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Abstract

The project goal was to loosely couple the SWAT model and the QUAL2E model and compare their combined ability to predict total phos-
phorus (TP) and NO3-N plus NO2-N yields to the ability of the SWAT model with its completely coupled water quality components to predict TP
and NO3-N plus NO2-N yields from War Eagle Creek watershed in Northwest Arkansas. Model predictions were compared using a statistical
approach to identify significant differences between the two modeling methods. Results from two variations of the Pearson product-moment
correlation ( p< 0.05) indicated that correlation coefficients and regression slopes for the two data sets were not significantly different. This
implies that neither modeling method was significantly better in predicting monthly TP and NO3-N plus NO2-N yields from the watershed. Ad-
ditionally, no significant differences were present between predicted outputs of the SWAT model with instream components active compared
with when instream components were inactive, indicating a need for further testing and refinement of the SWAT algorithms simulating instream
processes. We can further infer that the instream processes available in SWAT may not be enhancing its predictive abilities as far as simulating
instream components.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Excessive nutrient loads from upstream watershed activities
such as agriculture, hydrological modifications, and urban run-
off, have been identified as the leading cause of impairment in
assessed lakes and reservoirs (USEPA, 2000). Excessive nutri-
ents’ loads into lakes and reservoirs are a concern because of
the potential to accelerate eutrophication rates, resulting in
aesthetic and water quality problems. As reservoirs become
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eutrophic, they are often characterized by hypolimnetic dis-
solved oxygen depletion, increases in suspended solids, pro-
gression from a diatom population to a blue-green or green
algae population, changes in food web structure and fish spe-
cies composition, and decreasing light penetration (OECD,
1982; Henderson-Sellers and Markland, 1987).

Management of nutrient loads into reservoirs requires
knowledge of nutrient transport and delivery from the water-
shedestream system. Nutrients are generally transported
from the landscape into streams during runoff events; however,
they may also enter stream flow from other sources such as
groundwater recharge and point source effluent discharges.
As water transports nutrients downstream, they cycle through
the stream ecosystem in biotic and abiotic forms. These nutri-
ents are eventually delivered to downstream water bodies such
as lakes and reservoirs.
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The mechanisms that govern nutrient sources, transport,
and delivery from watersheds to lakes and reservoirs are
most efficiently evaluated using computer models. Computer
models are available that simulate nutrient transport from a wa-
tershed to a stream, such as Soil and Water Assessment Tool
(SWAT) (Arnold et al., 1998) and Agricultural Nonpoint
Source Pollution (AGNPS) (Bingner et al., 2001). Landscape
or watershed models generally predict flow volume, nutrient
yields, and sediment yield leaving the landscape from a speci-
fied boundary to a designated outlet point while not consider-
ing instream biotic and abiotic processes.

One approach to overcome these limitations is to incorpo-
rate instream processes from a stream water quality model
into a watershed model. However, outputs from a watershed
model with incorporated stream water quality model algo-
rithms may not be the same as outputs generated from the
stand alone stream water quality model. This phenomenon oc-
curs because of nonlinearities within the system being mod-
eled and differences in parameters affecting model outputs;
similar problems have occurred when incorporating other
models. For example, the integration of the USLE model
into different field-scale and watershed models (CREAMS,
SWRRB, EPIC, and AGNPS) was shown by Binger et al.
(1992) to result in different sediment yield predictions for
each model. While it is common to completely couple compo-
nents, such as USLE into a more comprehensive model; a loose
coupling of different modeling components may also be se-
lected to combine modeling tools.

The loosely linked approach of integrating instream pro-
cesses to a watershed model might include established stream
water quality models such as QUAL2E (Brown and Barnwell,
1987) and CE-QUAL-RIV1 (USACE, 1995). One limitation in
loosely linking watershed and instream models is that many
instream water quality models do not possess spatial distinc-
tions such as stream reaches and tributaries and are classified
as point models (e.g., AQUATOX model, Park and Clough,
2004). Stream water quality models also are often steady state
and provide little to no dynamic simulation abilities (e.g.,
QUAL2E). Hence, loose linkage can become challenging be-
cause of inherent differences in how two models characterize
information spatially and temporally.

A landscape model with broad application in model cou-
pling is SWAT, which has been coupled to an array of models
to extend its applications including the Regional Climate
Model (Stone et al., 2001), an economic model and various
habitat models (Frede et al., 2002), and the Agriculture Policy
eXtender model (Gassman et al., 2002). The SWAT model has
been widely used (see White and Chaubey, 2005); recent
applications include assessments of water quality manage-
ment plans (Bärlund et al., 2007; Santhi et al., 2006) and un-
certainty and integrated modeling (Krysanova et al., 2007).
The SWAT model has been implemented globally and is often
incorporated into spatially characterized tools that group
multiple models for watershed level analysis (Miller et al.,
2007).

An instream water quality model that is often linked to
other models is QUAL2E, which has been generally coupled
to models that do not provide adequate surface water routing
and/or adequate surface water quality components (Wagner
et al., 1996; Dia and Labadie, 2001). The QUAL2E model
has been linked with estuary models (Ribeiro and Araújo,
2002) and river basin network flow models in conjunction
with a model for estimating quality of irrigation return flows
(Dia and Labadie, 2001).

The recognition of the strengths and limitations of SWAT
and QUAL2E has led to the integration of QUAL2E into
SWAT by model developers. Basically, SWAT developers
modified a portion of the equations from the QUAL2E model
and provided options within the SWAT model to include or ex-
clude these calculations in watershed model simulations
(Neitsch et al., 2001). However, very little published informa-
tion currently exists comparing the ability of the SWAT model
to simulate water quality processes and corresponding outputs
to stand alone instream water quality model outputs (Houser
and Hauck, 2002).

