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Abstract:

Many of the continuous watershed models perform all their computations on a daily time step, yet they are often calibrated
at an annual or monthly time-scale that may not guarantee good simulation performance on a daily time step. The major
objective of this paper is to evaluate the impact of the calibration time-scale on model predictive ability. This study considered
the Soil and Water Assessment Tool for the analyses, and it has been calibrated at two time-scales, viz. monthly and daily for
the War Eagle Creek watershed in the USA. The results demonstrate that the model’s performance at the smaller time-scale
(such as daily) cannot be ensured by calibrating them at a larger time-scale (such as monthly). It is observed that, even
though the calibrated model possesses satisfactory ‘goodness of fit’ statistics, the simulation residuals failed to confirm the
assumption of their homoscedasticity and independence. The results imply that evaluation of models should be conducted
considering their behavior in various aspects of simulation, such as predictive uncertainty, hydrograph characteristics, ability
to preserve statistical properties of the historic flow series, etc. The study enlightens the scope for improving/developing
effective autocalibration procedures at the daily time step for watershed models. Copyright  2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Conceptual rainfall–runoff models are widely used for
flood forecasting, water quality predictions, and for mak-
ing watershed management decisions. Such models pro-
vide an approximate, lumped description of the dominant
subwatershed-scale processes that contribute to the over-
all watershed-scale hydrologic response of the system
(Boyle et al., 2000). There are a plethora of watershed
models available to date that vary in degree of complex-
ity (e.g. Thornthwaite and Mather, 1955; Crawford and
Linsley, 1966; Xu and Singh, 1998). All these models
describe, conceptually, land-based hydrological processes
that are spatially averaged or lumped.

However, a major constraint for application of these
conceptual models is the number of parameters that need
to be estimated or defined so that the modelled response
to rainfall closely simulates the actual behaviour of the
watershed of interest. For example, the Sacramento Soil
Moisture Accounting model (Burnash et al., 1973) is
used by the National Weather Service for flood fore-
casting throughout the USA. The model has 17 param-
eters whose values must be specified. Although a few
of these parameters might be estimated by relating them
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to observable characteristics of the watershed, most are
abstract conceptual representations of non-measurable
watershed characteristics that must be estimated through a
calibration process. The Soil and Water Assessment Tool
(SWAT), developed by the United States Department of
Agriculture (Arnold et al., 1998), is another conceptual
model that is being widely employed for making water-
shed flow and water quality response predictions as a
function of land use, soil, management, and weather input
data (Arnold and Fohrer, 2005). SWAT also has a number
of parameters that need to be estimated through a calibra-
tion procedure. Other commonly used conceptual models
are the HEC-1 (US Army Corps of Engineers, 1990)
and the Stanford Watershed Model (SWM; Crawford and
Linsley, 1966). Although such models ignore the spa-
tially distributed, time-varying, and stochastic properties
of the hydrological processes, they attempt to incorpo-
rate realistic representations of the major non-linearities
inherent in the rainfall runoff process (Hsu et al., 1995).
These models have been reported to be reliable in fore-
casting the hydrograph characteristics, such as the rising
limb, the time and the height of the peak, and volume of
flow (Sorooshian, 1983); however, their implementation
and calibration can typically present various difficulties
(Duan et al., 1992). The calibration requires sophisticated
mathematical tools (Sorooshian et al., 1993), significant
amount of calibration data (Yapo et al., 1998), and some
degree of expertise and experience with the model.
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Model calibration involves the selection of values
for the model parameters so that the model matches
the behaviour of the watershed system as closely as
possible. During the calibration of any conceptual model,
literature values are generally used to assign initial
parameter values based on the soil type, land use,
or some other index, because of the dearth of field-
measured parameter values. These initial estimates of
parameter values are then adjusted during calibration
to simulate the measured flow at the watershed outlet.
Models developed in this manner have produced varying
results in terms of simulating watershed runoff (Downer
and Ogden, 2003). Typically, model parameters for
gauged catchments are usually estimated by ordinary
least squares, which involves solving the following
minimization problem:

min sum of squares D min D
n∑

tD1

[qt.obs � qt.sim�xt; A�]2

�1�
where qt.obs and qt.sim are the observed and simulated
flows respectively (the difference of which is the model
residual error εt), xt is a vector of inputs (such as rainfall
and any exogenous variables such as evaporation, snow,
etc.) and A is a parameter vector about which inference is
sought. The use of Equation (1) as an objective function
to be minimized for parameter estimation implies certain
assumptions about the residuals εt (Clarke, 1973; Xu,
2001):

1. that εt have zero mean and constant variance �2
ε (i.e.

