The Devices:
MOS Transistors

References:
Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley
Prentice Hall
NMOS Transistor

CROSS-SECTION of NMOS Transistor

Gate Oxide

Source

Polysilicon

Drain

n+

n+

p-substrate

Field Oxide

(SiO₂)

p+ stopper

Bulk Contact

Prof. Kaushik Roy
@ Purdue Univ.
Cross-Section of CMOS Technology
At x, the gate to channel voltage equals $V_{GS} - V(x)$
Transistor in Linear Region

- Assume that the voltage exceeds \(V_T \) all along the channel
- Induced charge/area at point \(x \)
 \[Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T] \]
- Current
 \[I_D = -v_n(x).Q_i(x).W \]
 \[v_n(x) : \text{drift velocity} \quad v_n = -\mu_n E(x) = \mu_n \frac{dV}{dx} \]

\[\therefore I_ddx = \mu_n.C_{ox}.W(V_{GS} - V - V_T)dV \]

- Integrating over the length of the channel \(L \)
 \[I_D = K'_n \frac{W}{L}((V_{GS} - V_T).V_{DS} - \frac{V_{DS}^2}{2}) \]
 \[K'_n = \mu_n C_{ox} = \mu_n \frac{C_{ox}}{T_{ox}} \]
Transistor In Saturation

V_{GS} \quad G \quad V_{DS} > V_{GS} - V_{T}

S \quad n+ \quad V_{GS} - V_{T} \quad + \quad n+
Transistor in Saturation

- If drain-source voltage increases, the assumption that the channel voltage is larger than V_T all along the channel ceases to hold.

- When $V_{GS} - V(x) < V_T$ pinch-off occurs

- Pinch-off condition

$$V_{GS} - V_{DS} \leq V_T$$
Saturation Current

• The voltage difference over the induced channel (from pinch-off to the source) remains fixed at $V_{GS} - V_T$ and hence, the current remains constant.

• Replacing V_{DS} by $V_{GS} - V_T$ in equation for I_D yields

$$I_D = \frac{K'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

• Effective length of the conductive channel is modulated by applied V_{DS} - Channel Length Modulation
Current-Voltage Relations

Cut-off: \(V_{GS} \leq V_T, \ I_{DS} \approx 0 \)

Linear Region: \(V_{DS} < V_{GS} - V_T \)

\[
I_D = k'_n \frac{W}{L} \left((V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right)
\]

\[
k'_n = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}} \text{ Process Transconductance Parameter}
\]

Saturation Mode: \(V_{DS} \geq V_{GS} - V_T \)

\[
I_D = \frac{k'_n W}{2L} \left(V_{GS} - V_T \right)^2 \left(1 + \lambda V_{DS} \right)
\]

Channel Length Modulation

Prof. Kaushik Roy
@ Purdue Univ.
I-V Relations

Linear: $V_{DS} < V_{GS} - V_T$

(a) I_D as a function of V_{DS}

(b) $\sqrt{I_D}$ as a function of V_{GS} (for $V_{DS} = 5V$)

NMOS Enhancement Transistor: $W = 100 \mu m$, $L = 20 \mu m$
Threshold Voltage: Concept

\[V_T = V_{FB} + V_B + V_{ox} \]

\[V_B = 2\phi_F \]
Energy band diagram

E_{vac}

Vacuum Level

$q\phi_m = 4.1\ eV$

E_f

Metal (aluminum)

E_v

Silicon Dioxide

E_c

0.95 eV

8 - 9 eV

$q\chi = 4.05\ eV$

$q\phi_s = q\chi + E_g/2 + q\phi_B$

E_f

E_v

P-type silicon

E_c

$E_g = 1.12\ eV$

Prof. Kaushik Roy
@ Purdue Univ.
Here, $\phi_m = \phi_s$

Flat band condition

ϕ_s can be changed with doping

Bands will not be flat if $\phi_m \neq \phi_s$ -- apply a negative voltage ($\phi_m - \phi_s$) with respect to Si substrate
The electric field causes band bending
- Electric field at any point is the slope of E_c or E_v at that point
- The electrostatic potential (ψ) at any point is the net band bending at that point

