Lecture Outline for Recurrences

- Recursive definition of sequences
- Recursive definition of sets
- Recursive definition of operations
- Recursive definition of algorithms
- Next Part: Solving recurrences
- Expand, guess, verify
- Solution formula
- Section 2.4 of text

Recursive definition

- Define something in terms of itself!!!
- Consists of two steps:

1. Basis step: Define something simple not in terms of itself
2. Inductive or recursive step: New cases are defined in terms of previous cases

Recursive definition of sequence

- Sequence: Ordered set of objects
- If you define the first value of the sequence (or first few values) [Basis step]

AND

- Define later values in terms of earlier values [Inductive step]
- That is a Recursively defined sequence

Recursive definition of sequence

- Example:
- $T(1)=1$
- $T(n)=T(n-1)+3, n \geq 2$
- Example:
- $F(1)=1, F(2)=1$
- $F(n)=F(n-1)+F(n-2), n>2$

Fibonacci Sequence

Prove: $F(n)=5 F(n-4)+3 F(n-5), n \geq 6$

Recursive definition of set

- A set is an unordered sequence
- Recursive definition of set
- Example:

1. Set of ancestors of James
2. Set of strings made out of the alphabet A, called A^{*}

Recursive definition of set

- Example:
- Define all binary strings that are palindromes
- All identifiers that must begin with a letter and can have number or letter after that

Recursive definition of operation

- Define an operation performed on an object in terms of a basis step and in terms of smaller sized objects
- Example:
- Exponentiation by a positive integer
- Concatenation of a string with itself n times, i.e., x^{n}

Recursive definition of algorithm

- Given the sequence
- $S(1)=2$
- $S(n)=2 S(n-1), n \geq 2$
- Example 1: Iterative algorithm
- Example 2: Recursive algorithm

Iterative definition of algorithm

Recursive definition of algorithm

```
ALGORITHM
S(integer n)
|function that feeursively compules the value S(n)
If or the sequence S of Example 29
    II }n=\mathrm{ W then
        retum?
    else
        returi 2*S(n:-1)
    end if
end flinetionS
```


Recursive definition of algorithm

- Selection Sort

```
ALGORITHM SElECTIONSORT
SelectionSort (list \(L\) : integer \(j\) )
Irecursively sorts the items from 1 to \(j\) in list \(f\) into increasing order
    if \(\mathbf{j}=1\) then
        sort is complete, wite out the sorted list
    else
        find the index iof the maximum tem in \(L\) between 1 and \(j\)
        exchange \([[7\) and \([1]\)
        SelectionSort \(L, j=1\)
    end if
end function SelectionSolt
```


Complexity of Selection Sort

- Give the recursive definition for the number of steps in Selection Sort when it has to work on a list of size n.
- Hint: The work is in terms of the work needed on a list of size $n-1$, plus some term.
$\mathrm{T}(\mathrm{n})=$
- Does this amount of work depend on the data in the specific list that is being sorted?

Recursive definition of algorithm

- Binary search

Binary Search: Example

- Given list L
- $\{3,6,11,17,19,24,26\}$
- Search for 15
- Search for 24

Complexity of Binary Search

- Give the recursive definition for the number of steps in Binary Search when it has to work on a list of size n.
- Hint: The work is in terms of the number of steps needed on a list of size $n / 2$, plus some term.
$T(n)=$
- Does this amount of work depend on the data in the specific list that is being searched?

