Lecture Outline for Functions

- Definition
- Properties of functions (onto, one-to-one, etc.)
- Composition of functions
- Inverse of functions
- Number of functions
- Magnitude of functions
- Section 4.4 of text

Definition of function

- f: $S \rightarrow T$
- Every element of set S mapped to one and only one value in T
- Example:
- $g(x)=x^{3}, S: N, T: N$
- Described by $\left\{(x, g(x)) \mid g(x)=x^{3}\right\}$
- S is the domain, T is co-domain
- If (s, t) belongs to the function, t is the image of s, and s is the pre-image of t

Examples and non-examples of functions

1. $f: S \rightarrow T$ where $S=T=\{1,2,3\}, f=$ $\{(1,1),(2,2),(3,3)\}$
2. $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ where $\mathrm{S}=\mathrm{T}=\{1,2,3,4\}, \mathrm{f}=$ $\{(1,1),(2,2),(3,3),(4,3)\}$
3. $f: S \rightarrow T$ where $S=T=\{1,2,3,4\}, f=$ $\{(1,1),(2,2),(3,3),(3,4)\}$
4. f: $\mathrm{N} \rightarrow \mathrm{N}$ where

$$
\text { - } f(x)=x, x \leq 3
$$

- $f(x)=2 x, x \geq 3$

S

Images and Pre-images

- S: R, T: Z
- $f(x)=\lfloor x\rfloor$
-What is the image of $2.3,-3.4$?
-What are the preimages of $2,-4$? $[2,3)$
$[-4,-3)$

Functions on more than one variable

- f: $\mathrm{S}_{1} \times \mathrm{S}_{2} \times \ldots \mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{T}$
- Associates each ordered n-tuple of elements ($\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$) with an element of T
- Example:
- $f: Z \times N \times\{0,1\} \rightarrow Q$ where $f(x, y, z)=x^{y+z}$

$$
\begin{gathered}
x / y \\
7 / 2 \\
8 / 2=4 / 1
\end{gathered}
$$

- $f(2,-2,0)=$?
- $f(2,2,0)=$? 4
- Onto functions: Take function f: $\mathrm{S} \rightarrow \mathrm{T}$.
- The range of f is the set R of images of all members of S.
- If the range of f is identical to the codomain, then it is an onto function.
- How to prove?
- Always $\mathrm{R} \subseteq \mathrm{T}$.
- If we can prove $T \subseteq R$, then we are done.
- Take an arbitrary element in T and show it is the image of some member of S.

Properties of functions: onto

- $S=\{0,2,4,6\}$
- $T=\{1,3,5,7\}$
- Which of the following are onto functions?

1. $\{(0,2),(2,4),(4,6),(6,0)\}$
2. $\{(6,3),(2,1),(0,7),(4,5)\}$
3. $\{(6,1),(0,3),(4,1),(0,7),(2,5)\}$

Properties of functions: One-to-one

- A function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ is one-to-one (or injective) if no member of T has more than one preimage in S
- How to prove?
- Assume that $\mathrm{f}\left(\mathrm{s}_{1}\right)=\mathrm{f}\left(\mathrm{s}_{2}\right)$ and then show that $\mathrm{s}_{1}=\mathrm{S}_{2}$
- What is the difference from a one-to-one relation from S to T ?

Examples of one-to-one functions

- $S=\{0,2,4,6\}$
- $\mathrm{T}=\{1,3,5,7,9\}$
- Which of the following are one-to-one functions?
$1 .\{(0,1),(2,3),(4,5),(6,7)\}$

2. $\{(0,1),(2,1),(4,7),(6,9)\}$

- A function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ which is both onto and one-to-one is called Bijective
- How to prove?
- Step 1: Prove onto
- Step 2: Prove one-to-one

Composition of functions

- $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ and $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{U}$.
- For any $\mathbf{s} \in \mathrm{S}, \mathrm{f}(\mathrm{s}) \in \mathrm{T}$
- Therefore $g(f(s)) \in U$
- $\operatorname{gof}(x) \equiv g(f(x))$
- In other words, gof is a new function from S to $\mathrm{U}(\mathrm{S} \rightarrow \mathrm{U})$
- This is called the composition function.
- For composing, the domains and the ranges have to be compatible.

Composition of functions: Example

- f: $R \rightarrow R$
- $f(x)=x^{2}$
- $g(x)=\lfloor x\rfloor$
- $(\mathrm{gof})(2.3)=g(5.29)=5$
- $(\mathrm{fog})(2.3)=f(2)=4$
- Order is important

Inverse Functions

- If $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ is bijective, we have another function $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{S}$ such that
- an element $t \in T$ maps to $s \in S$ where $f(s)=t$
- gof maps each element of S to itself
- Called Identity function on S (is)
-What is fog?
- Inverse function: $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$. There exists $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{S}$, such that gof $=\mathrm{i}_{\mathrm{S}}$ and $\mathrm{fog}=\mathrm{i}_{\mathrm{T}}$, then g is the inverse function of f, denoted f^{1}

Inverse Functions (Cont'd)

- Theorem:

1. If f is a bijection, then f^{-1} exists.
2. If f^{-1} exists, then f is a bijection.

- Example: Each function is $R \rightarrow R$. Find f^{-1}.