E�εt� D 0, E�ε2
tε� D �2

ε );
2. that the εt are mutually uncorrelated (i.e. E�εt, εt�k� D

08k 6D 0).

The above assumptions need to be tested for the
residuals of the model. It is observed that most of the
studies in hydrology do not report the verification of
these hypotheses, though a visual inspection of predicted
and measured hydrograph together with a ‘goodness of
fit’, such as coefficient of determination R2, are generally
presented.

Yet another concern in model calibration is the tem-
poral and spatial scale in which the simulations should
be compared with the measured value of the variable.
Although spatially distributed models demonstrate con-
siderable skill in predicting flow at the watershed out-
let, they do not illustrate that the models are accurately
describing natural processes occurring at the sub-basin
scale (Garg et al., 2003). Whereas the temporal scale of
comparison is not important for event-based conceptual
models (such as HEC-1), the performance of continu-
ous simulation models (such as SWAT or SWM) would
be greatly affected by the time-scale of calibration. For
example, the SWAT model, which simulates on a daily
time step (Arnold and Fohrer, 2005), is generally cal-
ibrated at the annual level (Neitsch et al., 2002a), and
the parameters are fine-tuned by considering disaggre-
gated time steps, e.g. monthly time steps. The mere

application of process-based models implies that actual
processes are being correctly simulated. Assertions that
such models actually mimic hydrologic processes even at
a smaller time step than it has been calibrated for, and
not merely reproduce observed flows by empirical rela-
tionships, requires that independent measures be used to
validate this claim. In most of the applications where
models are calibrated at a higher (aggregated) time step,
such as annual level or monthly level (e.g. Srinivasan and
Arnold, 1994; Spruill et al., 2000), this is not reported.

The objective of this paper is to evaluate the effect
of the calibration objective function time-scale on model
performance and to demonstrate the importance of resid-
ual statistical analysis in assessing the fitted model. For
this purpose the SWAT model is calibrated to simulate
the monthly flow at the watershed outlet for War Eagle
Creek basin in Arkansas, USA. Although the purpose of
our study is not to develop an algorithm for calibration
of models at smaller time steps (such as daily), which is
typically highly complex, the study examines the require-
ment for such an algorithm.

THE MODEL AND DATA

Description of the SWAT model

We used the SWAT model as an example model to
demonstrate the effect of time-scale of model calibration
on output uncertainty. Since the basic hydrologic rou-
tines used in the SWAT model to represent hydrologic
cycle are also common in many of the currently avail-
able continuous-simulation distributed-parameter water-
shed models, we expect the results to be applicable to
other models. We must emphasize that the objective of
this study is not to critique the SWAT model’s capability
itself; rather, we have used this as an example in this
study.

SWAT is a watershed-scale operational or conceptual
model that operates on a daily time step. The model pre-
dicts watershed response variables, such as stream flow,
sediment, nutrient, bacteria, and pesticide transport, as a
function of soil, land use, management, and climate con-
ditions (Arnold and Fohrer, 2005). Being a physically
based distributed parameter model, SWAT considers both
upland and stream processes that occur in a watershed.
The upland processes include hydrology, erosion, cli-
mate, soil temperature, plant growth, nutrients, pesticides,
and land management. Stream processes considered by
the model include water balance, routing, and sediment,
nutrient, and pesticide dynamics. The model has been
extensively applied in a number of watersheds in the
USA and in other countries. Arnold and Fohrer (2005),
Jayakrishnan et al. (2005), and White (2005) have pro-
vided detailed overviews of model application in making
watershed response predictions.

