EE369: Discrete Math Propositional Logic

Outline

- Logic
- Propositional Logic
- Well formed formula
- Truth table
- Tautology & Contradiction
- Proof System for Propositional Logic
- Deduction method
- Formalizing English arguments
- Text book chapters 1.1 and 1.2

1

Logics

To define a *logic*, answer three questions:

- 1. What are the models?
- 2. What are the formulas?
- 3. Which formulas are true in which models?
- A logic is a formal system relating syntax (formulas) and semantics (models of the world).

3

A	В	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$	A'
T	Т	Т	Т	T	Т	F
T	F	F	T	F	F	
F	Т	F	Т	Т	F	Т
F	F	F	F	Т	Т	

DLE 1.5		
English Word	Logical Connective	Logical Expression
and; but; also; in addition; moreover	Conjunction	$A \wedge B$
or	Disjunction	$A \lor B$
If A, then B. A implies B. A, therefore B. B follows from A. A is a sufficient condition for B. B is a necessary condition for A.	Implication	$A \rightarrow B$
A if and only if <i>B</i> . A is necessary and sufficient for <i>B</i> .	Equivalence	$A \leftrightarrow B$
not A It is false that A It is not true that A	Negation	A'

Example proof	
 Hypotheses: C, Conclusion: A 	$B, B \to (C \to A)$
1. <i>B</i>	premise
2. $B \rightarrow (C \rightarrow A)$	premise
3. $C \rightarrow A$ 4. C	1, 2, mp premise
5. A	3, 4, <i>mp</i>
	28

Expression	Equivalent	Rule name	Abbr.
$P \lor Q$ $P \land Q$	$Q \lor P$ $Q \land P$	Commutative	comm
$(P \lor Q) \lor R$ $(P \land Q) \land R$	$egin{array}{c} P \lor (Q \lor R) \ P \land (Q \land R) \end{array}$	Associative	ass
$ egreen (P \lor Q) \ egreen (P \land Q)$	$\neg P \land \neg Q \\ \neg P \lor \neg Q$	De Morgan	dm
$P \rightarrow Q$	$\neg P \lor Q$	Implication	imp
¬(¬ <i>P</i>)	P	Double Neg.	dn
$P \leftrightarrow Q$	$(P \rightarrow Q) \land (Q \rightarrow P)$	Equivalence	equ
		'	ı

From	Can derive	Rule name	Abbr.
$P, P \rightarrow Q$	Q	Modus ponens	mp
$P \rightarrow Q, \neg Q$	$\neg P$	Modus tollens	mt
<i>P</i> , <i>Q</i>	$P \wedge Q$	Conjunction	con
$P \wedge Q$	<i>P</i> , <i>Q</i>	Simplification	sim
Ρ	$P \lor Q$	Addition	add

English Word	Logical Connective	Logical Expression
and; but; also; in addition; moreover	Conjunction	$A \wedge B$
or	Disjunction	$A \lor B$
If A, then B. A implies B. A, therefore B. A only if B. B follows from A. A is a sufficient condition for B. B is a necessary condition for A.	Implication	$A \rightarrow B$
A if and only if B. A is necessary and sufficient for B.	Equivalence	$A \leftrightarrow B$
not A It is false that A It is not true that A	Negation	Α'

Expression	Equivalent	Rule name	Abbr.
P∨Q P∧Q	$Q \lor P$ $Q \land P$	Commutative	comm
$P \lor Q) \lor R$ $P \land Q) \land R$	$egin{array}{c} P ee (Q ee R \) \ P \land (Q \land R \) \end{array}$	Associative	ass
$ egreen (P \lor Q) \ (P \land Q)$	$\neg P \land \neg Q \\ \neg P \lor \neg Q$	De Morgan	dm
$P \rightarrow Q$	$\neg P \lor Q$	Implication	imp
¬(¬ <i>P</i>)	P	Double Neg.	dn
°⇔Q	$(P \rightarrow Q) \land (Q \rightarrow P)$	Equivalence	equ
		I	I

$$(A \to B) \land [B \to (C \to D)] \land [A \to (B \to C)] \to (A \to D)$$

