Lecture Outline for Relations

- Binary Relations
- Different kinds of relations (one-to-one, etc.)
- Properties of relations (transitive, etc.)
- Closures of relations
- Partial Orderings
- Equivalence Relations
- Section 4.1 of text

Binary Relation

- Cartesian product of a set S with itself, S×S
- S={1,2,3}
- $S \times S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
- A (binary) relation is a subset of $S \times S$
- Example: Equality relation
- Example: Less than relation

Definition of Binary Relation

- Binary Relation (ρ) on a set S is a subset of S×S
- $x\rho y \leftrightarrow (x,y) \in \rho$
- A binary relation is often defined by giving a binary predicate that is satisfied by certain ordered pairs $\in S \times S$
- Relations on multiple sets: A binary relation from set S to T is a subset of S×T

Example of Binary Relation

- For each of the following binary relations ρ on N, decide which of the ordered pairs belong to ρ
- 1. xρy ↔ x=y+1; (2,2), (2,3), (3,3), (3,2)
- 2. $x \rho y \leftrightarrow y$ is divisible by x; (2,4), (2,5), (2,6)
- 3. xρy ↔ x is odd; (2,3), (3,4), (4,5), (5,6)
- 4. xρy ↔ x+y<10; (1,3), (2,3), (3,4), (4,5)
- 5. $x \rho y \leftrightarrow x > y^2$; (1,2), (2,1), (5,2), (6,4), (4,3)

Types of Relations

A binary relation ρ consists of a set of ordered pairs (s₁, s₂)

- One-to-one relation: Each s_1 is paired with only one s_2 and vice-versa
- **One-to-many relation**: At least one s_1 is paired with more than one s_2
- Many-to-one relation: At least one s_2 is paired with more than one s_1
- Many-to-many relation: At least one s_1 is paired with more than one s_2 and at least one s_2 is paired with more than one s_1

Note that not all elements in the set need to appear in $\boldsymbol{\rho}$

Examples of Relation Types

- S={2,5,7,9}. Identify the type of each of the following relations
 - 1. $\{(5,2), (7,5), (9,2)\}$
 - 2. {(2,5), (5,7), (7,2)}
 - 3. {(7,9), (2,5), (9,9), (2,7)}

Operations on Relations

- Let there be two (binary) relations ρ and σ on a set S. Each is a subset of S×S and we can perform set operations on them to create new subsets (new binary relations).
- These are $\rho \cup \sigma$, $\rho \cap \sigma$, ρ'
- Example: Two relations ρ and σ on N such that $x\rho y \leftrightarrow x=y$ and $x\sigma y \leftrightarrow x<y$. Define the following:
 - 1. $\rho \cup \sigma$
 - 2. ρ'
 - **3.** σ′
 - **4**. ρ∩σ

Properties of Relations

- Example relation xpy↔x=y has the following properties
 - 1. For any $x \in S$, $(x,x) \in \rho$
 - 2. For any x, $y \in S$, $(x,y) \in \rho \rightarrow (y,x) \in \rho$
 - 3. For any x, y, $z \in S$, $(x,y) \in \rho$ and $(y,z) \in \rho \rightarrow (x,z) \in \rho$
- Reflexive: $(\forall x)(x \in S \rightarrow (x,x) \in \rho)$
- Symmetric: (∀x)(∀y)(x∈S ^ y∈S ^ (x,y)∈ρ →(y,x)∈ρ)
- Transitive: $(\forall x)(\forall y)(\forall z)(x \in S^y \in S^z \in S^y)$ $(x,y) \in \rho^{(y,z)} \in \rho \rightarrow (x,z) \in \rho$

Example of Relation Property

- Relation \leq on N:
 - Reflexive?
 - Symmetric?
 - Transitive?

Anti-symmetric Relation

- If a binary relation ρ on S is antisymmetric, then

$$(\forall x)(\forall y)(x \in S^{y} \in S^{(x,y)} \in \rho^{(y,x)} \in \rho$$

 $\rightarrow x=y)$

- Relation \leq on N:
 - Anti-symmetric?

Example on Relation Property

- $S = \{1, 2, 3\}$
- 1. If ρ is reflexive, what elements should it have?
- 2. If ρ is symmetric, what elements should it have?
- 3. If ρ is symmetric and (a,b) $\in \rho$, what elements should it have?
- 4. If ρ is anti-symmetric and $(a,b) \in \rho$ and $(b,a) \in \rho$, what property must hold?
- 5. Is the relation $\rho = \{(1,2)\}$ on S transitive?

