Outline: How to prove a program to be correct

- Precondition and postcondition
- Correctness of assignment statement
- Correctness of conditional statement
- Correctness of loop statement
- Loop invariant
- Example of Euclidean algorithm for GCD computation
- Text book Sections 1.6 and 2.3

Proofs of Program Correctness

- Secs 1.6 and 2.3 in Gersting book
- Program correctness?
 - correct = meets specification
 - is specification correct?
- Correctness can be checked by:
 - testing
 - proof
- Can testing guarantee correctness?

Example

- Consider the assignment statement
 - x = y + 10
- What must be true after the assignment?
- Suppose we want to know x = 14 after
 - What must be true before to ensure this?

Preconditions and Postconditions

- Separate assertions can specify what must be true <u>before</u> and <u>after</u> a program fragment is run.
- A *Hoare triple* gives before and after conditions for a program fragment:
 - written {Q} P {R}
 - Q is the precondition
 - P is the program fragment
 - R is the postcondition
- Means "if Q is true and P is executed, then R will be true"

Illustration of Hoare triple

- Q(X) precondition
- Y = P(X) program
- R(X, Y) postcondition

Means

 $(\forall X) Q(X) \rightarrow R(X, Y)$

 $(\forall X) Q(X) \rightarrow R(X, P(X))$

 For a program to calculate square root of positive integers (∀x)(x>0 → [P(x)]²=x)

5

Proving program correctness

 The program can be proved to be correct by successively proving preconditions and postconditions for each statement {Q} s₀ {R₁}

{R₂} s₂ ... s_{n-1}

{R}

Example revisited

{y=4} x=y+10 {x=14}

more concisely, $\{y=4\} x=y+10 \{x=14\}$

There is no single correct Hoare triple for a given program fragment

- It depends on what your goal is.
- Often easiest to check correctness backwards from the goal (from the end back)

Mechanical correctness checking

- We can make simple "proof rules" for checking correctness.
- One rule for each kind of program statement.
- For assignment, {Q} x=e {R} is correct if:
 - Q is the same as R except that everywhere x occurs it is replaced by e.

Example

- For assignment, {Q} x=e {R} is correct if:
 - Q is the same as R except that everywhere x occurs it is replaced by e.
- {y=4} x=y+10 {x=14} ?? doesn't check
- {y+10=14} x=y+10 {x=14} does check

Arithmetic Simplification

- We can put arithmetically equivalent assertions in sequence with no lines of code in between:
- {y=4}
 {y+10=14}
 x=y+10
 {x=14}

arithmetic simplification verifies the second from the first, so sequence is OK.

Example: Assignment Rule

{x = 2} y = x+2; y = 2*y; {y = 8} Prove that the following computes x(x-1) correctly. y = x-1; y = x*y;

Correctness of Conditional Statements

- if x<0 then y=-x else y=x
- Suppose we want to know y>0 afterwards?
- { ?? }
 if x<0 then y=-x else y=x</p>
 {y>0}

Correctness of Conditional Statements

- $\{Q\}$ "if B then P₁ else P₂" $\{R\}$ holds when
- {Q and B} P₁ {R} and • {Q and \neg B} P₂ {R} both hold • {??} $\rightarrow ??$ is x $\neq 0$ if x<0 then y=-x else y=x {y>0} • {?? $\land x<0$ } y=-x $(2?) \land x \geq 0$ $(2?) \land x \geq 0$
 - y=-x
 $\{y>0\}$ $\{x<0\}, so$
?? can be emptyy=x
 $\{y>0\}$

Example: Conditional Rule

Verify the correctness of the following program. $\{x = 7\}$ if $(x \le 0) y = x$; else $y = 2^*x$; $\{y = 14\}$ 13

Example: Assignment & Conditional Rule

Verify the correctness of the following program. $\{x = 11\}$ y = x-1; $\{y = 10\}$ if $(y \le 0) \ z = y-1;$ else z = y+3; $\{z = 13\}$

Correctness of Looping Programs

- while B do
 S;
 end while
- Repeatedly perform statement S until B is false.
- How can we analyze this?
 - {Q}{R} ??
 - {Q}S{R}
 - {Q}S;S{R}
 - {Q}S;S;S{R}
 - ...???

Loop Invariants

- while B do
 S;
 end while
- A *loop invariant* is an assertion that will be true before <u>each</u> execution of S.
 - The execution of S is preserving the invariant.
 - Show {Q \land B} S {Q}, where Q is the loop invariant
- The invariant together with ¬B should imply the conclusion you want verified on exit from the loop.

Loop Invariants Example

- // Summing up 0 + 1 + ... + n–1 while i ≠ n do j = j + i; i = i + 1; end while
- Invariant: j = sum of 0 ... i–1
- At termination, we have

 (j = sum of 0 ... i–1) and i = n
 So, j = sum of 0 ...n–1, as desired.
- Precondition?
 - j = sum of 0 ... i–1...loop invariant must hold on entry.

Loop Invariants Example, continued

```
• // Summing up 0 + 1 + ... + n–1
```

```
 \{ j = sum of 0 \dots i-1 \} 
while i \neq n do
 j = j + i;
 i = i + 1;
end while
 \{ (j = sum of 0 \dots i-1) \land i = n \}
```

- To prove this is correct, we must still show
 - {(j = sum of 0 ... i–1) \land i \neq n} j = j + i; i = i + 1; {j = sum of 0 ... i–1}

Proof by induction

```
Sum(n) // Calculate \sum(0...n-1)
i=1; j=0;
while (i≠n) do
    j = j+i;
    i = i+1;
end while
// j contains desired sum
```

Loop Correctness Rule

- If we have {Q \land B} S {Q}
- We can derive

 {Q}
 while B do S
 {Q ^ ¬B}
- Note: termination has not been proven.

Example — Euclidean Algorithm for GCD

GCD(non negative integer a, b)

// $a \ge b$, not both a and b are zero

i=a

j=b

while j≠0 do

r = i mod j i=j j=r

end while

 $\{i = gcd(a,b)\}$

Example — Euclidean Algorithm for GCD Find GCD(2420, 70)

Theorem Underlying Algorithm

- <u>Theorem</u>: GCD(i,j) = GCD(j, i mod j)
- **Proof**: See book page 114-115

Proof of Euclidean Algorithm

Loop invariant Q: gcd(i, j) = gcd(a, b)

Example: Loop Rule

• Function to return the value x - y for $x, y \ge 0$

```
Difference(non-negative integers x, y)
i=0; j=x;
while (i≠y) do
j = j-1;
i = i+1;
end while
// j now has the value x-y
return j
```

Example: Loop Rule (Cont)

Steps:

- 1. Propose a loop invariant (Q) such that the loop invariant upon termination gives what you want
- 2. Show loop invariant (Q_0) holds upon first entry into loop
- 3. Prove loop invariant using induction (assume Q_k , prove Q_{k+1})