
1

ECE/CS 1

Topic 9: Validation

Saurabh Bagchi
ECE/CS

Purdue University

Fault-Tolerant Computer System Design
ECE 60872/CS 59000

ECE/CS 2

Outline

 Introduction
 Validation methods

 Design phase

– Fault simulation

 Prototype phase

– HW or SW implemented fault injection

 Operational phase

– Measurement and analysis of field systems

2

ECE/CS 3

Challenges

• Assessing the system dependability for
– different technologies

– different computers

– different network topologies

– different communication protocols

• Validating the networked system characteristics

– dependability: (i) user level, (ii) system level, and (iii) network
level

– availability validation: (i) detection and (ii) recovery

Experimental Analysis
Different Design Phases

Early Design Phase

Approach and Goals:

• CAD environments used to
evaluate design via
simulation

• Simulated fault injection
experiments

• Evaluate effectiveness of
fault-tolerant mechanisms

• Provide timely feedback
to system designers

Information produced

fault models, error latency,
error detection coverage,
recovery time distribution

Limitation:

Simulations need accurate
inputs and validation of
results

Prototype Phase

Approach and Goals:

• System run under
controlled workload
conditions

• Controlled fault injections
used to evaluate system
in presents of faults

Information produced

error latency, propagation
detection distributions,
availability

Limitation:

Injected faults should
create/induce failure
scenarios representative of
actual system operation

Operational Phase

Approach and Goal:

• Measurement-based
approach to study
naturally occurring errors

• Study systems in the
field, under real workloads

• Analyze collected error
and performance data

• Provide information on
actual failure characteristics

Information produced

actual failure characteristics,
failure rates, time to failure
distribution

Limitation:

Reported errors are
representative of the systems
studied

3

ECE/CS 5

Evaluation - Experimental Methods

 Design phase
– Fault simulation (simulated fault injection)

– Electrical, logic, or functional level

– Hierarchical simulation

 Issues: simulation time, level of simulation, fault conditions, accurate fault models

 Prototype phase
– Fault injection in prototype systems

– Hardware fault injection

– Software fault injection

– Radiation-based fault injection

 Issues: Fault models, joint HW /SW fault injection, injection into networked applications

 Operational phase
– Study of naturally occurring faults in real environments

– Essential for believable analysis of today’s complex systems

– What can we say about future systems based on measurements from current systems

 Issues: HW/SW instrumentation, analysis tools

ECE/CS 6

Key Issues in Fault Injection

 Effective fault injection mechanisms using hardware,
software, and hybrid technology to accurately assess
and validate networked systems

 Practical evaluation methods to accurately quantify fault
effect and recovery mechanisms in complex
environments

 Evaluation of error detection, diagnosis, and recovery
techniques

 Quantification of confidence in the fault-injection based
validation

 Usable fault tolerance benchmark for assessing systems
and networks

 Common evaluation/validation framework

4

ECE/CS 7

Metrics of Fault Injection

 Fault activation refers to the activation or access of injected
faults.
– For example, fault injected into a register is activated when that

register is read before the register is overwritten.

 Fault activation level refers to the ratio of the number of
activated faults (Fa) to the total number of injected faults (Fi).
Therefore, fault activation level = Fa/Fi

 Metrics for a fault tolerant technique
– Accuracy/Recall = (Number of activated faults that were dealt

with)/(Total number of activated faults)

– Precision = (Number of cases out of the denominator that were
actual activated faults)/(Number of cases that were dealt with by the
fault-tolerant technique)

ECE/CS 8

Design Phase: Simulation at Different Levels

 Electrical level
– transistor circuit chip

 Logic level
– circuit VLSI systems

 Function level
– VLSI system computer and network systems

Levels of Simulated Fault Injection
Fault Injection

Electrical level

Change current
Change voltage

Logic level

Stuck-at 0 or 1
Inverted fault

Function level

Change CPU registers
Network

Flip memory bit

Electrical
Circuits

Logic
Gates

Functional
UnitsPhysical

Process
Logic

Operation

5

ECE/CS 9

Questions to Ask In Simulated Fault Injection

 In simulation-based fault injection, the whole system behavior is
modeled and faults are injected to the simulated model of the
systems

 This technique is often applied in the design phases to allow
test and validation of error handling techniques before a
physical prototype is available

 Fault models
– Fault conditions, fault types, number of faults, fault times, fault locations

 Workload
– Real applications, benchmarks, synthetic programs

 Simulation time explosion
– Mix-mode simulation, importance sampling, concurrent simulation,

accelerated fault simulation, hierarchical simulation

ECE/CS 10

Simulated Fault Injection at Electrical Level

 Why is it needed?
– Study the impact of physical causes

– Simple stuck-at models do not represent many real types of
faults

Ionizing
particles hit

SiO2

n+ channel stop

n+
p+

n

p



 - is the angle of incidence

BVdd

GND

A
B

Fault model

AB

Transistor Level Simulation

Device Physics
Level Simulation

6

ECE/CS 11

Simulated Fault Injection at Logic Level

 Fault Mode
– Basic models

• stuck-at (permanent) - forcing logic value for entire simulation duration

• inverted fault (transient) - altering logic value momentarily

– Fault dictionary approach
• Use electrical level simulation to derive logic-level fault models

