Lecture Outline for Recurrences

- Already Covered: Recursive definition of sequences
- Recursive definition of sets
- Recursive definition of operations
- Recursive definition of algorithms
- Now: Solving recurrences
- Expand, guess, verify
- Solution formula
- Section 2.4 of text

Solving recurrences

- To solve the following recurrence relation 1. $S(1)=2$

2. $S(n)=2 S(n-1), n \geq 2$
we developed an iterative and a recursive solution

- But, a one-line solution is possible!
- You tell me what

Solving recurrences

- Objective: Solve $S(n)$ without needing to compute for lower values.
- Method 1: Expand - Guess - Verify
- Example:
- $T(1)=1$
- $T(n)=T(n-1)+3, n \geq 2$

Solving recurrences - EGV method

- Expand
- $T(1)=1$
- $T(2)=1+3=4$
- $T(3)=4+3=1+2 * 3=7$
- $\mathrm{T}(4)=7+3=1+3 * 3=10$
- Guess
- $T(n)=3 n-2$
- Verify
- Use principle of induction

Solving recurrences - EGV method
$F(1)=2$
$F(n)=2 F(n-1)+2^{n}, n \geq 2$

Solving recurrences - formula

- Applicable to
$\mathrm{S}(\mathrm{n})=\mathrm{c} S(\mathrm{n}-1)+\mathrm{g}(\mathrm{n})$
Base case is $S(1)$ which is known
- This is a first order, linear equation with constant coefficients
- If $g(n)=0$, then equation is homogeneous

Solving recurrences - formula

$$
\begin{aligned}
S(n) & =c S(n-1)+g(n) \\
& =c[c S(n-2)+g(n-1)]+g(n) \\
& =c^{2} S(n-2)+c g(n-1)+g(n) \\
& =\ldots \\
& =c^{n-1} S(1)+c^{n-2} g(2)+\ldots+c g(n-1)+g(n)
\end{aligned}
$$

[See proof details in book page 133-134]

$$
\begin{aligned}
& =c^{n-1} S(1)+c^{n-2} g(2)+\ldots+c^{1} g(n-1)+c^{0} g(n) \\
& =c^{n-1} S(1)+{ }_{i=2} \Sigma^{n} c^{n-i} g(i)
\end{aligned}
$$

Solving recurrences: formula

- Example:

1. $T(1)=1$
2. $T(n)=T(n-1)+3, n \geq 2$
[We already solved it using the EGV method.]

Solving recurrences: formula

- Example:

$$
\begin{aligned}
& \text { 1. } A(1)=1 \\
& 2 . A(n)=A(n-1)+n^{2}, n \geq 2
\end{aligned}
$$

9

Solving recurrences

1. $F(1)=1$
2. $F(n)=n F(n-1), n \geq 2$

Solving recurrences - formula

- Applicable to
$S(n)=c S(n / 2)+g(n)$
Base case is $S(1)$ which is known
- See proof in text pages 162-163
- $S(n)=c^{\log n} S(1)+{ }_{i=1} \sum^{\log n} c^{(\log n)-i} g\left(2^{i}\right)$

Homogeneous Recurrence Relations: First
Order
$S(n)=c S(n-1)$

- Homogeneous first-order recurrence relation
- Base case: S(1)
- Solution: $S(n)=c^{n-1} S(1)$

Homogeneous Recurrence Relations: Second order

$$
S(n)=c_{1} S(n-1)+c_{2} S(n-2)
$$

- Homogeneous second-order recurrence relation
- Base cases: $S(1)$ and $S(2)$
- To find solution, create the characteristic equation: $\mathrm{t}^{2}-\mathrm{c}_{1} \mathrm{t}-\mathrm{c}_{2}=0$
- Case 1: There are distinct roots to the characteristic equation, say r_{1} and r_{2}
- Then $S(n)=p r_{1}{ }^{n-1}+q r_{2}{ }^{n-1}$

Homogeneous Recurrence Relations: Second order

- Case 1: Two distinct roots to the characteristic equation, say r_{1} and r_{2} (Cont'd)
- How to solve for p and q ?
- Use base cases $S(1)$ and $S(2)$ whose values are given to you
- $S(1)=p+q$
--------- Eqn (1)
- $S(2)=p r_{1}+q r_{2}----$ Eqn (2)
- Solve Eqns (1) and (2) for p and q

Homogeneous Recurrence Relations: Second order

- Case 2: There is a single repeated root for the characteristic equation, say r
- Then solution is $S(n)=p r^{n-1}+q(n-1) r^{n-1}$
- How to solve for p and q ?
- Use base cases $S(1)$ and $S(2)$ whose values are given to you
- $S(1)=p$--------- Eqn (1)
- $S(2)=p r+q r----$ Eqn (2)
- Solve Eqns (1) and (2) for p and q

