the rules that the more a faulty variable is used, the larger error will be. We consider all the number of

Addition or Subtraction and the number of multiplication or division.

V. IMPLEMENTATION

We implement Baseline - Brute-force, Sampling Brute-force, Hierarchical Searching, Backward slicing
and the combination of forward slicing with the backward slicing. Especially, for the combination of the
forward slicing and backward slicing using CodeSurfer, we first do the backward slicing from where we
get the final result to check where the critical variables influence the final results. Then we start from
the code line where the variables influence the final results to do the forward slicing. By doing these
browsing, we can get the number of times the variable influence the final result and then we can make
decisions based on the following two assumptions:

a. The number of times the critical variable influence the final result increase linearly with time.

b. The value of the output error accumulate with the times of the critical variable influence the final
result.

Then we change the time of how long the critical variables influence the final result. Then by borrowing
ideas from classical convex optimization, we know,

Subgradient: If f : U — R is a real-valued convex function defined on a convex open set in the
Euclidean space R", a vector in that space is called a subgradient at a point x¢ in U if for any x in U
one has f(x) — f(xg) > v* (z — x9).

Theorem 1: Fixing A, where A = x — xq, the error of output should scale as the subgradient v in

the dual space V.

Expected Diffrence

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

|
|
!I
|
H
H
H
1

H

il

I
| 't:
. | |

|
|
|
|
|
|
|

u

12345678 910111213141516171R192021 2223242526272829303132 3334 3536373839 4041424344

Fig. 7: Expected Difference for Higher Rate Case

VI. EXPERIMENTAL RESULTS
A. Experiment Setting

We only consider variables which are double-precision floating point data members in structure
Domain. Remove “nan” condition because it is detectable. Only choose 3 most critical variables. 100
iterations, 8 cores, and input size equal to 9. Ideal Output = 285687.

For higher sampling rate Brute-Force, we do every 10 iterations with 40 domain data members. We
flip every bit. The result is shown in Fig. 8.

The critical variables are domina.m,(Volume), domain.m.(Energy), domina.my(Pressure), and
the expected difference are 1.99985158371e+11, 1088473, 111210, respectively.

For Lower sampling rate - Brute-Force, we do every 20 iterations with 40 domain data members. We
flip first 12 bits. The result is shown in Fig. 9.

The critical variables are domina.m, (Volume), domain.m¢(Energy), domina.myolo(RelativeV olume),

and the expected difference are 1.74610282929¢+12, 7250256, 277532, respectively.

bpcted Diference

IRERERRERR SIS IBBNPHR LAY RN EEEBEHE LU

Fig. 8: Expected Difference for Lower Rate Case

For the Hierarchical Searching, we it as in the first round : the 64rd-60th bit, the 50th iteration, for
all variables. The result is shown in Fig. 10.

In the second round : the 59th-55nd bit, the 50th iteration, 10 variables. The result is shown in Fig.
11.

The critical variables are domina.m, (Volume), domain.m¢(Energy), domain.mgeltatime(Timing),
and the expected differences for the second round are 37455530, 539999000, 151,630, respectively.

Finally using CodeSurfer, we can compare any pair of critical variables to decide which one is the
real critical one, as shown in Fig.12. Here, we take the critical variables Domain.v and Domain.e as

an example.

VII. RELATED WORK

There has been significant work done on detecting crash and slow downs in parallel programs. The
work done by Bronevetsky et al. [1] proposes a tool AutomaDeD which addresses these issues by using

semi-Markov models to model control flow and timing behavior of applications. It then identifies the task

Expected Difference

600000
500000
400000
300000

200000

100000 ‘

12345678051011121314151617181920212223242526272829303132333435 3637 38 3940142 43

Fig. 9: Expected Difference for Hierarchical Searching in the first round

Expected Difference

600000
500000
400000
300000

200000
100000 I I
12
S U A A

Fig. 10: Expected Difference for Hierarchical Searching in the 2nd round

1 8 9 10

12

o
—

: . ,
: ;_DomainE
w30} |
0 DomamVI v,
t | e
0 20t i
- e i
: 0
BANL s |
=10 |
]
0

0 | |

>
| i]

4 6 B 10
Input Error Parameter

Fig. 11: Comparing critical variables

that first manifested a bug, using clustering and then identifies the specific code region and execution.
[4] have developed Prodometer, a loop-aware, progress-dependence analysis tool for parallel programs.
It creates states in Markov model by intercepting MPI calls. These states represent code executed within
and between MPI calls to be used for debugging. Blockwatch [2] uses similarity among tasks of a

parallel program for runtime error detection.

VIII. CONCLUSION AND FUTURE WORK

We proposed Brute-force, Sampling Brute-force, Hierarchical Searching, and the combination approach
that using backward slicing and forward slicing jointly. From the result we notice that we can get the
critical variables efficiently and with a certain accuracy.

We plan to use different ways to estimate the usage of a variable. Then the checking speed could be
even faster. Also, we can use different error models in the future, for example, errors could happen in
each computation rather than iteration. Moreover, The negative samples are generated and tested offline.

To better understand the impact of assertions in detecting silent data errors, we could have a fault injector

to malign the parallel code during runtime to model one bit errors. The performance and robustness of

the assertions could be better tested by injecting errors in other variables and studying the impact. We

will also evaluate our technique on other benchmarks like CoMD. We also look forward to devise a

scheme for automatic variable identification and code instrumentation so that the complete process can

be automated.

(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and M. Schulz, “Automaded: Automata-based
debugging for dissimilar parallel tasks,” in Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International
Conference on. 1EEE, 2010, pp. 231-240.

J. Wei and K. Pattabiraman, “Blockwatch: Leveraging similarity in parallel programs for error detection,” in Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on. 1EEE, 2012, pp. 1-12.

T. E. Thomas, A. J. Bhattad, S. Mitra, and S. Bagchi, “Sirius: Neural network based probabilistic assertions for detecting
silent data corruption in parallel programs,” in Reliable Distributed Systems (SRDS), 2016 IEEE 35th Symposium on. 1EEE,
2016, pp. 41-50.

S. Mitra, I. Laguna, D. H. Ahn, S. Bagchi, M. Schulz, and T. Gamblin, “Accurate application progress analysis for large-
scale parallel debugging,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM, 2014, pp. 193-203.

D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell, “Detection and correction of silent
data corruption for large-scale high-performance computing,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 1EEE Computer Society Press, 2012, p. 78.

C. Constantinescu, I. Parulkar, R. Harper, and S. Michalak, “Silent data corruptionmyth or reality?” in Dependable Systems

and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on. 1EEE, 2008, pp. 108-109.

