Homework 2 Sample Solution

Problem I
After calculating the Geometric Mean (GM) and the
Harmonic Mean (MM) for a few different pairs of possible
integes, we hypothesize but:

$$HM(a, b) < GM(a, b)$$
 if $a \neq b$.
(If $a = b$, then clearly $HM(a, b) = GM(a, b)$)
So we want to verify if
 $2ab ? < Jab$.
Multiply both sides by $\frac{a+b}{2Jab}$
 $\therefore \frac{2ab}{2Jab} ? \frac{a+b}{2}$
 u . $Jab ? \frac{a+b}{2}$
 u . $Jab ? \frac{a+b}{2}$
 $ab ? (a+b)^{2}$
 $a + b^{2} + 2ab - fab ? O$
 $a^{2} - 2ab + b^{2} > O$
 $(a - b)^{2} > O$
This last statement is bue because we are
Squaring a non-zero integer.
 \therefore Our argunal hypothesis HM (a, b) < GM(a,b), $a \neq b$

Problem I A set that has n elements will have n (n-1) Subsets that have exactly two elements. n=2. There is only one subset neeting this condition, Base case the set itself. let a set of K elements have K(K-1) subsets. () dive step Inductive hypothesis Inductive step To prove that a set of (K+1) elements has (K+1) (K+1-1) = K(K+1) subsets, A Consider that I form the set of (K+1) elements by adding an element {a} to the original set of K elements Call this set of (k+1) elements T. -: $T = S \cup \{a\}$ To form the subsets of T that meet the above condition, I can de this in one of two ways: 1) Not include the new element fag = There are K(K-1) 2) & dude, the new element = There are K(K-1) 2) & dude, the new element = There are kubsets. There such subsets. [From ()] 2) Indude the new element => There are K such subsets -> Include fat and any one of the K elements of the set S. . The number of subsets of T = $\frac{k(k-1)}{2} + k = \frac{k^2 - k + 2k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}$. we have proven A. -: By the 1st principle of nathematical induction we have proven that # subsets with exactly two elements is $\frac{n(n+1)}{2}$.