1. $f(x)=2 x$
2. $f(x)=(x+4) / 3$

How Many Functions?

- We will use f: $S \rightarrow T$
- $|S|=m,|T|=n$
- How many such functions without any restriction? n^{m}
- How many such one-to-one functions?
- $m \leq n$
- \# functions $=n$ * $(n-1)$ * $(n-2)$ * $\ldots(n-m+1)=$ $n!/(n-m)!$

$$
m=4, n=5 \quad \text { No restriction: } 5 * 5 * 5 * 5=5^{4}
$$

S

T

$$
\text { One-to-one: } 5 \text { * } 4 \text { * } 3 \text { * } 2
$$

How Many Functions? (Cont'd)

- We will use f: $S \rightarrow T$
- $|\mathrm{S}|=\mathrm{m},|\mathrm{T}|=\mathrm{n}$
- How many such onto functions?
- $m \geq n$
- Total number of functions - Total number of non-onto functions
$=\mathrm{n}^{\mathrm{m}}-\left[\mathrm{C}(\mathrm{n}, 1)(\mathrm{n}-1)^{\mathrm{m}}-\mathrm{C}(\mathrm{n}, 2)(\mathrm{n}-2)^{\mathrm{m}}-\ldots-\quad(-\right.$ 1) $\left.{ }^{n-1} C(n, n-1)(1)^{m}\right]$
$=\mathrm{n}^{\mathrm{m}}-\mathrm{C}(\mathrm{n}, 1)(\mathrm{n}-1)^{\mathrm{m}}+\mathrm{C}(\mathrm{n}, 2)(\mathrm{n}-2)^{\mathrm{m}}-\ldots+$ $(-1)^{\mathrm{n}-1} \mathrm{C}(\mathrm{n}, \mathrm{n}-1)(1)^{\mathrm{m}}$

Permutation of a Set

- For a given set A , consider bijective functions from $A \rightarrow A$
- These are called permutations of A (Set of all permutations is S_{A})
- Example:
- $A=\{1,2,3,4\}$
- $f=\{(1,2),(2,3),(3,4),(4,1)\}$
- f written in matrix form
- Cyclical notation for a function
- How many such permutations are there?

More on Cycles

- Say, $A=\{1,2,3,4,5\}$
- $\mathrm{f}=(1,4,5)$
- Write out f in matrix form.
- Example:
- Composition of functions
- Composition of cycles

More on Permutations

- Disjoint cycles: f and g are members of S_{A} and are disjoint cycles (i.e., have no element in common)
- Then, fog = gof
- Identity permutation: Maps each element of A to itself
- Derangement: Permutation of A such that no element in A is mapped to itself

Number of Derangements

- $|A|=n$
- $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Remember in a derangement no element of A is mapped to itself
- \# derangements = total number of permutation functions - total number of non-derangements
$=n!-n!/ 1!+n!/ 2!-n!/ 3!+\ldots+(-1)^{n} n!/ n!$
$=n!\left[1-1 / 1!+1 / 2!-1 / 3!+\ldots+(-1)^{n} 1 / n!\right]$

Number of Derangements: Examples

- $S=\{a, b, c\}$
- Find the number of derangements
- Show the different derangements

Definition of Θ

- When do you say two functions are the same order of magnitude?
- Consider two functions f and g, whose domain and co-domain are non-negative real numbers.
- If you can find positive constants $\mathrm{n}_{0}, \mathrm{c}_{1}$, C_{2} such that

$$
c_{1} g(x) \leq f(x) \leq c_{2} g(x), \forall x \geq n_{0}
$$

- Then $\mathrm{f}=\Theta(\mathrm{g})$

Definition of O

- When do you say a function f is big-oh of another function g ?
- Consider two functions f and g , whose domain and co-domain are non-negative real numbers.
- If you can find positive constants $\mathrm{n}_{0}, \mathrm{c}$ such that

$$
f(x) \leq c g(x), \forall x \geq n_{0}
$$

- Then $\mathrm{f}=\mathrm{O}(\mathrm{g})$

Examples

- Example 1
- $f(x)=3 x^{3}-7 x$
- $g(x)=x^{3} / 2$
- $f(x) ? g(x)$
- Example 2
- $f(x)=100 x^{2}$
- $g(x)=x^{3}$
- $f(x) ? g(x)$

