Code complexity

Cyclomatic complexity

CFG

$R_{simplex}(t) = e^\frac{-\lambda t}{E}$

Total effort $= E$

$\lambda = \frac{KC}{E}$

Propportionality constant $K > 1$.
\[E_1 = 1 \quad E_2 = E_3 = 0.1 \]
\[G = 1 \quad C_2 = 0.8 \quad C_3 = 0.5 \]

\[R_{RB}(t) = ? \]

\[R_{V_1}(t) = e^{-\pi t} \quad R_{V_2}(t) = e^{-\beta_1 t} \quad R_{V_3}(t) = e^{-5 \varrho t} \]

\[R_{RB}(t) = 1 - (1 - R_{V_1}(t)) (1 - R_{V_2}(t)) (1 - R_{V_3}(t)) \]
\[R_{NVP}(t) \]
\[N = 3 \]

\[R_{v_1}(t) = R_{v_2}(t) = R_{v_3}(t) = A \]

\[E_1 > E_2 > E_3 = \frac{E}{3} \]

\[c_1 = c_2 = c_3 = C \]

\[A(t) = e^{-\frac{3Ct}{E}} \]

\[R_{NVP}(t) = 3R^2 - 2R^3 \]

\[R_{RB}(t) \]
\[N = 3 \]

Option 1: \[E_1 < E_2 < E_3 \]
\[c_1 > c_2 > c_3 \]

Option 2: \[E_1 > E_2 > E_3 \]
\[c_1 > c_2 > c_3 \]

Primary \[E_1 \]
Next \[E_2 \]
Prev \[E_3 \]

\[c_1 \]
\[c_2 \]
\[c_3 \]

\[E_1 > E_2 > E_3 \]
\[c_1 > c_2 > c_3 \]