The goal of this project was to loosely couple these two
models and compare the combined ability to predict total
phosphorus (TP) and NO3-N plus NO2-N (hereafter, NO3-N)
yields from a watershed to model output predicted using
SWAT with its completely coupled stream water quality com-
ponents. We define loose model coupling as a process in which
output from one model (i.e., SWAT) is used as an input to an-
other model (i.e., QUAL2E) by interchange of data file either
in ASCII format or using GIS. Complete model coupling can
be defined as coding equations of one model completely
within the framework of another model. Our objectives were
to: (1) predict monthly TP and NO3-N watershed yields using
SWAT with the completely coupled instream components
(method 1); (2) predict monthly watershed TP and NO3-N
yields using SWAT with a loosely coupled QUAL2E model
(method 2); and (3) determine if significant differences exist
between the relationship of measured yields and predicted
yields from the two modeling methods.

2. Study site

The study site was War Eagle Creek watershed in North-
west Arkansas, USA. War Eagle Creek is one of the main
tributaries to Beaver Reservoir, which is the primary drinking
water supply for Northwest Arkansas. War Eagle Creek water-
shed encompasses approximately 68,100 ha with land use dis-
tributions of 63.7% forest, 35.6% pasture, 0.5% urban, and
0.2% water (CAST, 2002). The watershed was delineated
into 13 subbasins using the GIS tool provided with the
SWAT model (Fig. 1). The most downstream subbasin and
the location of the watershed outlet are in subbasin 13.

Nutrient nonpoint sources in the watershed include land ap-
plication of animal manure and agricultural production facili-
ties for chickens, turkeys, swine, and cattle; other nonpoint
sources would include natural background nutrient loading
and that from the small urban area within the catchment.
The dominant point source in the watershed is the Waste Water
Treatment Plant (WWTP) effluent discharge from the city
of Huntsville, Arkansas. Nutrients from nonpoint and point
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sources are a concern in War Eagle Creek watershed because
of the potential influence on eutrophication rates in the down-
stream Beaver Reservoir.

3. Methods

3.1. SWAT model with completely coupled instream
components

The SWAT model is a widely used, physically based, watershed model de-

veloped by US Department of Agriculture-Agricultural Research Service

(USDA-ARS) (Arnold et al., 1998; Srinivasan et al., 1998). It functions on a con-

tinuous time step with input options for hydrology, nutrients, erosion, land man-

agement, main channel processes, water bodies, and climate data. The SWAT

model predicts the influence of land management practices on constituent yields

from a watershed and includes agricultural components such as fertilizer, crops,

tillage options, and grazing; SWAT can also include point source discharges

(Neitsch et al., 2001). Arnold and Fohrer (2005), Jayakrishnan et al. (2005),

and White and Chaubey (2005) have provided summary of model applications

in making watershed response predictions under various land use, soil, and cli-

mate conditions.

We used AvSWAT2000 in this application, which was the current version

of the model at the beginning of the project (USDA-ARS, 2004). The follow-

ing GIS data were used to develop the War Eagle Creek watershed model to

simulate watershed response from 1999 to 2002: 30-m DEM (US Geological

Survey), 28.5-m 1999 land use and land cover image file (CAST, 2002), and

STATSGO soils shape file (USEPA, 2004). Based on threshold specifications

and the DEM, the delineation tool in the ArcView interface was used to divide

the watershed into 13 subbasins (Fig. 1). Point and nonpoint sources were in-

cluded in the model such as WWTP effluent discharges, animal manure and

litter applications, and commercial fertilizer usage. Weather data from the sta-

tions within the region were incorporated to provide the most representative

precipitation and temperature data available.

Fig. 1. Location of War Eagle Creek Watershed with subbasins and streams.
SWAT model users have an option to include or exclude instream pro-

cesses in SWAT simulations. When the instream component is included, the

model routes the state variables through additional algorithms that have

been completely coupled from QUAL2E. These QUAL2E additional algo-

rithms are included to simulate instream processes that are otherwise not con-

sidered by SWAT.

The differences between the algorithms used in SWAT and QUAL2E are

predominantly related to model characteristics of being a dynamic (SWAT)

or steady-state model (QUAL2E). The steady-state constituent concentrations

are calculated in the QUAL2E model using a mass transport equation that in-

cludes advection, dispersion, dilution, constituent reactions and interactions,

and sources and sinks components (Brown and Barnwell, 1987):

vC

vt
¼

v

�
AxDL

vC

vx

�
Axvx

� vðAxuCÞ
Axvx

dC

dt
þ s

v
ð1Þ

where C is concentration, Ax is cross-sectional area, DL is dispersion coeffi-

cient, u is mean velocity, s is external sources or sinks, and v is incremental

volume. Each QUAL2E constituent concentration is solved using Eq. (1)

with constituent respective parameters. For example, in QUAL2E organic

phosphorus (P) is calculated as:

dP1

dt
¼ a2rA� b4P1 � s5P1 ð2Þ

where P1 is the concentration of organic P in the water, a2 is the P content of

algae, r is algal respiration rate, A is algal biomass concentration, b4 is the or-

ganic P decay rate, and s5 is the organic P settling rate. The QUAL2E organic

P differential equation and other QUAL2E differential equations are solved us-

ing the classical implicit backward difference method (Brown and Barnwell,

1987).

