Outline: How to prove a program to be correct

- Precondition and postcondition
- Correctness of assignment statement
- Correctness of conditional statement
- Correctness of loop statement
- Loop invariant
- Example of Euclidean algorithm for GCD computation
- Text book Sections 1.6 and 2.3

Proofs of Program Correctness

- Secs 1.6 and 2.3 in Gersting book
- Program correctness?
- correct = meets specification
- is specification correct?
- Correctness can be checked by:
- testing
- proof
- Can testing guarantee correctness?

Example

- Consider the assignment statement
- $x=y+10$
-What must be true after the assignment?
- Suppose we want to know $x=14$ after
- What must be true before to ensure this?

Preconditions and Postconditions

- Separate assertions can specify what must be true before and after a program fragment is run.
- A Hoare triple gives before and after conditions for a program fragment:
- written \{Q\} P \{R\}
- Q is the precondition
- P is the program fragment
- R is the postcondition
- Means "if Q is true and P is executed, then R will be true"

Illustration of Hoare triple
$Q(X) \quad$ precondition
$Y=P(X)$ program
$R(X, Y)$ postcondition
Means
$(\forall X) Q(X) \rightarrow R(X, Y)$
$(\forall X) Q(X) \rightarrow R(X, P(X))$

- For a program to calculate square root of positive integers $(\forall x)\left(x>0 \rightarrow[P(x)]^{2}=x\right)$

Proving program correctness

- The program can be proved to be correct by successively proving preconditions and postconditions for each statement \{Q\}
S_{0}
$\left\{R_{1}\right\}$
S_{1}
$\left\{\mathrm{R}_{2}\right\}$
S_{2}
...
S_{n-1}
$\{R\}$

Example revisited
$\{y=4\}$
$x=y+10$
$\{x=14\}$
more concisely, $\{y=4\} x=y+10\{x=14\}$
There is no single correct Hoare triple for a given program fragment

- It depends on what your goal is.
- Often easiest to check correctness backwards from the goal (from the end back)

Mechanical correctness checking

- We can make simple "proof rules" for checking correctness.
- One rule for each kind of program statement.
- For assignment, $\{Q\} x=e\{R\}$ is correct if:
- Q is the same as R except that everywhere x occurs it is replaced by e.

Example

- For assignment, $\{Q\} x=e\{R\}$ is correct if:
- Q is the same as R except that everywhere x occurs it is replaced by e.
- $\{y=4\}$
$x=y+10$
$\{x=14\}$?? doesn't check
- $\{y+10=14\}$
$x=y+10$
$\{x=14\}$ does check

Arithmetic Simplification

- We can put arithmetically equivalent assertions in sequence with no lines of code in between:
- $\{y=4\}$
$\{y+10=14\}$
$x=y+10$
$\{x=14\}$
arithmetic simplification verifies the second from the first, so sequence is OK.

Example: Assignment Rule

$$
\begin{array}{|l|}
\{x=2\} \\
y=x+2 ; \\
y=2^{\star} y ; \\
\{y=8\}
\end{array} \quad \begin{aligned}
& \text { Prove that the following } \\
& \text { computes } x(x-1) \\
& \text { correctly. } \\
& y=x-1 ; \\
& y=x^{\star} y ;
\end{aligned}
$$

Correctness of Conditional Statements

- if $x<0$ then $y=-x$ else $y=x$
- Suppose we want to know $\mathrm{y}>0$ afterwards?
- \{ ? ? \}
if $x<0$ then $y=-x$ else $y=x$
$\{y>0\}$

Correctness of Conditional Statements

- $\{Q\}$ "if B then P_{1} else P_{2} " $\{R\}$ holds when
- $\{Q$ and $B\} \quad P_{1}\{R\} \quad$ and
- $\{Q$ and $\neg B\} P_{2}\{R\} \quad$ both hold
- $\{$?? \} ?? is $x \neq 0$
if $x<0$ then $y=-x$ else $y=x$
$\{y>0\}$
$-\{? ? \wedge$
$y=-x$
$\{y>0\}$
$\{-x>0\}=\{x<0\}$, so
?? can be empty $\quad\{y>0\}$

Example: Conditional Rule

Verify the correctness of the following program.
$\{x=7\}$
if $(x \leq 0) y=x$;
else $y=2^{*} x$;
$\{y=14\}$

Example: Assignment \& Conditional Rule

> Verify the correctness of the following program.
> $\{x=11\}$
> $y=x-1$;
> $\{y=10\}$
> if $(y \leq 0) z=y-1$;
> else $z=y+3$;
> $\{z=13\}$

Correctness of Looping Programs

- while B do

S;
end while

- Repeatedly perform statement S until B is false.
- How can we analyze this?
- $\{Q\}\{R\}$??
- \{Q\}S\{R\}
- $\{Q\} ; ; S\{R\}$
- \{Q\}S;S;S\{R\}
- ...???

