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Lecture Outline for Proof Techniques

• Exhaustive Proof

• Refuting by counter-example

• Direct proof

• Indirect proof by contraposition

• Proof by contradiction

• Fallacies in proofs

• Rules of thumb

• Section 2.1 of text
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Proofs — key concepts

Formal vs. informal proofs.

Inductive vs. Deductive reasoning.
• Claim: n2 – n + 41 is prime

n n2 – n + 41

1 41

2 43

3 47

4 53

5 61

Inductive reasoning might 
conclude claim is true

But: is there a counter-example?
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An Example Proof Technique

Exhaustive proof
• If an integer between 1 and 20 is divisible 

by 6, it is also divisible by 3.
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Proof Techniques – key concepts

Choosing to prove or to refute.
• Counterexamples refute a claim

• e.g. Prove or refute

• that every odd integer is prime.
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More techniques

Direct proof using the deduction method
• To prove PQ, start with the hypothesis P and 

prove conclusion Q.

• The product of two even integers is even

Indirect proof: proving the contrapositive
• The contrapositive of P  Q is Q  P
• P  Q  Q  P
• If n2 is odd, then n is odd

• So, instead prove:

• ???
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Proof by contradiction

• Prove that the square root of 2 is irrational.
• Any rational number can be represented as 

m/n, where m,n are integers with no common 
factor and n0.

• To prove by contradiction assume 2 is 
rational = m/n

• Then 2 = (m/n)2

• So, 2n2 = m2

• m2 is divisible by 2.
• Therefore, m is divisible by 2. (Fundamental 

theorem in arithmetic)
• Therefore, m2 is divisible by 4. 
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Proof by contradiction

• Prove that the square root of 2 is irrational.
• So, 2n2 = m2

• m2 is divisible by 4. 

• 2n2 = 4x

• n2 = 2x

• n2 is divisible by 2.

• Therefore, n is divisible by 2.

• Thus, m and n are both divisible by 2.

• Contradiction of the assumption that m and n 
cannot have a common factor.
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Contradiction vs. Contrapositive

• Proof by contradiction is more powerful 
than proving the contrapositive.
• In trying to prove P  Q, 

• Proving the contrapositive:
• Assume Q, try to prove P

• Proof by contradiction:
• Assume Q along with P, try to prove a 

contradiction.
• We have more premises (can only help)
• The goal of proving a contradiction may seem 

harder than proving P, but it is not:
• If we prove P, we’ll have a contradiction…
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Proof by Contradiction (Example)

• Prove that the product of two odd 
integers is an odd integer.
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Proving if and only if statements

• To prove P iff Q, you must prove both
directions separately.
• Prove P  Q and Q  P

• Note: these are separate, independent 
statements that must be proven.

• Q  P is called the converse of P  Q

• e.g. If it is raining out, the ground is wet.
If the ground is wet, it is raining out.

• Proving a group of formulas equivalent:
• Prove P1  P2  P3  …  Pn  P1
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Fallacies

• Affirming the conclusion
• Q together with P  Q does not imply P !

• e.g. If it is raining outside, the ground is wet.
The ground is wet.
Therefore, it is raining outside.  (not true!)

• Denying the hypothesis
• P together with P  Q does not imply Q !

• e.g. If it is raining outside, the ground is wet.
It is not raining outside.
Therefore, the ground is not wet.  (not true!)
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Another Fallacy

• Incorrect use of proof by contradiction 
• Assume PQ and without using Q are able 

to prove Q.

• Then we assert QQ is a contradiction.

• What we have effectively done is proven 
PQ.

• Example:

• “Prove by contradiction that if a number 
added to itself gives the number, then the 
number is 0.”
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Example

a) Draw conclusion(s) using rules of inference for 
the following statement.

“If I play hockey, then I am sore the next day.” 
“I use the whirlpool if I am sore.” “ I did not use 
the whirlpool.”

b) Construct an argument using the rules of 
inference to show that the hypothesis “Randy 
works hard”, “If Randy works hard, he is a dull 
boy”, “If Randy is a dull boy, then he will not get 
the job” imply the conclusion “Randy will not 
get the job”
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Examples (Cont)

Determine which of the following arguments are 
valid (give proper reasoning).

1. If n is a real number such that n>1,then n2 > 1. 
Suppose that n2 > 1 then n > 1.

2. The number log23 is irrational if it is not the ratio 
of two integers. Therefore, since log23 cannot 
be written in the form a/b where a and b are 
integers, it is irrational.

3. If n is a real number with n>3 then n2>9. 
Suppose n2 ≤ 9 then n ≤ 3.

4. If n is a real number with n > 2, then n2 > 4. 
Suppose that  n ≤ 2. Then n2 ≤ 4.
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Rules of Thumb

• When to use which proof technique

1. Exhaustive proof: 
• Can only be used for a finite number of 

cases. 

• Demonstrate PQ for all cases of P

2. Direct proof:
• The cleanest approach, use whenever 

possible

• Assume P, prove Q
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Rules of Thumb

• When to use which proof technique

3. Proof by contraposition:
• If Q proves powerful to reason with.

• Demonstrate PQ by demonstrating 
QP

4. Proof by contradiction:
• Use this when having P and Q in the 

premise set is helpful 

• Assume P and Q and show a 
contradiction