A comparison between QUAL2E and SWAT model constituent concentra-

tion equations indicated minimal differences between the two. This can be

illustrated by comparing the QUAL2E model organic P equation (Eq. (2))

with the SWAT model organic P equation (Eq. (3)). Organic P in SWAT was

calculated as:

DorgPstr ¼
�
a2ra algae� bP;4orgPstr � s5orgPstr

�
TT ð3Þ

where DorgPstr was the change in organic P concentration, a2 was the fraction

of algal biomass that is P, ra was the local respiration or death rate of algae,

algae was the algal biomass concentration at the beginning of the day, bP,4

was the rate constant for mineralization of organic P, orgPstr was the organic

P concentration at the beginning of the day, s5 was the rate coefficient for or-

ganic P settling, and TT was the flow travel time in the reach segment for that

day (Neitsch et al., 2001). Hence, the dominant difference between the two is

that the SWAT equation includes a dynamic variable ‘TT’ for variable rates of

flow travel time. The SWAT model also allows the user to adjust organic P in-

puts on a daily basis, which is not available in QUAL2E. This results in the

orgPstr variable being dynamic in the SWAT model instead of a steady-state

constraint as in QUAL2E. Similar comparisons can be made for other nutrients

simulated by the two models (organic nitrogen (N), ammonium, nitrite, nitrate,

and dissolved inorganic P), but are not detailed in this manuscript for brevity.

In calibrating the SWAT model for War Eagle Creek watershed, we acti-

vated the instream processes by manually selecting them ‘on’ within the

model; this was done through the ArcView interface on the simulation window

screen. Sensitivity analysis, calibration, and validation of the SWAT model

were completed with instream components turned ‘on’. Sensitivity analysis

was conducted to determine the influence a set of parameters had on predicting

total flow, sediment, TP, and NO3-N. Sensitivity was approximated using rel-

ative sensitivity (Sr) defined as:

Sr ¼
x

y

y2 � y1

x2 � x1

ð4Þ

where x is the parameter and y is the predicted output. x1, x2 and y1, y2 corre-

spond to �10% of the initial parameter and output values, respectively (James

and Burges, 1982). The greater the Sr the more sensitive a model output vari-

able was to that particular parameter. Parameters were selected for sensitivity



990 K.W. Migliaccio et al. / Environmental Modelling & Software 22 (2007) 987e999
analysis by reviewing previously used calibration parameters and by reviewing

documentation from the SWAT manuals. Parameters that were found to influ-

ence output variables of interest (i.e., those having greater Sr values) were

modified during the model calibration.

The War Eagle Creek SWAT model was calibrated using data collected at

the US Geological Survey (USGS) gauging station: War Eagle Creek near

Hindsville (USGS 07049000) (Fig. 1). About twice-a-month water quality

sampling occurred at this USGS gauge, therefore daily measured constituent

concentrations were not available. Daily concentrations were estimated from

collected samples using the LOADEST2 software (Crawford, 1991, 1996).

Measured flow data were available from 1999 to 2002 at the War Eagle Creek

gauge. Therefore, 1999 and 2000 flow data were used for model calibration

and 2001 and 2002 flow data were used for model validation. For this time pe-

riod (1999e2002), water quality data were only available for 2001 and 2002.

Water quality variables included in calibration were sediment, TP, and NO3-N.

Water quality data for 2001 and 2002 were used for constituent calibration and

validation, respectively.

For calibration, monthly and annual time steps were used in optimizing the

objective function as defined by the following three statistics for flow, sedi-

ment, TP, and NO3-N. SWAT model annual calibration was performed by min-

imizing the % relative error (RE) at the gauge location:

REð%Þ ¼
����ðO�PÞ

O

����100 ð5Þ

where O was the measured value and P was the predicted output. The SWAT

model was further calibrated monthly using the R2
NS, which is defined as:

R2
NS ¼ 1�

Xn

i¼1
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�
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�2

ð6Þ

where O is measured values, P is predicted outputs and i¼ number of values

(Nash and Sutcliffee, 1970). Monthly coefficient of determination (R2) was

also calculated since R2
NS is sensitive to outliers (Kirsch et al., 2002). The

R2 statistic was calculated as:
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0
BBB@

Xn

i¼1

�
Oi �Oavg

��
Pi �Pavg

�
�Xn

i¼1

�
Oi �Oavg

�2
Xn

i¼1

�
Pi �Pavg

�2

#0:5

1
CCCA

2

ð7Þ

Combining the three test statistics, output variables of interest, and tempo-

ral components, the multi-objective function (F ) was described by:

FðO;PÞ ¼

8>><
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where y was the number of years, v was the number of variables evaluated an-

nually, m was the number of months, w was the number of variables evaluated

monthly. For our evaluation y was 4, v was 6, m was 48, and w was 4. Cali-

bration was considered successful if the optimization of Eq. (8) resulted in sta-

tistical parameters’ values that were better than or the-same-as previously

published values for comparable applications.

SWAT model validation required calculation of Eqs. (5), (6), and (7), similar

to calibration. However, validation was evaluated using a different data set and

without modifying model parameters. Validation was considered successful if re-

sults for Eqs. (5), (6), and (7), were similar to those determined during calibration.

3.2. SWAT model loosely coupled to a QUAL2E model

The SWAT parameter set identified for the calibrated SWAT model with

instream components active was used for the loosely coupled modeling

method. By using the calibrated parameter set, we were able to provide the
best estimated values for input into the stream at each reach. However,

when linking the SWAT model to the QUAL2E model, instream components

in the SWAT model were turned ‘off’. Turning ‘off’ the SWAT instream com-

ponents provided us with a model that simulated constituent loads and flow

entering each reach with no accountability for instream processes. Therefore,

the SWAT model was used to predict flows and constituent yields leaving the

watershed while the separate QUAL2E model was used to simulate all in-

stream processes.

The QUAL2E model is a one-dimensional instream water quality model

that includes dissolved oxygen (DO), biological oxygen demand, temperature,

algae as chlorophyll-a, N, P, coliforms, arbitrary nonconservative constituent,

and three conservative constituents. The model simulates interactions between

constituents such as nutrient cycles, algae production, benthic oxygen demand,

carbonaceous oxygen uptake, and atmospheric aeration (Brown and Barnwell,

1987). The QUAL2E model was chosen as the instream water quality model

because of its ability to simulate a stream system comprised tributaries and

headwater reaches. This model has been widely implemented since its comple-

tion in 1985 to simulate water quality response to changes in constituent loads

(e.g., Thakar and Rogers, 1994; Ning et al., 2001; Ribeiro and Araújo, 2002).

