Homework 2 sample solution
Problem I
After calculating the Geometric mean (GM) and the Harmonic Mean (HM) for a fe different pairs of positive integers, we hypothesize that:

$$
H M(a, b)<G^{M}(a, b) \text { if } a \neq b \text {. }
$$

(If $a=b$, then clearly $\operatorname{HM}(a, b)=\operatorname{GM}(a, b)$)
So we want to verify if

$$
\frac{2 a b}{a+b} \stackrel{?}{a b}
$$

Multiply both sides by $\frac{a+b}{2 \sqrt{a b}}$

$$
\begin{aligned}
\therefore \quad \frac{2 a b}{2 \sqrt{a b}} & ? \frac{a+b}{2} \\
\text { i. } \sqrt{a b} & <\frac{a+b}{2}
\end{aligned}
$$

Squaring both sides:

$$
\begin{aligned}
& a b \stackrel{?}{<} \frac{(a+b)^{2}}{4} \\
& 4 a b \stackrel{?}{<}<(a+b)^{2} \\
& a^{2}+b^{2}+2 a b-4 a b>0 \\
& a^{2}-2 a b+b^{2}>0 \\
& (a-b)^{2}>0
\end{aligned}
$$

This last statement is blue because we are squaring a non-zero integer.
\therefore our origuial hypothesis HM $(a, b)<G M(a, b), a \neq b$ is proved.

Problem II
A set that has n elements will have

$$
\frac{n(n-1)}{2}
$$

Subsets that have exactly two elements.
Base case
$n=2$. There is only one subset meeting this condition, the set itself.
Inductive hypothesis
Let a set of k elements have $\frac{k(k-1)}{2}$ Call this set s
Inductive dep
To prove that a set of $(k+1)$ elements has $\frac{(k+1)(k+1-1)}{2}$

$$
=\frac{k(k+1)}{2} \text { subsets. }
$$

Consider that I form the set of $(K+1)$ elements by adding an element $\{a\}$ to the original set of k elements Call this set of $(k+1)$ elements T.

$$
\therefore T=S \cup\{a\}
$$

To form the subsets of T that meet the above condition, I can do this in one of two ways:

1) Not include the new element $\{a\} \Rightarrow$ There are $K(k-1)$
2) Induce the new element \Rightarrow There are such subsets. [F \rightarrow Include $\{a\}$ and any one of the K elements of the set S.
\therefore The number of subsets of $T=$

$$
\frac{k(k-1)}{2}+k=\frac{k^{2}-k+2 k}{2}=\frac{k^{2}+k}{2}=\frac{k(k+1)}{2}
$$

\therefore we have proven (A).
\therefore By the lat principle of mathematical induction, we have prover that \#subsets with exactly two elements is $\frac{n(n-1)}{2}$.

