Lecture Outline for Finite State Machines

- Main topics
 - Concept of finite state machine (FSM)
 - State table description
 - State graph description
 - Example: Binary Adder
 - Recognition of strings using FSM
 - Regular sets & Kleene's theorem
- Section 8.2 of text (only portions covered in class)

Concept of Finite State Machine

- Finite state machine (FSM) models a computer.
- It has the following characteristics
 - Synchronized by a discrete clock
 - Proceeds in a deterministic manner
 - Takes inputs from a given alphabet
 - Can generate outputs from a given alphabet
 - In one of a finite number of states
 - Next state is determined by current state and input

Definition of FSM

- $M = [S, I, O, f_S, f_O] \text{ is the FSM}$
- 1. S is a finite set of states, with a given start state s_0
- 2. I and O are input and output alphabet
- 3. $f_S: S \times I \rightarrow S$
- 4. $f_0: S \rightarrow O$

Example of FSM

• Represented using a state table

Example of FSM

Represented using state graph

• The two representations are equivalent and one can be converted to the other

Binary Adder

- Adder for summing up two binary integers
- Inputs given as tuples of two elements representing a particular digit
 - Sum(011, 101) is given as (11), (10), (01)
 - Start from the least significant bit
- States of the adder
 - s₀: Output 0, Carry 0
 - s₁: Output 0, Carry 1
 - s₂: Output 1, Carry 0
 - s₃: Output 1, Carry 1

Binary Adder

- 1. Input state: s₃; Input: (1 1)
- Output state: ?

- 2. Input state: s_3 ; Input: (1 0)
- Output state: ?

- 2. Input state: s_1 ; Input: (0 1)
- 3. Output state: ?

Binary Adder: State Diagram

- How many nodes?
- How many edges?

FIGURE 8.3

Binary Adder: Example

- Using the state diagram, compute the following
 - SUM(0110, 0011)
- Be very careful of order of bits

Recognizing Strings

- FSM can be used as recognizer
- FSM can output a 1 when the input string matches a certain description
- Example:
 - Even parity: Accept all strings which have an even number of 1's
 - If at t_i, there are an even number of 1's, output a 1 at t_{i+1}
 - Otherwise, output a 0

Recognizing Strings: Another Example

 Construct a FSM for the bitwise AND of two binary numbers

Formalizing recognition of strings

- There is one starting state
- There may be multiple final states where the FSM outputs a 1, i.e., accepts the string
- Consider a FSM $M=[S, I, O, f_S, f_O]$
- M is said to recognize $\sigma \subseteq \mathsf{I}^*$ if
 - Beginning in start state s_0 , M processes an input string α and ends in a final state if and only if $\alpha \! \in \! \sigma$

Regular Expression

- a*: 0 or more occurrences of a
- a+: 1 or more occurrences of a
- a?: 0 or 1 occurrence of a
- [a-c]: {a, b, c}
- [a-z, A-Z]: all alphabetical characters, lower or upper case
- λ: Empty string
- a . b: Concatenation of two strings a and b

What strings are recognized by the following FSMs?

Regular expressions

- You are given an input alphabet I
- A regular expression over *I* is one of the following
 - The symbols \varnothing and λ
 - The symbol i for any i∈I
 - If A and B are regular expressions, so are AB, $A \lor B$, A^*
- A regular set is a set represented by a regular expression if the following are true
 - Ø represents the empty set
 - λ represents the set { λ } with the empty string
 - *i* represents the set {*i*}
 - Define (AB), (A∨B), (A)*

Example of regular expressions

1. $0^* \vee 10$

2. $(0 \lor 1)^*$

3. $0 \vee 1^*$

4. Regular expressions for the FSM's introduced in Practice 40?

Equivalent regular expressions

- There may be multiple ways of representing the same regular expression
 - $(11)^* = \lambda \vee (11) +$
- No efficient algorithm that can decide if two regular expressions are equivalent has not been found

Kleene's Theorem

- 1. If a set is a regular set, then you can build a FSM to recognize strings in the set
- 2. For a given FSM, you can write the strings that it recognizes as a regular set
- Counter-example: $\{0^m 1^m | m \ge 0\}$

Construct an FSM that recognizes strings

- 1. The set of bit strings that start with two 0s.
- 2. The set of bit strings that contain two consecutive 0s.
- 3. The set of bit strings that do not contain two consecutive 0s.
- 4. The bit strings {0*1}