1. Ex 2.1

1.1 Problem 31

1.2 Problem 36

Proof by cases:
Case 1:
$$x=0$$
 or $y=0$
 $x=0 \rightarrow |x|=0$, $xy=0$, $|xy|=0$
 $\therefore |xy|=0 = 0$. $|y|=|x||y|$
 $y=0 \rightarrow similar +0$ above

Case 5:
$$x < 0, y < 0$$

 $1x1 = -x, |y| = -y$
 $< y > 70 \rightarrow |xy| = xy$
 $: |xy| = xy = |x||y|$

1.3 Problem 59

Counterexample:
$$9 = 2^3 + 1$$

 $9 = (3)(3)$
 \therefore 9 is not a prime

2. Exercises 2.2

2.1 Problem 7

P(l):
$$|^2 = \frac{((l+1)(2+1))}{6}$$
 -+rue

Assume P(k): $|^2 + 2^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$

Sholo P(k+1): $|^2 + 2^2 + \dots + (k+1)^2 = \frac{(k+1)(k+2)(2(k+1)+1)}{6}$
 $|^2 + 2^2 + \dots + (k+1)^2 = |^2 + 2^2 + \dots + k^2 + (k+1)^2$
 $= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$
 $= \frac{k(k+1)\left[\frac{2k+1}{6}\right] + k+1}{6}$
 $= (k+1)\left[\frac{2k^2 + k + 6k + 6}{6}\right]$
 $= (k+1)\left[\frac{2k^2 + 7k + 6}{6}\right]$
 $= \frac{(k+1)(k+2)(2k+3)}{6}$
 $= \frac{(k+1)(k+2)(2k+1) + 1}{6}$

2.2 problem 24

P(1):
$$a = \frac{1}{2}(2a)$$
 -true
Assume P(k): $a + (a+d) + \cdots + [a+(k-1)d] = \left[\frac{k}{2}\right][2a+(k-1)d]$
Show P(k+1): $a + (a+a) + \cdots + [a+kd] = \left[\frac{k+1}{2}\right][2a+kd]$
 $a + (a+d) + \cdots + [a+kd] = a + (a+d) + \cdots + [a+(k-1)d] + [a+kd]$
 $= \left[\frac{k}{2}\right][2a+(k-1)d] + \frac{2a+2kd}{2}$

$$= \frac{2ka + k^{2}d - kd + 2a + 2kd}{2}$$

$$= \frac{k(2a + kd) + (2a + kd)}{2}$$

$$= \frac{(k+1)}{2}(2a + kd)$$
QED

2.3 Problem 65

Gersting

Mathematical Schucculor -

- 65. a. Let P(n) be the property that any word composed of a juxtaposition of n subwords has an even number of o's. Then P(1) is true because the only words with 1 subword are the words moon, noon, and soon, all of which have 2 o's. Assume that P(k) is true and consider P(k+1). For any word composed of k + 1 subwords, break the word into two parts composed of k subwords and 1 subword. By the inductive hypothesis, the part with k subwords has an even number m of o's. The part with 1 subword has 2 o's. The total number of o's is therefore m + 2, an even number. This verifies P(k + 1) and completes the proof.
 - b. Let P(n) be the property that any word composed of a juxtaposition of n subwords has an even number of o's. Then P(1) is true because the only words with 1 subword are the words moon, noon, and soon, all of which have 2 o's. Assume that P(r) is true for all r, $1 \le r \le k$ and consider P(k+1). For any word composed of k+1 subwords, break the word into two parts composed of r_1 and r_2 subwords, with $1 \le r_1 \le k$, $1 \le r_2 \le k$, and $r_1 + r_2 = k + 1$. By the inductive hypothesis, r_1 with $1 \le r_1 \le k$, an even number, and r_2 contains m_2 o's, an even number. Then the original word contains $m_1 + m_2$ o's, an even number. This verifies P(k+1) and completes the proof.

- 1 1-12 2000 n=3 the polygon is a triangle, and the sum of the interior angles