• dictionary entry - input vector, injection time, fault location

Logic Level
Fault Dictionary

Transistor Level Description of 4-bit Adder A B Cin
Input 0000 0000 0

S Cout
---- F 34%
---F F 39%
--F- F 7%
F-F- F 20%

:

Input 1111 1111 1
---- F 23%
---F - 1%
--FF F 9%
-F-- - 33%
-FFF - 33%
FFFFF 1%For all nodes, for all input combinations

A(3:0) B(3:0)

S(3:0)

Cin Cout

Current-Burst
Fault Model

ECE/CS 12

Simulated Fault Injection at Chip Level

 FOCUS & SPLICE!

– A chip-level simulation environment

– Acceleration: mix-mode simulation, importance sampling

Target system
description

Fault description type
of fault transient/

stuck-at location/time

Mixed-mode hierarchical
Fault simulation

Automatic fault injection
Fault tracing

facility

Trace

Graphical Analysis
Visual identifications
Error propagation
Manifestation

Impact analysis

Statistical analysis

Design feedback

FOCUS Experimental Environment

7

ECE/CS 13

Simulated Fault Injection at Function Level

 Diversity of Components
– Object-oriented approach

 Fault Models
– Various types - depending on the type of components

– Examples
• Single bit-flip for a memory or register fault

• Message corruption for communication channel fault

• Service interrupt for a node fault

– More detailed fault models derived from lower-level simulation

 Impact of Software
– Impact of faults is application dependent

– Software effect can be studied at this level

ECE/CS 14

Hierarchical Fault Simulation (Reference [1])
Example: LANai Processor of Myrinet Network Switch

Other
details:
DMA,

256K memory

Custom processor
(LANai)

Host Interface

LANai

Reg Reg

Ctrl

Reg

ALU

ADDER

Vdd

GND

A
B

Fault
model

AB

Software

Switch

Host 4
Intrf.

Host 2

Host 1 Host 3

Local
Network Myrinet Control Program

module jmodule i module j

System Level Simulation
Hardware

Chip Level Simulation

Logic Level
Simulation

Transistor Level
Simulation

Device Physics
Level Simulation

Alpha
particles hit

SiO2

n+ channel stop

n+p+

n

p

Electric Level
Simulation

8

ECE/CS 15

Prototype Phase: Software Implemented Fault
Injection

 Advantages: flexibility, low cost
 Disadvantages: perturbation to workload, low time

resolution
Targets for software fault injection
 Software faults and errors

– modify the text/data segment of the program
 Memory faults

– flip memory bits
 CPU faults

– modify CPU registers, cache, buffers
 Bus faults

– use traps before and after an instruction to change the code or data used
by the instruction and then restore them after the instruction is executed

 Network faults
– modify or delete transmitted messages
– introduce faults in network controllers, drivers, buffers

ECE/CS 16

Characteristics of SWIFI

9

ECE/CS 17

Characteristics of SWIFI (Continued)

R
u

n
ti

m
e

ECE/CS 18

Difficulties in using SWIFI Tools

 Often fault injection is needed to answer the following
questions
– Comparative studies – is my app more reliable on Android or

iOS?

– Dependability benchmarking – rank the various flavors of Linux
by their reliability

– System-level evaluation of large systems – comprising
heterogeneous components

– Special-purpose embedded systems – which have resource
constraints

 To answer these questions, the SWIFI tool needs to be
ported to different platforms

 Porting effort is high

10

ECE/CS 19

NFTAPE (Reference [3])

NFTAPE is a tool for conducting automated
fault/error injection-based dependability
characterization

 Tool, which enables a user: (1) to specify a fault/error injection
plan, (2) to carry on injection experiments, and (3) to collect the
experimental results for analysis.

 Facilitates automated execution of fault/error injection
experiments.

 Targets assessment of a broad set of dependability metrics, e.g.,
availability, reliability, coverage, mean time to failure.

 Operates in a distributed environment.

 Imposes minimal disturbance of target systems

ECE/CS 20

NFTAPE Approach to Fault/Error Injection

 Lightweight Fault/Error Injectors (LWFIs)
– Small (in terms of a code size) entities responsible for injecting faults/errors

– Rely on other processes for services such as fault triggering, data logging, etc.

