Lecture Outline for Mathematical Structures

- Main topics
- Groups: Definition
- Semi-group \& Monoid: Definition
- Identification of different structures
- Polynomials
- Operations modulo n
- Results about groups
- Section 8.1 of text (only portions covered in class)

Properties on Binary Relations

- Consider a set S and a binary relation o on S
- The relation has to be closed under S
- The relation o can have various properties
- Associative: $x o(y o z)=(x o y) o z$

- Identity element: oi $=10 x=x \quad 2+0=0 \frac{1}{2}^{2}$
- Inverse element: $\operatorname{xox}^{-1}=\mathrm{x}^{-1} \mathrm{ox}=\mathrm{i}$

$$
2+(-2)=0
$$

Properties on Binary Relations

- Note

- Identity element is common to all elements in set S
- Inverse is specific to the element
- Identity and inverse must also lie in the same set
- Identity and inverse definitions use commutativity
- Example: [Z, +]

Definitions: Group, Semigroup, Monoid

- Each of these structures pertain to the set and the binary operation
- Group: Associative, Identity element, Inverse element
- Commutative Group: Add commutative property
- Monoid: All group properties except inverse element
- Semi-group: All group properties except inverse element and identity element

Identifications

- Say which of the following are what mathematical structure
- [Z, +]
- ${ }^{\left[R^{+}, \text {* }\right.}$
- $\left[\mathrm{R},{ }^{*}\right]$
- Consider 2×2 matrices on $\mathrm{Z}\left(\mathrm{M}_{2}(\mathrm{Z})\right)$
- What is the identity element for $\left[\mathrm{M}_{2}(\mathrm{Z}),{ }^{*}\right]$?
- What mathematical structure is
$\left[\mathrm{M}_{2}(\mathrm{Z}),{ }^{*}\right]$?

More Identifications

- Given that the following are semi-groups. What additional property can you tell?
- [$\mathrm{N},+$]
- [$\mathrm{N},{ }^{*}$]
- $\left[\mathrm{R}^{+},+\right]$
- [Q, *]
- [R, +]

Polynomials

- Consider polynomial in x with real number coefficients

$$
\begin{gathered}
a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+\ldots+a_{n} x^{n}, \text { where } a_{n} \neq 0, \\
a_{i} \in R
\end{gathered}
$$

- The set of polynomials is called $R[x]$
- Note:
- $[R[x],+]$ is a ?
- $\left[R[x],{ }^{*}\right]$ is a ?

Operations modulo n

- Consider addition modulo 5

$$
\begin{aligned}
& x+{ }_{5} y=(x+y) \bmod 5 \\
& 3+{ }_{5} 4=2
\end{aligned}
$$

- Consider multiplication modulo 5
$x^{*}{ }_{5} y=(x * y) \bmod 5$
$3{ }_{5}{ }_{5} 4=2$
- Consider set $Z_{5}=\{0,1,2,3,4\}$
- What structures are the following
- $\left[Z_{5},{ }_{5}\right]$
- $\left[Z_{5},{ }_{5}{ }_{5}\right]$

Basic Results about Groups

1. Theorem 1: Identity element is unique in a group or a monoid
2. Theorem 2: The inverse of an element is unique in a group
3. Theorem 3: If x and y are members of a group [G,o], then (xoy) ${ }^{-1}=y^{-1} o x^{-1}$
4. Theorem 4: If x and y are members of a group [G, o], then

- x oz=yoz $\Rightarrow x=y$ (Right cancellation law)
- zox=zoy $\Rightarrow x=y$ (Left cancellation law)

5. Theorem 5: If a and b are members of a group [G, o], then $a o x=b$ and xoa=b have unique solutions for x in G .

Examples

- In $\left[Z_{5},+_{5}\right]$, compute the following
- $\left(1+{ }_{5} 3\right)^{-1}$
- If x, y are members of a group [$Z,+$]
- $x+5=y+5 \Rightarrow$?
- $5+x=5+y \Rightarrow$?
- In $\left[Z_{5},{ }_{5}\right]$, solve for x
- $x+{ }_{5} 3=2$

