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2. Exercses 2.2
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2.3 Problem (05

gersting Mathematlcal Suiuvvus—— -

65.a. Let P(n)be the property that any word composed of a juxtaposition of n subwords
has an even number of o's. Then P(1) is true because the only words with 1
subword are the words moon, noon, and soon, all of which have 2 o's. Assume that

P(k) is true and consider P(k+1). For any word composed of k + 1 subwords, break
the word into two parts compoased of k subwords and 1 subword. By the inductive
hypothesis, the part with k subwords has an even number m of o's. The part with 1
subword has 2 0's. The total number of o's is therefore m + 2, an even number.
This verifies P(k + 1) and completes the proof.

b. Let P(n) be the property that any word composed of a juxtaposition of n

subwords has an even sumber of o's. Then P(1) is true because the only words with

1 subword are the words moon, HOOR, and soon, all of which have 2 o's. Assume
that P(r) is true for allr, 1<r<kand consider P(k+1). Forany word composed of
k + 1 subwords, break the word into two parts compoased of 1y and r, subwords,
with1 < £k 1<€ns k,andr tr=k+ 1. By the inductive hypothesis, 11
contains m; o's, an even number, and 12 contains my 0's, an even number. Then the
original word contains my + my 0's, an even number. This verifies P(k + 1) and
completes the proof.

e mn w=1 the nolvgon is a triangle, and the sum of the interior angles
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