In addition, the QUAL2E model was an ideal choice since the algorithms

within QUAL2E were used to develop the instream components available in

SWAT.

However, QUAL2E model users are subject to a substantial constraint, and

this constraint is its steady-state characteristic which hinders its appropriate-

ness to predict constituent concentrations in a dynamic system (Zhang et al.,

1996). This is concern, particularly, when using QUAL2E to predict variables

that are influenced by dynamic processes, such as nonpoint source pollution

and hydrologic events. To accommodate for this limitation, three QUAL2E

models were parameterized for War Eagle Creek to represent seasonal differ-

ences: winterespring (high flow), summer (low flow), and fall (low flow after

leaf abscission). Winterespring, summer, and fall were considered by months

as January through June, July through September, and October through De-

cember (Table 1). These seasons were chosen to account for differences in

stream flow and nutrient dynamics that occur throughout the year (Haggard

et al., 2003). Estimation of monthly constituent yields using three seasonal

QUAL2E models reduced the error introduced by using a steady-state model

to simulate dynamic processes.

Inputs for QUAL2E that describe the stream’s physical characteristics

(length, slope, network) did not change between the three seasonal QUAL2E

models (Fig. 2). The War Eagle Creek watershed was divided into 13 reaches

in the QUAL2E model, as defined by the SWAT delineation. Each subbasin (as

defined in Fig. 1) was identified as a separate reach. Reach hydraulic charac-

teristics, such as slope and cross-section features were measured in the field

using GPS surveying equipment. For areas with a dense riparian zone that pre-

vented GPS surveying, GIS data and ESRI software were employed to acquire

stream slopes.

Initial conditions for chlorophyll-a, organic N, NH3-N, NO2-N, NO3-N,

organic P, and dissolved P were estimated for each QUAL2E model reach

by season using SWAT model monthly predicted outputs for 2001 and 2002.

The QUAL2E input constituent concentrations were calculated by dividing

SWAT predicted constituent yields by respective SWAT predicted flow vol-

umes to obtain a flow-weighted concentration for each reach-season combina-

tion. These concentrations became the values for QUAL2E model initial

conditions.

Table 1

Average seasonal values for measured data at War Eagle Creek near Hindsville

(USGS 07049000)

Average flow

rate (m3/s)

Average TP

yield (kg/day)

Average NO3-N plus

NO2-N yield (kg/day)

High flow 13.7 53 1717

Low flow 1.5 5 152

Low flow with

leaf litter

5.6 30 883
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Similar to initial condition inputs, QUAL2E model headwater source in-

puts were derived by season and reach from SWAT predicted values. Headwa-

ter source inputs refer to flow and constituent concentrations that enter the

stream network as a tributary or headwater reach. Initial conditions and head-

water stream values for temperature and DO were estimated using field data

collected for each reach during each season. These parameters were collected

during the summer and fall of 2003 and winterespring of 2004. Field mea-

sured values were used instead of SWAT predictions for stream temperature

and DO because of SWAT process deficiencies for simulating DO, lacking cal-

ibration data for stream temperature and DO, and temperature not being a read-

ily available SWAT output.

Three water samples were also collected at each site for each season. TP

was analyzed using the automated ascorbic acid reduction method on an un-

filtered water sample that was digested with persulfate in an autoclave.

NO3-N was determined using cadmiumecopper reduction and colorimetric

analysis. Also, it is important to note that water samples were collected during

baseflow conditions when instream processes have greater influence on nutri-

ent dynamics.

To simulate groundwater, transmission losses, and evaporation occurring in

the main reach; QUAL2E model incremental flows were defined. SWAT model

output for groundwater, transmission losses, and evaporation was aggregated

into one flow and was input into the QUAL2E model as incremental flows.

Climatology is represented in the QUAL2E model by air temperature, dew

point temperature, wind direction, wind speed, and cloudiness. These values

were estimated by season using data from the Huntsville weather station

(Fig. 1).

Sensitivity analysis was performed as described by Eq. (4). Sensitivity

analysis included parameters that influenced QUAL2E model TP and NO3-

N predicted yields. Flow was not considered in QUAL2E parameter sensitivity

analysis because all flow parameters were from SWAT model predictions and

considered known inputs. Hence, parameters considered in sensitivity analysis

were temperature correction factors; SOD/DO reaction rates; N, P, and algae

coefficients; and global kinetic coefficients.

The three seasonal QUAL2E models were calibrated for the years 2001e

2002 optimizing the statistic in Eq. (5) for each season. QUAL2E model cal-

ibration using Eq. (5) was performed as follows:
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Fig. 2. Schematic of QUAL2E model tributaries and main head waters reaches.
(1) Measured data from the USGS gauge for each season were evaluated to

determine a measured seasonal yield (MSY) for TP and NO3-N:

MSY ¼

Xn

i¼1

MMYi

Y
ð9Þ

where MMY was the measured monthly yield for the respective constituent, Y

was the number of years of data, and n was the number of months of data for

the respective season.

(2) QUAL2E model predicted yields for each season were estimated from

QUAL2E model outputs of flow [m3 s�1] and constituent concentrations

[mg L�1]. For each season a yield was determined based on the respective

annual time (3-months for summer season and fall season and 6-months

for winterespring season) and model flow and constituent concentration

outputs.

(3) Results from steps 1 and 2 become O and P, respectively, in Eq. (5).

Using this approach, QUAL2E was calibrated to estimate seasonal TP and

NO3-N yields leaving War Eagle Creek watershed.