Prof. Kaushik Roy
@ Purdue Univ.
MOS-cap: Depletion

Positive gate voltage

Surface potential (ψ_s) > 0

For a small positive gate bias:
- Bands bend downwards at the surface i.e. E_v moves away from E_f
- Majority carriers (holes) are depleted at the surface

Prof. Kaushik Roy
@ Purdue Univ.
Surface potential \((\psi_s) > 0\)

\[\psi_s \text{ (inv)} = 2 \cdot \psi_B = 2 \cdot \frac{k_B T}{q} \cdot \ln \left(\frac{N_a}{n_i} \right) \]

Where,
- \(N_a\) = Doping density in the bulk (cm\(^{-3}\))
- \(n_i\) = Intrinsic carrier concentration \(\sim 10^{10}\) (cm\(^{-3}\))

Inversion layer at the surface

Channel at the surface is inverted when \((\psi_s = 2\psi_B)\)
Threshold Adjustment by Ion Implantation

- Implant a relatively small, precisely controlled number of either boron or phosphorus ions into the near-surface region of semiconductor.
- Implantation of boron causes a positive shift in threshold voltage.
- Implantation of phosphorus causes a negative shift.
- Like placing additional “fixed” charges.

\[
\Delta V = - \frac{Q_I}{C_{ox}} \quad Q_I = \pm qN_I
\]

\((+) :\) donor \((-) :\) acceptor
Back Biasing or Body Effect

- V_{SB} is normally positive for n-channel devices, negative for p-channel devices.
- Always increases the magnitude of the ideal device threshold voltage.
- Inversion occurs at $\phi_S = (2\phi_F + V_{SB})$.
- Increases the charges stored in depletion region:

$$Q_B = \sqrt{2qN_A \varepsilon_{si} (2\phi_F + V_{SB})}$$
Threshold voltage

\[V_T = V_{FB} + V_B + V_{ox} \]

\[V_T = \left(\Phi_{ms} - \frac{Q_I}{C_{ox}} \right) - 2\Phi_F - \frac{Q_B}{C_{ox}} \]
Dynamic Behavior of MOS Transistor

Source of Cap. - Basic MOS structure
- channel charge
- depletion region of resource bias p-n junctions

Prof. Kaushik Roy
@ Purdue Univ.
The Gate Capacitance

(a) Top view

(b) Cross-section

\[C_{gate} = \frac{\varepsilon_{ox}}{t_{ox}} WL \]

Can be decomposed into a number of elements each with a different behavior

Source: Intel
Prof. Kaushik Roy
@ Purdue Univ.
Parasitic capacitance between gate and source (drain) called **Overlap Capacitance** (linear)

\[C_{gsO} = C_{gdO} = C_{ox} \cdot x_d \cdot W = C_o \cdot W \]

Channel Capacitance: \(C_{gs}, C_{gd}, \) and \(C_{gb} \)

Cut-Off: no channel, total capacitance = \(C_{ox} \cdot W_{L_{eff}} \) appears between gate and bulk

Triode Region: Inversion layer - acts as conductor \(\therefore C_{gb} = 0 \)

Symmetry dictates \(C_{gs} \approx C_{gd} \approx \frac{C_{ox} \cdot W_{L_{eff}}}{2} \)

Saturation: Pinch off, \(\therefore C_{gd} \approx 0, C_{gb} = 0 \)

\(C_{gs} \) averages \((2/3)C_{ox} \cdot W_{L_{eff}} \)
Reverse biased source-bulk and drain-bulk pn junctions
Diffusion Capacitance (Junction Capacitance)

- **Bottom plate**

\[C_{\text{bottom}} = C_j W L_s, \]

- **Side-wall junctions**

- formed by source \((N_D)\) and \(P^+\) channel stop \((N_{A^+})\)

- graded junction \((m=1/3)\)

\[C_{\text{sw}} = C'_{\text{jsw}} x_j (w + 2L_s) \]

\[= C_{\text{jsw}} (W + 2L_s) \]

\[C_{\text{jsw}} = C'_{\text{jsw}} x_j , \quad x_j = \text{junction depth} \]