– Example LWFIs: driver-based, target-specific

 API for implementing and invoking Triggers, LWFIs, and support
programs

– Less work to create components necessary for conducting fault/error injection
experiments

– Components conform to standard interface

– Components can be reconfigured using the standard interface (e.g., swap triggers)

 Reusability
– LWFIs and triggers collected in a library

– Same configuration, startup, and logging process for different fault/error injection
campaigns

– One learning curve

11

ECE/CS 21

NFTAPE Architecture

Campaign
Script

Log

Control
Host

Process
Manager

Injector
Process

Application
Process

Process
Manager

Injector
Process

Application
Process

LAN

Error Injection Targets

Control Host

ECE/CS 22

Control Host & Process Manager

 Control Host

 Processes a Campaign Script, a file that specifies a state machine or
control flow followed by the control host during the fault injection
campaign

 Simple yet general way to customize a fault injection experiment

 Experiments controlled by the Common Control Mechanism

 Implemented in Java to ensure portability

 Process Manager

 Daemon on each target node to manage processes on the target node(s)
including process execution and termination
 processes include: injectors, workloads, applications, monitors

 all processes are treated the same as an abstract process object rather than a process of
some specific type

 Facilitates communication between the Control Host and Target Nodes.

12

ECE/CS 23

Fault Injectors - examples

 Driver-based injector - uses dedicated device driver to inject memory,
registers, OS functions, I/O devices (e.g., Linux, Solaris)

 Ptrace-based injector (e.g., Linux, Lynx) - controlled injection to the
target process memory and registers;

 Proc file based injector (e.g., Solaris) – controlled injection to the
memory image of a process

 Network injector - employs dedicated software for controlling network
hardware to inject faults into network cards/controllers;
can intercept and corrupt messages

 Use of performance monitors (built into the CPU) to trigger fault
injection

 Injection of delay faults/errors – controlled, temporary suspending of
interrupts

ECE/CS 24

State Machine of an Example Campaign Script

ST_init ST_start_fi_trig
ST_Trigger_ON

ST_run_app
Initialization
(variable, events),
Start a logfile

TRUE

ST_error2

ST_error1 TRUE

TRUE

Condition_1

ER_condition_1

ER_condition_2

Condition_2

Condition_3

Start Application
Activate Trigger

Inject errors
Deactivate the Trigger
after a specified time

Start the Fault
Injector &
Trigger processes

ST_finish

Terminate processes
Exit Control Host

13

ECE/CS 25

Hardware Fault Injector for
Inducing Network Faults
 A versatile device for supporting injection of random and specific

faults in a network environment.

 Design based on FPGA as the core structural component, which
allows the device to be programmed to:
– accept configuration commands generated either internally (i.e., by the

device itself) or by an external system

– provide other services e.g., data monitoring, statistics gathering, or
prototyping new designs

 Design enables precise synchronization of fault injection hardware
with target systems – Myrinet network and Fiber Channel - while
running at-speed of the network

 Fault injector inserted in the data path (i.e., in the network) to decode
the data patterns, modify the data if necessary (i.e., inject faults), and
then retransmit the data (i.e., send the corrupted/modified data to the
network).

ECE/CS 26

Capabilities of HW Fault Injection Techniques
Summary

Injection method Synchroni
zation with
the system
activity

Injection at the
system speed

Targeting
faults to
specific
locations

Guarantees
of fault
activation

Example tools
and
references

Pin-level at the signal
level;
not signal partitioning

Speculative Yes Yes Low speed Messaline [Arl89],

Hybrid (signal-
level & SWIFI)
[Kan95]

Pin-level by signal
interception; Signal
partition by inserting
the injection logic
into the path of the
signal

Full Yes
(if the delay induced
by the inserted logic
does not exceed that
allow by the system)

Yes Yes Messaline [Arl89],

Rifle[Mad94]

Heavy Ion Radiation Speculative Yes No No [Kar94]

Power supply
disturbances

Speculative Yes No No [Mir95]

Electromagnetic
interferences

Speculative Yes No No [Kar97]

Laser (LFI) Speculative Yes Yes No [Sam97]

Built-in logic Full No Yes Yes FIMBUL [Fol98]]

14

ECE/CS 27

Assembled Fault Injector

ECE/CS 28

Conclusion

 Fault injection is a means to effectively test and stress fault
tolerance mechanisms before they are deployed in the field
on an actual system

 Fault injection can be done through hardware or software

 Software-implemented fault injection (SWIFI) is the
dominant mode of system verification, especially for
complex software systems

 It is common to compare multiple systems (or versions of
the same system) using dependability attributes collected
from a fault injection campaign

15

ECE/CS 29

References

1. Stott, D. T., Ries, G., Hsueh, M. C., & Iyer, R. K. (1998). Dependability
analysis of a high-speed network using software-implemented fault
injection and simulated fault injection. Computers, IEEE Transactions
on, 47(1), 108-119.

2. Z. Kalbarczyk, R. K. Iyer, G.L. Ries, J.U. Patel, M.S. Lee, and Y. Xiao
“Hierarchical Simulation Approach to Accurate Fault Modeling for
System Dependability Evaluation”, IEEE Transactions on Software
Engineering, vol. 25, no.5, September/October 1999, pp.619-632.

3. Stott, D.T.; Floering, B.; Burke, D.; Kalbarczpk, Z.; Iyer, R.K.,
"NFTAPE: a framework for assessing dependability in distributed
systems with lightweight fault injectors," Computer Performance and
Dependability Symposium, 2000. IPDS 2000. Proceedings. IEEE
International , vol., no., pp.91-100, 2000