No measured data for each reach were available to quantitatively calibrate

or validate the QUAL2E model. We performed a qualitative validation of

QUAL2E using measured data from 2003 and 2004. The validation was con-

sidered successful if general trends in model predicted TP and NO3-N between

seasons and reaches were similar considering model predicted values and

2003e2004 measured values. To verify the approach of using this qualitative

validation, SWAT model predictions with instream components active for each

reach were compared. This comparison was done on a seasonal basis for 1999

and 2000 to determine if a general trend in measured and predicted TP and

NO3-N concentrations was present across subbasins. Although there were

some variations between years, similarities in measured and predicted TP

and NO3-N plus NO2-N concentrations were dominant, indicating that the rel-

ative rankings of the measured and predicted water quality outputs could be

compared to qualitatively validate the model. The winter/spring season results

are presented in Table 2.

Qualitative validation using general trends was evaluated for the loosely

coupled models as follows: (1) order each data set from the smallest to the

greatest concentration, (2) rank each concentration based on its order position,

and (3) compare the rankings of measured and predicted concentrations.

There were six measured and six predicted data sets: winterespring TP, sum-

mer TP, fall TP, winterespring NO3-N, summer NO3-N, and fall NO3-N.

Table 2

Ranking by reach of TP and NO3-N plus NO2-N concentrations predicted by

the SWAT model

Reach Winter/spring season rankinga

TP NO3-N plus NO2-N

1999 2000 1999 2000

1 1 1 1 1

2 5 5 8 10

3 4 2.5 2 2

4 2.5 4 5 8

5 6 5 6 5

6 2.5 2.5 3 6

7 7 7 7 7

8 13 13 13 13

9 10 9 12.5 12.5

10 9 11 9 4

11 8 8 12.5 12.5

12 11 10 4 3

13 12 12 10 9

a A ranking of 1 indicates the lowest concentration and a ranking of 13

indicates the highest concentration.
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In interpreting validation results, the coefficient of variability (CV) was also

used where:

CV¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðPi �OiÞ2
s

Oavg

ð10Þ

3.3. Comparing two modeling methods

Monthly TP and NO3-N yields were compared using SWAT with com-

pletely coupled instream components (method 1 in Fig. 3) and using SWAT

loosely coupled to QUAL2E (method 2 in Fig. 3). Results were compared

to determine if the relationship between predicted and measured monthly

TP and NO3-N yields were significantly different between the two modeling

methods. The statistical tests used to evaluate this were two variations of

the Pearson product-moment correlation coefficient ( p< 0.05). The first Pear-

son product-moment correlation was evaluated such that:

Ho : r1 ¼ r2

Ha : r1sr2

ð11Þ

where r¼ the population correlation, ‘1’ subscript refers method 1 and ‘2’

subscript refers to method 2. The second test evaluated the following

hypotheses:
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Fig. 3. Flowcharts for each modeling method.
Ho : b1 ¼ b2

Ha : b1sb2
ð12Þ

where b¼ slope of a regression line (Sheskin, 2000).

4. Results and discussion

4.1. Method 1 e SWAT model with completely coupled
instream components

Parameters identified in the SWAT model sensitivity analy-
sis as having the greatest influence on flow, sediment, and nu-
trients outputs are listed in Table 3. Several parameters, such
as the curve number (CN2) and USLE parameters were found
to influence more than one output variable. This indicates the
dependency of multiple output variables of interest on a similar
set of parameters.

The multi-objection function for SWAT model calibration
was achieved by modifying the parameters listed in Table 4
for their respective variables. Statistical values from the War
Eagle Creek SWAT model calibration and validation are pro-
vided in Tables 5 and 6. Annual and monthly calibration sta-
tistics as described by the multi-objective function were
closer to optimization or the-same-as those reported in pub-
lished literature (White and Chaubey, 2005). Hence, the
SWAT model of the War Eagle Creek watershed model was
considered to reasonably predict representative flow volumes,
sediment yields, TP yields, and NO3-N yields leaving the War
Eagle Creek watershed.

4.2. Method 2 e the SWAT model loosely coupled to the
QUAL2E model

Sensitivity analysis was completed for the QUAL2E model
with parameters that most influenced TP and NO3-N output
identified in Table 7. The results of the QUAL2E sensitivity
analysis suggested that relatively fewer parameters influenced
predicted TP or NO3-N yields. However, generally the same
parameters influenced both predicted TP and NO3-N yields.

Seasonal calibration of SWAT loosely coupled to QUAL2E
resulted in different values for some of the QUAL2E parame-
ters amongst the seasons (Table 8). This variation in parameter
values by season suggests that temporal distinction for the
identified parameters may be important in modeling the
Table 3

List of parameters and their ranking that produced the five highest relative sensitivity for each SWAT model output

Variables Rankinga

1 2 3 4 5

Surface runoff CN2.mgt ESCO.hru CNOP.mgt SOL_AWC1.sol SLSUBBSN.hru

Total flow ESCO.hru CN2.mgt SOL_AWC1.sol SOL_BD1.sol CNOP.mgt

Sediment CNOP.mgt SLOPE.hru ESCO.hru EPCO.hru USLE_P.mgt

Organic N USLE_P.mgt SLOPE.hru CNOP.mgt USLE_K.sol SOL_BD1.sol

NO3-N CNOP.mgt CN2.mgt ESCO.hru USLE_P.mgt EPCO.hru

Organic P SPEXP.bsn EVRCH.bsn EPCO.hru USLE_P.mgt FERT_LY1.mgt

Soluble P USLE_P.mgt CNOP.mgt EPCO.hru SPEXP.bsn EVRCH.bsn

a Ranking of 1 is equal to the highest calculated Sr.
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transport of TP and NO3-N through streams when considering
instream processes. Interestingly, many of these parameters
are also included in the instream components completely cou-
pled into SWAT. However, no temporal capabilities are cur-
rently present in the SWAT model to account for seasonal
differences in their values, even though instream nutrient pro-
cesses have been shown to exhibit seasonal difference due to
changes in light, nutrient supply, flow sources, and tempera-
ture (Rosemond et al., 2000). It is important to note that the
seasonal differences in parameterization would not be ac-
counted for in QUAL2E if only one model was used to repre-
sent the entire simulation period instead of the three seasonal
models.