Loop Invariants

- while B do

S;
end while

- A loop invariant is an assertion that will be true before each execution of S.
- The execution of S is preserving the invariant.
- Show $\{Q \wedge B\} S\{Q\}$, where Q is the loop invariant
- The invariant together with \neg B should imply the conclusion you want verified on exit from the loop.

Loop Invariants Example

- // Summing up $0+1+\ldots+n-1$
while $\mathrm{i} \neq \mathrm{n}$ do $\mathrm{j}=\mathrm{j}+\mathrm{i} ;$
$\mathrm{i}=\mathrm{i}+1 ;$
end while
- Invariant: j = sum of 0 ... i-1
- At termination, we have
($\mathrm{j}=\operatorname{sum}$ of $0 \ldots \mathrm{i}-1$) and $\mathrm{i}=\mathrm{n}$
So, $\mathrm{j}=$ sum of $0 \ldots \mathrm{n}-1$, as desired.
- Precondition?
- $\mathrm{j}=$ sum of $0 \ldots$ i-1...loop invariant must hold on entry.

Loop Invariants Example, continued

- // Summing up $0+1+\ldots+n-1$
\{j = sum of $0 \ldots$ i-1\}
while $\mathrm{i} \neq \mathrm{n}$ do
$j=j+i ;$
$i=i+1 ;$
end while
$\{(j=$ sum of $0 \ldots i-1) \wedge i=n\}$
- To prove this is correct, we must still show
- $\{(j=$ sum of $0 \ldots i-1) \wedge i \neq n\}$
$j=j+i ;$
$i=i+i$.
\{j = sum of $0 \ldots$ i-1\}

Proof by induction
Sum(n) // Calculate \sum(0...n-1)
$i=1 ; j=0$;
while $(i \neq n)$ do
$j=j+i ;$
$i=i+1$;
end while
// j contains desired sum

Loop Correctness Rule

- If we have $\{Q \wedge B\} S\{Q\}$
- We can derive
\{Q\}
while B do S
$\{\mathrm{Q} \wedge \neg \mathrm{B}\}$
- Note: termination has not been proven.

Example - Euclidean Algorithm for GCD
GCD(non negative integer a, b)
$/ / a \geq b$, not both a and b are zero
$\mathrm{i}=\mathrm{a}$
$\mathrm{j}=\mathrm{b}$
while $\mathrm{j} \neq 0$ do

$$
\begin{aligned}
& r=i \bmod j \\
& i=j \\
& j=r
\end{aligned}
$$

end while
$\{i=\operatorname{gcd}(a, b)\}$

Example - Euclidean Algorithm for GCD

Find GCD $(2420,70)$

Theorem Underlying Algorithm

- Theorem: GCD(i,j) = GCD(j, i mod j)
- Proof: See book page 114-115

Proof of Euclidean Algorithm

Loop invariant Q: $\operatorname{gcd}(\mathrm{i}, \mathrm{j})=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Example: Loop Rule

- Function to return the value $x-y$ for $x, y \geq 0$

$$
\begin{aligned}
& \text { Difference(non-negative integers } x, y \text {) } \\
& i=0 ; j=x \text {; } \\
& \text { while }(i \neq y) \text { do } \\
& j=j-1 ; \\
& i=i+1 ; \\
& \text { end while } \\
& / / j \text { now has the value } x-y \\
& \text { return } j
\end{aligned}
$$

Example: Loop Rule (Cont)

Steps:

1. Propose a loop invariant (Q) such that the loop invariant upon termination gives what you want
2. Show loop invariant $\left(Q_{0}\right)$ holds upon first entry into loop
3. Prove loop invariant using induction (assume Q_{k}, prove Q_{k+1})