- **\(C_{\text{diff}}\)**

\[C_{\text{diff}} = C_{\text{bottom}} + C_{\text{sw}} \]

\[= C_j * \text{Area} + C_{\text{jsw}} \times \text{Perimeter} \]

\[= C_j L_s W + C_{\text{jsw}} (2L_s + W) \]
Junction Capacitance

\[C_j = \frac{C_{j0}}{(1 - V_D / \phi_0)^m} \]
The Sub-Micron MOS Transistor

- Threshold Variations (Manufacturing tech., V_{SB})
- Parasitic Resistances
- Velocity Saturation and Mobility Degradation
- Subthreshold Conduction
- Latchup
Threshold Variations

- In derivation of V_T the following assumptions were made:
 - Charge beneath the gate originates from MOS field effects
 - Ignores depletion region at the source and drain junctions (reverse biased)
- A part of the region below the gate is already depleted (by source & drain fields), a smaller V_T suffices to cause strong inversion
- V_T decreases with L
- Similar effect can be obtained by increasing V_{DS} or V_{DB} as it increases drain-junction depletion region
Threshold Variations

• V_T can also drift over time (Hot-carrier effect)
 – Decreased device dimensions
 – Increase in electrical field
 – Increasing velocity of electrons, can leave Si surface and enter gate oxide
 – Electrons trapped in gate oxide change V_T (increases in NMOS, decreases in PMOS)

• For a electron to be hot, electric field of 10^4 V/cm is necessary
 – Condition easily met for sub-micron devices
Parasitic Resistances

\[R_S = \frac{L}{W} R_{\parallel} + R_C \]

Solutions: cover the diffusion regions with low-resistivity material such as titanium or tungsten, or make the transistor wider.
Velocity Saturation (1)

short channel devices

(a) Velocity saturation

\[\nu_{sat} = 10^7 \text{ cm/sec} \]

Constant mobility (slope = \(\mu \))

\[E_{sat} = 1.5 \]

(b) Mobility degradation

\[\mu_n \]

\[\mu_{n0} \]

\[700 \]

\[250 \]

\[E_t (V/\mu m) \]

Prof. Kaushik Roy

@ Purdue Univ.
Velocity Saturation (2)

\[I_{DSAT} = v_{SAT} C_{ox} W (V_{GS} - V_{DSAT} - V_T) \]

Linear Dependence on \(V_{GS} \)

independent on \(L \) \(\text{current drive cannot be improved by decreasing } L \)
Sub-threshold Conduction

\[I_D = K \cdot e^{(V_{gs}-V_t)q/nkT} (1 - e^{V_{ds}q/kT}) \]

SOI has better sub-threshold leakage

(Inverse) Rate of decrease of current: \(\left(\frac{d}{dV_{gs}} \ln(I_D) \right)^{-1} = \frac{KT}{q} \ln 10(1+\alpha) \)

60mV/decade At T= 300°C
Latch-up

(a) Origin of latch-up

(b) Equivalent circuit
Latch-up

- Parasitic circuit effect
- Shorting of V_{DD} and V_{SS} lines resulting in chip self-destruction or system failure with requirements to power down
- To understand latchup consider: Silicon Controlled Rectifiers (SCRs)

![Diagram of SCR with current labels](image-url)
Latch-up

If \(I_g \uparrow \Rightarrow I_{c2} \uparrow \)

\(I_{c2} \) is the base current \(I_{b1} \) of the p-n-p transistor

\[\therefore I_g \uparrow \Rightarrow I_{b1} \uparrow \Rightarrow I_{c1} \uparrow \Rightarrow I_{b2} \uparrow \]

(magnitude of current increases)

If the gain of the transistor are \(\beta_1 \) and \(\beta_2 \)

Then if \(\beta_1 \beta_2 \geq 1 \), the feedback action will turn device ON permanently and current will self destruct device.
Latch-up Triggering

- Parasitic n-p-n & pin-p has to be triggered and holding state to be maintained
- Can be triggered by transient currents
 - Voltages during power-up
 - Radiation pulses
 - Voltages or current beyond operating range

\[
I_{n\text{trigger}} \approx \frac{V_{\text{pnp-on}}}{\alpha_{\text{nnp}}R_{\text{well}}}
\]

\[\alpha_{\text{nnp}}: \text{Common base gain of n-p-n transistor}\]