Percent RE values from the calibrated models using model-
ing method 2 are presented by season for TP and NO3-N in
Table 9. Percent RE values from SWAT loosely coupled to
QUAL2E (method 2) for TP and NO3-N were greater than
those determined using SWAT with completely coupled
QUAL2E components (method 1) output for winterespring
and fall. The differences observed in %RE for these seasons
were likely a result of the steady-state limitations imposed
by QUAL2E which prevents temporal changes in flow and
constituent yields that are needed to represent hydrologic
processes in the watershed. Alternatively, the SWAT loosely
coupled to QUAL2E (method 2) predicted monthly TP and
NO3-N yields more closely to measured values than the
SWAT model with completely coupled instream components
(method 2) for the summer season. This could be the result
of the inability to change some of the parameters temporally

Table 4

List of calibration parameters with input file extension for each output of

interest for the War Eagle Watershed SWAT model

Flow Sediment TP NO3-N plus NO2-N

ALPHA BF.gw AMP.bsn AI2.wwq NPERCO.bsn

CN2.mgt CH_N1.sub BC4.swq RS4.swq

ESCO.hru OVN.hru CMN.bsn

SURLAG.bsn PRF.bsn ERORGP.hru

ROCK.sol FRT_LY1.mgt

SLOPE.hru PHOSKD.bsn

SLSUBBSN.hru PPERCO.bsn

SPCON.bsn RS5.swq

USLE_K.sol UBP.bsn

USLE_P.mgt

Table 5

War Eagle Creek SWAT model calibration and validation results for annual RE

(%) by constituent

Year Total

flow

Baseflow Runoff

flow

Sediment TP NO3-N plus

NO2-N

Calibration

1999 17.0 �8.2 33.4

2000 �6.3 �26.1 1.1

Validation

2001 �8.5 �10.0 �7.9 14.4 �2.1 28.2

2002 �5.6 �11.2 �0.9 12.4 10.6 �6.5
in the SWAT model that influence TP and NO3-N transport
through stream channels.

TP and NO3-N concentrations measured during 2003e2004
field work and the respective model predicted concentrations
are compared by reach in Figs. 4 and 5. The results suggested
that predicted TP and NO3-N plus NO2-N concentrations
across the defined stream reaches least closely followed mea-
sured concentrations during the summer season. A likely fac-
tor contributing to the differences observed in the summer
season is that many of the headwater reaches are intermittent
and contain water only in pools during the summer that are hy-
drologically connected via subsurface flow through the hypo-
rheic zone. Reaches where water samples came from sampling
pools that were not hydrologically connected by surface water
flow included reaches 1, 2, 3, 4, and 6.

Reach 8 was generally higher in TP and NO3-N concentra-
tion than other reaches during all seasons. This was most
likely from the impact of the WWTP effluent discharge in
that subbasin. Effluent from WWTPs has been identified as
a substantial source of nutrient in this ecoregion due to poultry
processing plants and minimal effluent permit restrictions for
nutrients, particularly TP (Haggard et al., 2001, 2004). Simi-
larly, nutrient concentrations also appear to be generally
greater further downstream from reach 8 at War Eagle Creek
during all seasons.

Greater disparity was present in the qualitative comparison
between measured and predicted NO3-N concentrations than

Table 6

War Eagle Creek SWAT model calibration and validation results for monthly

R2
NS (R2)

Year Total flow Sediment TP NO3-N plus NO2-N

Calibration

1999 0.81 (0.65)

2000 0.89 (0.91)

Validation

2001 0.72 (0.77) 0.43 (0.45) 0.51 (0.58) 0.29 (0.47)

2002 0.73 (0.81) 0.32 (0.77) 0.67 (0.76) 0.49 (0.71)

Table 7

List of parameters and their ranking that produced the five highest relative sen-

sitivity for each QUAL2E model output

Rankinga Variables

TP NO3-N plus NO2-N

1 Temperature coefficient

for algal growth

Algal P half

saturation coefficient

2 Temperature coefficient

for algal settlingb
Temperature coefficient

for algal growth

3 Chlorophyll-a algal

concentrationb
Temperature coefficient

for algal settling

4 Algal P contentb Algal N content

5 Algal maximum

specific growth rateb
Algal maximum

specific growth rate

a Ranking of 1 is equal to the highest calculated Sr.
b All parameters had the same Sr.



994 K.W. Migliaccio et al. / Environmental Modelling & Software 22 (2007) 987e999
Table 8

QUAL2E model calibration parameters for each season

Parameter Winterespring (JanuaryeJune) Summer (JulyeSeptember) Fall (OctobereDecember)

Algal maximum specific growth rate 2.8 2.8 2.4

Algal N content 0.09 0.09 0.08

Algal P half saturation coefficient 0.01 0.06 0.03

Algal settling rate 0.3048 0.3048 0.5

Chlorophyll-a to algae ratio 75 10 60

Manning’s n 0.035 0.035 0.035

Non-algal light extinction coefficient 0.03 0.03 0.03

Rate coefficient for organic P settling 0.1 0.1 0.01

Temperature coefficient for algal growth 1.1 1.1 1.1

Temperature coefficient for algal settling 1.1 1.024 1.1
that found with comparisons of TP concentrations. These re-
sults were similar to those results reported by Ramanarayanan
et al. (1996). This coincided with SWAT model calibration sta-
tistics from method 1 and SWAT loosely coupled to QUAL2E
calibration statistics from method 2 which indicated that TP
predicted outputs are more closely matched measured values
than did NO3-N predicted outputs. The poor predictability of
NO3-N concentrations in our evaluations and in past literature
model applications indicated a limitation in using these
models to predict NO3-N concentrations accurately. This im-
plied that further investigation and development of these pro-
cesses are needed if the models are to be used in a quantitative
application of NO3-N predictions.

