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Outline: How to prove a program to be correct

• Precondition and postcondition

• Correctness of assignment statement

• Correctness of conditional statement

• Correctness of loop statement

• Loop invariant

• Example of Euclidean algorithm for GCD 
computation

• Text book Sections 1.6 and 2.3
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Proofs of Program Correctness

• Secs 1.6 and 2.3 in Gersting book 

• Program correctness?
• correct = meets specification
• is specification correct?

• Correctness can be checked by:
• testing
• proof

• Can testing guarantee correctness?



3

Example

• Consider the assignment statement
• x = y + 10

• What must be true after the assignment?

• Suppose we want to know x = 14 after
• What must be true before to ensure this?
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Preconditions and Postconditions

• Separate assertions can specify what must be 
true before and after a program fragment is run.

• A Hoare triple gives before and after conditions 
for a program fragment:

• written {Q} P {R}
• Q is the precondition
• P is the program fragment
• R is the postcondition

• Means “if Q is true and P is executed, then R 
will be true”
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Illustration of Hoare triple

Q(X)  precondition

Y = P(X) program

R(X, Y) postcondition

Means

("X) Q(X) ® R(X, Y)

("X) Q(X) ® R(X, P(X))

• For a program to calculate square root of 
positive integers ("x)(x>0 ® [P(x)]2=x) 
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Proving program correctness

• The program can be proved to be correct 
by successively proving preconditions 
and postconditions for each statement

{Q}
 s0
{R1}
 s1
{R2}
 s2
…
 sn-1
{R}
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Example revisited

{y=4} 
x=y+10 
{x=14}

more concisely, {y=4} x=y+10 {x=14}

There is no single correct Hoare triple for a 
given program fragment

• It depends on what your goal is.
• Often easiest to check correctness 

backwards from the goal (from the end back)
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Mechanical correctness checking

• We can make simple “proof rules” for 
checking correctness.

• One rule for each kind of program 
statement.

• For assignment, {Q} x=e {R} is correct if:
• Q is the same as R except that everywhere x 

occurs it is replaced by e.
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Example

• For assignment, {Q} x=e {R} is correct if:
• Q is the same as R except that everywhere 

x occurs it is replaced by e.

• {y=4} 
x=y+10 
{x=14} ??  doesn’t check

• {y+10=14} 
x=y+10 
{x=14} does check

10

Arithmetic Simplification

• We can put arithmetically equivalent 
assertions in sequence with no lines of 
code in between:

• {y=4}
{y+10=14}
x=y+10 
{x=14}

arithmetic simplification verifies the 
second from the first, so sequence is 
OK.
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Example: Assignment Rule

{x = 2}

 y = x+2;

 y = 2*y;

{y = 8}

Prove that the following 
computes x(x-1) 
correctly.

  y = x-1;

 y = x*y;
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Correctness of Conditional Statements

• if x<0 then y=–x else y=x

• Suppose we want to know y>0 
afterwards?

• { ?? }
 if x<0 then y=–x else y=x
{y>0}
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Correctness of Conditional Statements

• {Q} “if B then P1 else P2” {R} holds when
• {Q and B}    P1  {R}      and
• {Q and ¬B} P2  {R} both hold

• { ?? }
 if x<0 then y=–x else y=x
{y>0}

• {?? Ù x<0 }   {?? Ù x³0} 
y=–x    y=x 
{y>0}        {y>0}

{–x>0} = {x<0}, so 
?? can be empty

{x>0} = {x¹0 Ù x³0}, so 
?? is x ¹0

?? is x ¹0
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Example: Conditional Rule

Verify the correctness of the following 
program.

{x = 7}
 if (x £ 0) y = x;
 else y = 2*x;
{y = 14}
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Example: Assignment & Conditional Rule

Verify the correctness of the following 
program.

{x = 11}
 y = x-1;
{y = 10}
 if (y £ 0) z = y-1;
 else z = y+3;
{z = 13}
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Correctness of Looping Programs

• while B do
     S;
end while

• Repeatedly perform statement S until B is 
false.

• How can we analyze this?
• {Q}{R} ??
• {Q}S{R}
• {Q}S;S{R}
• {Q}S;S;S{R}
• …???
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Loop Invariants

• while B do
     S;
end while

• A loop invariant is an assertion that will be true 
before each execution of S.

• The execution of S is preserving the invariant.
• Show {Q Ù B} S {Q}, where Q is the loop invariant

• The invariant together with ¬B should imply 
the conclusion you want verified on exit from 
the loop.
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Loop Invariants Example

• // Summing up 0 + 1 + … + n–1
while i ¹ n do 
     j = j + i;
     i = i + 1;
end while

• Invariant: j = sum of 0 … i–1

• At termination, we have
   (j = sum of 0 … i–1) and i = n
So, j = sum of 0 …n–1, as desired.

• Precondition?
• j = sum of 0 … i–1…loop invariant must hold on entry.
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Loop Invariants Example, continued

• // Summing up 0 + 1 + … + n–1

{j = sum of 0 … i–1}
while i ¹ n do 
     j = j + i;
     i = i + 1;
end while
{(j = sum of 0 … i–1) Ù i = n}

• To prove this is correct, we must still show
• {(j = sum of 0 … i–1) Ù i ¹ n}

 j = j + i;
 i = i + 1;
{j = sum of 0 … i–1}
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Proof by induction 

Sum(n) // Calculate \sum(0…n-1)
i=1; j=0;
while (i¹n) do
 j = j+i;
 i = i+1;
end while
// j contains desired sum
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Loop Correctness Rule

• If we have {Q Ù B} S {Q}

• We can derive
   {Q} 
   while B do S 
   {Q Ù ¬B}

• Note: termination has not been proven.
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Example — Euclidean Algorithm for GCD
GCD(non negative integer a, b)

// a ³ b, not both a and b are zero

 i=a

 j=b

while j¹0 do

 r = i mod j 
 i=j
 j=r

end while

{i = gcd(a,b)}
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Example — Euclidean Algorithm for GCD
Find GCD(2420, 70)
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Theorem Underlying Algorithm

• Theorem: GCD(i,j) = GCD(j, i mod j)

• Proof:  See book page 114-115
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Proof of Euclidean Algorithm

Loop invariant Q: gcd(i, j) = gcd(a, b)
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Example: Loop Rule

• Function to return the value x – y for x, y ³ 0
Difference(non-negative integers x, y)
i=0; j=x; 
while (i¹y) do
 j = j-1; 
 i = i+1;
end while
// j now has the value x-y
return j
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Example: Loop Rule (Cont)

Steps:

1. Propose a loop invariant (Q) such that the 
loop invariant upon termination gives what 
you want

2. Show loop invariant (Q0) holds upon first 
entry into loop

3. Prove loop invariant using induction (assume 
Qk, prove Qk+1)