Similarly, vertical triggering → due to the voltage drop across \(R_{\text{substrate}} \) as current is injected into the emitter
Latch-up Triggering

- Triggering occurs due to (mainly) I/O circuits where internal voltages meet external world and large currents can flow
 - When NMOS experiences undershoot by more than 0.7V, the drain is forward biased, which initiates latchup
 - When PMOS experiences overshoot by more than 0.7V, the drain is forward biased, which initiates latchup
Latch-up Prevention

Analysis of the circuit shows that for latchup to occur the following inequality has to be true

\[\beta_{n_p n} \beta_{p n p} > 1 + \frac{(\beta_{n_p n} + 1)(I_{Rsub} + I_{Rwell} \cdot \beta_{p n p})}{I_{DD} - I_{Rsub}} \]

where

\[I_{Rsub} = \frac{V_{benpn}}{R_{sub}} \]

\[I_{Rwell} = \frac{V_{bepnp}}{R_{well}} \]

\[I_{DD} = \text{total supply current} \]

The feedback current flowing into n-p-n base is collector current offset by \(I_{Rsub} \). To cause the feedback, this current must be greater than initial n-p-n base current, \(I_b \).
Prevention of latch-up

- Reduce the resistor values (substrate & well) and reduce the gain of parasitic transistors
- Latch-up resistant CMOS process
- Layout techniques
Spice Models

- Level 1: Long Channel Equations - Very Simple
- Level 2: Physical Model - Includes Velocity Saturation and Threshold Variations
- Level 3: Semi-Emperical - Based on curve fitting to measured devices
- Level 4 (BSIM): Emperical-Simple and Popular
Main MOS Spice Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Symbol</th>
<th>SPICE Name</th>
<th>Units</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPICE Model Index</td>
<td></td>
<td>LEVEL</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Zero-Bias Threshold Voltage</td>
<td>VT0</td>
<td>VT0</td>
<td>V</td>
<td>0</td>
</tr>
<tr>
<td>Process Transconductance</td>
<td>k'</td>
<td>KP</td>
<td>A/V2</td>
<td>2E-5</td>
</tr>
<tr>
<td>Body-Bias Parameter</td>
<td>g</td>
<td>GAMMA</td>
<td>V0.5</td>
<td>0</td>
</tr>
<tr>
<td>Channel Modulation</td>
<td>1</td>
<td>LAMBDA</td>
<td>1/V</td>
<td>0</td>
</tr>
<tr>
<td>Oxide Thickness</td>
<td>tox</td>
<td>TOX</td>
<td>m</td>
<td>1.0E-7</td>
</tr>
<tr>
<td>Lateral Diffusion</td>
<td>xd</td>
<td>LD</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>Metallurgical Junction Depth</td>
<td>xj</td>
<td>XJ</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>Surface Inversion Potential</td>
<td>2</td>
<td>jF</td>
<td></td>
<td>PHI</td>
</tr>
<tr>
<td>Substrate Doping</td>
<td>NA,ND</td>
<td>NSUB</td>
<td>cm-3</td>
<td>0</td>
</tr>
<tr>
<td>Surface State Density</td>
<td>Qss/q</td>
<td>NSS</td>
<td>cm-3</td>
<td>0</td>
</tr>
<tr>
<td>Fast Surface State Density</td>
<td>NFS</td>
<td></td>
<td>cm-3</td>
<td>0</td>
</tr>
<tr>
<td>Total Channel Charge Coefficient</td>
<td>NEFF</td>
<td></td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Type of Gate Material</td>
<td>TPG</td>
<td></td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Surface Mobility</td>
<td>m0</td>
<td>U0</td>
<td>cm^2/V-sec</td>
<td>600</td>
</tr>
<tr>
<td>Maximum Drift Velocity</td>
<td>umax</td>
<td>VMAX</td>
<td>m/s</td>
<td>0</td>
</tr>
<tr>
<td>Mobility Critical Field</td>
<td>xcrit</td>
<td>UCRIT</td>
<td>V/cm</td>
<td>1.0E4</td>
</tr>
<tr>
<td>Critical Field Exponent in Mobility Degradation</td>
<td>UEXP</td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Transverse Field Exponent (mobility)</td>
<td>UTRA</td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
SPICE Parameters for Parasitics