Seasonal model validation of these methods suggested that
summer model calibrations were the most uncertain. Predic-
tive limitations were indicated by method 1 TP results where
CV values were 0.49, 4.47, and 0.79 for winterespring, sum-
mer, and fall seasons, respectively. Hence, the summer season
was characterized by the greatest variability between predicted
and measured values for both modeling methods. This obser-
vation is not surprising given that instream processes would
likely be most important during summer and that many of
the smaller reaches were intermittent and not connected hy-
drologically by surface discharge.

4.3. Comparison of the two modeling methods

Average monthly predicted TP yields from the two modeling
methods and USGS measured data are presented in Table 10. In
addition, SWAT predicted TP yields with instream components

Table 9

Percent RE for TP and NO3-N plus NO2-N for the three seasonal SWAT

loosely coupled with QUAL2E model

Variable Winterespring

(JanuaryeJune)

(%)

Summer

(JulyeSeptember)

(%)

Fall

(OctobereDecember)

(%)

TP 44.5 (1.7)a �80.0 (�617) 18.8 (�17.1)

NO3-N plus

NO2-N

58.6 (13.2) 4.0 (�190) 47.8 (30.0)

a Values in parentheses are from the SWAT model with completed coupled

instream components.
inactive are provided. In comparison, differences between
monthly TP yields from SWAT with instream components ac-
tive and inactive were between 4 and 254 kg P, while annual
TP yield was different by only 14 kg P. The differences between
TP yields from SWAT with active or inactive instream compo-
nents were not consistent across the annual timeframe and did
not suggest any seasonal influence.

Monthly NO3-N predicted and measured yields are pre-
sented in Table 11. Similar to TP, minimal differences were
present between NO3-N predicted yields from SWAT with in-
stream components active and inactive. Differences between
monthly NO3-N yields varied between 11 and 199 kg N with
an annual average difference of 839 kg N. In contrast to TP,
predicted NO3-N yields were always less when SWAT
instream component was inactive.

The data presented in Tables 10 and 11 suggested that
SWAT monthly predictions of TP and NO3-N yields were
not substantially influenced by whether or not instream pro-
cesses are included in the model simulations. In addition, an-
nual yields do not seem to differ substantially between results
with and without SWAT instream components. This implies
that the instream components available in SWAT have minimal
influence on TP and NO3-N transport from War Eagle Creek
watershed. Hence, we can further infer that the instream pro-
cesses available in SWAT may not be enhancing its predictive
abilities as far as simulating instream processes.

Coefficients and correlations are presented in Table 12
from regression of monthly TP predictions with measured
values. The first Pearson product-moment correlation for
monthly TP from the two modeling methods resulted in a z
(Fisher’s z) value of 0.70, which was less than z0.05 (1.96).
Therefore, we failed to reject the null hypothesis (Eq. (11))
and the populations represented by the two samples had corre-
lation values that were not significantly different. The second
Pearson product-moment correlation evaluated for monthly TP
from the two modeling methods resulted in a test statistic of t
(Student’s t distribution) ¼1.51. Since t0.05 is 2.09, we failed
to reject the null hypothesis (Eq. (12)). Hence, the slopes of
the regression lines of the two data sets were not significantly
different.

NO3-N plus NO2-N monthly predicted and measured
yields (Table 11) were also evaluated using the two previ-
ously described Pearson product-moment correlation
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Fig. 4. Qualitative comparison of measured and QUAL2E predicted TP concentrations by reach for each season with concentrations ranked within each data set and

represented with increasing symbol size corresponding to increasing concentration.
coefficients and regression analyses (Table 13). For the null
hypothesis presented in Eq. (11), the resulting z value was
0.0 comparing the two modeling methods, which is less
than z0.05 (1.96), hence we failed to reject the null hypothe-
sis. In addition, the NO3-N plus NO2-N monthly data set was
evaluated for the hypotheses presented in Eq. (12). The test
statistic for this hypothesis was t¼ 0.26. Thus, t is less
than 2.09, so we failed to reject the null hypothesis.
Therefore, the slopes of the regression lines of the two
NO3-N plus NO2-N modeling method data sets were not sig-
nificantly different.

The correlation coefficients and slopes of the regression
lines relating monthly predicted and measured TP and NO3-
N yields were not significantly different between the two
modeling methods. Thus, simulating monthly TP and
NO3-N yields using SWAT with instream components active
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Fig. 5. Qualitative comparison of measured and QUAL2E predicted NO3-N plus NO2-N concentrations by reach for each season with concentrations ranked within

each data set and represented with increasing symbol size corresponding to increasing concentration.
and using SWAT loosely coupled QUAL2E model were not
significantly different from each other, as indicated by their
correlation statistics and the regression slopes. This implies
that no additional predictive ability was gained con-
cerning monthly TP or NO3-N yields from the War Eagle
Creek watershed by loosely coupling the detailed QUAL2E
model to the SWAT model with instream components
inactive.

Furthermore, the lack of significant differences between
predicted outputs of SWAT with instream components active
and inactive indicates a need for further testing and refinement
of the algorithms simulating instream processes within SWAT.
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Currently, many of the parameters affecting the fate and trans-
port of these constituents are held constant as a function of
time in the SWAT model, which limits the ability of SWAT
to simulate temporal changes that occur with many instream
processes. There is a need to assess improvement in the model
performance when these parameters are made dynamic to
accurately reflect seasonal variations. The SWAT model
developers have also indicated that all aspects of stream rout-
ing need further testing and refinement (Arnold and Fohrer,
2005).