Symmetry and anti-symmetry

- Give an example of a relation which is symmetric as well as anti-symmetric.
- Relations can be
 - symmetric and *not* anti-symmetric
 - anti-symmetric and not symmetric
 - both symmetric and anti-symmetric
 - neither symmetric nor anti-symmetric
- Example:

 $\forall \rho = \{ (1,2), (2,1), (3,2), (2,3) \} \\ \forall \rho = \{ (1,2), (2,1), (3,2) \}$

Closures of Relations

- Closure: If a relation ρ on S fails to have a certain property (symmetry, etc.), what elements should be added to ρ to satisfy the property
- Closure is the original set **plus** the additional elements
- Formally, a binary relation ρ^* is the closure of a relation ρ with respect to property P if
 - 1) ρ^* has property P
 - 2) ρ⊆ρ*
 - 3) ρ^* is the smallest such relation

Computing Transitive Closure

- Write the relation ρ as a matrix **A**. If relation is on set *S* with *n* elements, then **A** has dimension $n \times n$.
- A[i, j] = 1 if $(i, j) \in \rho$
- Compute **A**⁽²⁾ where **A**⁽²⁾[*i*, *j*] =
- Now compute $A^{(3)}$, ..., $A^{(n)}$ where $\bigvee_{k=1}^{n} (a_{ik} \wedge a_{kj})$ $A^{(p+1)}[i, j] =$
- Compute $\mathbf{R}^{n} = (\mathbf{A}^{(p)} \mathbf{A}^{(3)}, \mathbf{A}^{(3)}, \mathbf{A}^{(n)})^{\vee} \mathbf{A}^{(n)}$
- Convert **R**^{*h*} \vec{back} into a relationship ρ' . That is the transitive closure of ρ .

Example of Closure

- $\forall \rho = \{(1,1), (1,2), (1,3), (3,1), (2,3)\}$
- 1. What is the reflexive closure of ρ ?
- 2. What is the symmetric closure of ρ ?
- 3. What is the transitive closure of ρ ?
- 4. What is the anti-symmetric closure of ρ ?

Partial Ordering on S

- A binary relation on S which is
 - Reflexive
 - Anti-symmetric
 - Transitive

is called a partial ordering on S

- Examples
 - Set of all natural numbers, $x \le y$
 - Set of all positive integers, x divides y

Partially ordered set

- (S, ρ) is called the partially ordered set, or poset
 - S is the set on which the relation is defined
 - $\forall \, \rho$ is the relation, such as "less than or equals", "is a subset of", etc.
- Predecessor of y: If xpy and x≠y, x is predecessor of y (denoted, x<y)
- Immediate predecessor of y: If x < y, and no z exists such that x < z < y, then x is immediate predecessor of y
- Example:
 - S = {1, 2, 3, 6, 12, 18}
 - $x \rho y \leftrightarrow x$ divides y

Total Ordering

- A partial ordering in which every element is related to every other element
- Example: The relation \leq on the set of natural numbers

Special Elements in a Poset

- Least element: If there is a y∈S and y<x for every other element x∈S, then y is the least element
 - A least element may not exist
 - A least element if it exists is unique
- Minimal element: An element y∈S is minimal if there does not exist any element x∈S, such that x<y
 - There may be multiple minimal elements
 - A minimal element will always exist

Special Elements in a Poset

- Greatest element: If there is a y∈S and x<y for every other element x∈S, then y is the greatest element
 - A greatest element may not exist
 - A greatest element if it exists is unique
- Maximal element: An element y∈S is maximal if there does not exist any element x∈S, such that y<x
 - There may be multiple maximal elements
 - A maximal element will always exist
- Example: From the relation "x divides y" from before

Equivalence Relation on S

- A binary relation on S which is
 - Reflexive
 - Symmetric
 - Transitive

is called an equivalence relation on S

- Examples
 - Set of all natural numbers, x + y is even
 - Set of all students in this class, xpy ↔ x sits in the same row as y

Partition of a Set

- Partition of a set S is the collection of subsets of S such that
 - The subsets are disjoint
 - No subset is empty
 - The union of all the subsets is the set S
- Example: Relation "sits in the same row"
- Equivalence class of x: For an equivalence relation, the set of all elements of S to which x is related (denoted [x])

Theorem on Equivalence Relations and Partitions

- An equivalence relation ρ on a set S determines a partition on S
- A partition on S determines an equivalence relation on S
- Proof: Omitted
- Example:
 - 1. On set of natural numbers, $x\rho y \leftrightarrow x=y$
 - 2. On {1,2,3}, ρ ={(1,1),(2,2),(3,3),(1,2), (2,1)}

Congruence modulo n

- Congruence modulo 3, say
- Why is it an equivalence relation?
- What are the equivalence classes?

(Use all integers, positive and negative)

Examples

Symmetry and anti-symmetry

- Give an example of a relation which is symmetric as well as anti-symmetric.
- Relations can be
 - symmetric and *not* anti-symmetric
 - anti-symmetric and not symmetric
 - both symmetric and anti-symmetric
 - neither symmetric nor anti-symmetric
- Example:

 $\forall \rho = \{ (1,2), (2,1), (3,2), (2,3) \} \\ \forall \rho = \{ (1,2), (2,1), (3,2) \}$

Examples

- Identify the 4 kinds of elements
- 1. S = {a, b, c}
 - $\rho = \{(a,a), (b,b), (c,c), (a,b), (b,c), (a,c)\}$
- 2. S = {a, b, c, d}

 $\rho = \{(a,a), (b,b), (c,c), (d,d), (a,b), (a,c)\}$