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Symbol</th>
<th>SPICE Name</th>
<th>Units</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source resistance</td>
<td>R_S</td>
<td>RS</td>
<td>Ω</td>
<td>0</td>
</tr>
<tr>
<td>Drain resistance</td>
<td>R_D</td>
<td>RD</td>
<td>Ω</td>
<td>0</td>
</tr>
<tr>
<td>Sheet resistance (Source/Drain)</td>
<td>R_o</td>
<td>RSH</td>
<td>Ω_o</td>
<td>0</td>
</tr>
<tr>
<td>Zero Bias Bulk Junction Cap</td>
<td>C_{j0}</td>
<td>CJ</td>
<td>F/m²</td>
<td>0</td>
</tr>
<tr>
<td>Bulk Junction Grading Coeff.</td>
<td>m</td>
<td>MJ</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Zero Bias Side Wall Junction Cap</td>
<td>C_{jsw0}</td>
<td>CJSW</td>
<td>F/m</td>
<td>0</td>
</tr>
<tr>
<td>Side Wall Grading Coeff.</td>
<td>m_{sw}</td>
<td>MJSW</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>Gate-Bulk Overlap Capacitance</td>
<td>C_{gbo}</td>
<td>CGBO</td>
<td>F/m</td>
<td>0</td>
</tr>
<tr>
<td>Gate-Source Overlap Capacitance</td>
<td>C_{gs0}</td>
<td>CGSO</td>
<td>F/m</td>
<td>0</td>
</tr>
<tr>
<td>Gate-Drain Overlap Capacitance</td>
<td>C_{gdo}</td>
<td>CGDO</td>
<td>F/m</td>
<td>0</td>
</tr>
<tr>
<td>Bulk Junction Leakage Current</td>
<td>I_S</td>
<td>IS</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>Bulk Junction Leakage Current Density</td>
<td>J_S</td>
<td>JS</td>
<td>A/m²</td>
<td>1E-8</td>
</tr>
<tr>
<td>Bulk Junction Potential</td>
<td>ϕ_0</td>
<td>PB</td>
<td>V</td>
<td>0.8</td>
</tr>
</tbody>
</table>
SPICE Transistor Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Symbol</th>
<th>SPICE Name</th>
<th>Units</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawn Length</td>
<td>L</td>
<td>L</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>Effective Width</td>
<td>W</td>
<td>W</td>
<td>m</td>
<td>-</td>
</tr>
<tr>
<td>Source Area</td>
<td>AREA</td>
<td>AS</td>
<td>m^2</td>
<td>0</td>
</tr>
<tr>
<td>Drain Area</td>
<td>AREA</td>
<td>AD</td>
<td>m^2</td>
<td>0</td>
</tr>
<tr>
<td>Source Perimeter</td>
<td>PERIM</td>
<td>PS</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>Drain Perimeter</td>
<td>PERIM</td>
<td>PD</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>Squares of Source Diffusion</td>
<td></td>
<td>NRS</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Squares of Drain Diffusion</td>
<td></td>
<td>NRD</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Technology Evolution

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length (μm)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.1</td>
</tr>
<tr>
<td>Gate oxide (nm)</td>
<td>12</td>
<td>7</td>
<td>6</td>
<td>4.5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>V_{DD} (V)</td>
<td>3.3</td>
<td>2.2</td>
<td>2.2</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>V_T (V)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>NMOS I_{Dsat} (mA/μm) (@ $V_{GS} = V_{DD}$)</td>
<td>0.35</td>
<td>0.27</td>
<td>0.31</td>
<td>0.21</td>
<td>0.29</td>
<td>0.33</td>
</tr>
<tr>
<td>PMOS I_{Dsat} (mA/μm) (@ $V_{GS} = V_{DD}$)</td>
<td>0.16</td>
<td>0.11</td>
<td>0.14</td>
<td>0.09</td>
<td>0.13</td>
<td>0.16</td>
</tr>
</tbody>
</table>