5. Conclusions

Objective 1: The SWAT model with completely coupled in-
stream components was successfully calibrated

Table 10

Measured TP yield (USGS gauge) and model predicted TP yields

Month USGS

gauge

(kg P)

SWAT with

instream

components

activea (kg P)

SWAT e QUAL2Eb

(kg P)

SWAT with

instream

components

inactive (kg P)

January 959 1712 988 1458

February 2622 1295 988 1203

March 2143 1241 988 1337

April 2591 1916 988 2077

May 629 599 988 527

June 635 855 988 804

July 195 735 281 731

August 157 865 281 993

September 85 779 281 805

October 193 584 719 665

November 110 322 719 343

December 2488 1298 719 1244

Total 12,807 12,201 8928 12,187

a Modeling method 1.
b Modeling method 2.

Table 11

Measured NO3-N plus NO2-N yield (USGS gauge) and model predicted

NO3-N plus NO2-N yields

Month USGS

gauge

(kg N)

SWAT with

instream

components

active (kg N)a

SWAT plus

QUAL2E

(kg N)b

SWAT with

instream

components

inactive (kg N)

January 30,040 38,958 21,491 38,910

February 83,027 26,552 21,491 26,505

March 70,167 23,747 21,491 23,672

April 84,879 129,131 21,491 128,932

May 21,474 29,801 21,491 29,790

June 21,170 25,152 21,491 25,111

July 6448 16,273 4503 16,197

August 4935 13,362 4503 13,263

September 2645 12,198 4503 12,103

October 5722 10,778 14,098 10,721

November 3393 14,353 14,098 14,333

December 72,088 32,517 14,098 32,446

Total 405,988 372,822 184,749 371,983

a Modeling method 1.
b Modeling method 2.
and validated for War Eagle Creek watershed
to estimate predicted monthly TP and NO3-N
yields during 2001 and 2002.

Objective 2: The SWAT model with inactive instream compo-
nents was loosely coupled to an independent
QUAL2E model to determine their combined es-
timation of predicted monthly TP and NO3-N
yields during 2001 and 2002; the linked models
were successfully calibrated and validated.

Objective 3: No statistically significant differences were de-
termined between the two modeling approaches
when evaluated with two variations of the Pear-
son product-moment correlation coefficient that
tested differences in regression correlation coef-
ficients and slopes.

The results of this research indicated that there were no
added benefit to loosely coupling an instream model
(QUAL2E) to SWAT compared to using the SWAT model
with active instream components to predict monthly TP and
NO3-N transport from War Eagle Creek watershed. In addi-
tion, minimal differences were found in TP and NO3-N yields
between the SWAT model with instream components active
and inactive. Because many of the SWAT model parameters
affecting instream transport of these constituents are consid-
ered static over time, the model should be refined to enable
a user to make these parameters dynamic to accurately reflect
seasonal variability.

Table 12

Regression statistics from comparing measured and predicted TP monthly

values using both modeling methods

Modeling method Regression statistics

R2 b1
a b0

b

SWAT model with instream

components active

0.578 0.342 652

SWAT model linked to

QUAL2E model

0.339 0.165 568

SWAT model with instream

components inactive

0.580 0.340 653

a Slope of the regression line.
b Y-intercept of the regression line.

Table 13

Regression statistics from comparing measured and predicted NO3-N plus

NO2-N monthly values using both modeling methods

Modeling method Regression statistics

R2 b1
a b0

b

SWAT model with instream

components active

0.369 0.582 11,392

SWAT model linked to

QUAL2E model

0.369 0.132 10,936

SWAT with instream

components inactive

0.369 0.582 11,341

a Slope of the regression line.
b Y-intercept of the regression line.
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Appendix. SWAT parameters referred to in this paper

Parameter

abbreviation

Input file Description

AI2 .wwq Fraction of algal biomass that is N

ALPHA_BF .gw Baseflow alpha factor

APM .bsn Peak rate adjustment factor for sediment

routing in the subbasin

BC4 .swq Rate constant for mineralization of organic P

CH_N(1) .sub Manning’s n value for the tributaries

CMN .bsn Rate factor for humus mineralization

of active organic nutrients (N and P)

CN2 .mgt Initial SCS runoff curve number for

moisture condition II

CNOP .mgt SCS runoff curve number for moisture

condition II

EPCO .hru Plant uptake compensation factor

ERORGP .hru Phosphorus enrichment ratio for loading

with sediment

ESCO .hru Soil evaporation compensation factor

EVRCH .bsn Reach evaporation adjustment factor

FRT_LY1 .mgt Fraction of fertilizer applied to top

10 mm of soil

NPERCO .bsn Nitrate percolation coefficient

OVN .hru Manning’s n value for overland flow

PHOSKD .bsn Phosphorus soil partitioning coefficient

PPERCO .bsn Phosphorus percolation coefficient

PRF .bsn Peak rate adjustment factor for sediment

routing in the main channel

ROCK .sol Rock fragment content

RS4 .swq Organic N settling rate coefficient

RS5 .swq Organic P settling rate coefficient

SLOPE .hru Average slope steepness

SLSUBBSN .hru Average slope length

SOL_AWC .sol Available water capacity of the soil layer

SOL_BD .sol Moist bulk density

SPCON .bsn Linear parameter for calculating the

maximum amount of sediment that can

be re-entrained during channel sediment routing

SPEXP .bsn Exponent parameter for calculating sediment

re-entrained in channel sediment routing

SURLAG .bsn Surface runoff lag coefficient

UBP .bsn Phosphorus uptake distribution parameter

USLE_K .sol USLE equation soil erodibility K factor

USLE_P .mgt USLE support practice factor
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