The SWAT model divides a watershed into smaller sub-
watersheds, based on stream network, location of point
source data, and stream gauges. Each subwatershed is
further subdivided into smaller areas called hydrologic
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response units (HRUs), which are considered to be hydro-
logically homogeneous. The model calculations are per-
formed on an HRU basis. Loadings of water, sediment,
nutrients, and pesticides from each HRU to the stream
channel, and subsequently through the channel network,
are routed using a method described by Williams and
Hann (1972). Details of model configuration, including
procedures for calculation of various model outputs, are
given in Neitsch et al. (2002a).

The soil water balance is the primary consideration by
the model in each HRU, which is represented as (Arnold
et al., 1998)

SWt D SWt�1 C
t∑

iD1

�Ri � Qi � ETi � Pi � QRi� �2�

where SW is the soil water content, i is the time t
(days) for the simulation period, and R, Q, ET, P,
and QR are respectively the daily precipitation, runoff,
evapotranspiration, percolation, and return flow. SWAT
is a continuous-simulation model, i.e. model parameters
used to predict watershed response variables are updated
on a daily time-scale. This allows the model to capture
the dynamic response of the study watershed.

The surface runoff is computed using one of the
two approaches: (i) the Green and Ampt infiltration
method or (ii) the Soil Conservation Service (SCS) curve
number (CN) method. Application of the Green and Ampt
infiltration method requires input data on rainfall and
infiltration at an hourly rate. Because of this limitation,
the SCS-CN method is the most commonly used method
for runoff prediction. According to the SCS-CN method,
runoff from an HRU is a function of daily precipitation,
soil, and land-use characteristics, and can be computed
as (Neitsch et al., 2002b)

Q D �R � 0Ð2s�2

R C 0Ð8s R > 0Ð2s
Q D 0 R � 0Ð2s

�3�

where Q is daily runoff, R is daily rainfall, and s is
the retention parameter. The value of s depends on soil,
land use, and antecedent moisture conditions and can be
estimated as (Neitsch et al., 2002b)

s D 254
(

100

CN
� 1

)
�4�

where CN is the curve number.
Peak runoff rate in the SWAT model is calculated

using the modified rational equation or SCS TR 55
method (USDA, 1986). Arnold et al. (1998) and Neitsch
et al. (2002b) have provided details on how the model
calculates other hydrologic and water quality parameters.

It is worth mentioning that the water balance is the
driving force behind all other watershed calculations in
SWAT and, therefore, must be accurately simulated to
estimate movement of sediment, nutrients, and pesticides
from a watershed. A number of reports are available that
describe the use of the SWAT model in making flow
predictions (refer to White and Chaubey (2005) for a

detailed description of SWAT applications). Also, since
the model uses the daily flow values to calculate nutrient,
sediment, pesticides, and other model outputs, it is
very important that model-predicted watershed response
data at the daily time-scale accurately mimic the actual
watershed processes.

Description of the study watershed and data used

The data used in this study were obtained from War
Eagle Creek watershed, having an area of 68 100 ha,
located in northwest Arkansas, USA. The predominant
land uses in the watershed are forest (63Ð7%) and pasture
(35Ð6%). Nutrients and sediment sources include animal
agriculture (poultry, swine, and cattle production), and
point-source flow from a wastewater treatment plant
(WWTP) from the city of Huntsville. Water quality
of the War Eagle Creek is currently a concern, since
it forms a tributary to Beaver Lake, a drinking-water
reservoir for more than 300 000 people in northwest
Arkansas, USA. Figure 1 shows the location of the
watershed, stream network, subwatershed representation
of the SWAT model, and location of the stream and
weather gauges.

The data pertaining to the study area have been
obtained from various sources. A 30 m digital elevation
model (from the US Geological Survey), STATSGO soil
data (US EPA, 2004), and 28Ð5 m land-use and land-
cover data (from CAST (2002)) were used in the SWAT
model. The watershed was divided into 13 subwater-
sheds based on stream network characteristics within the
watershed. It should be noted that the disaggregation of
a watershed into subwatersheds is user defined and is
done in the SWAT model to identify and rank subwater-
sheds based on their runoff and water quality response.

Figure 1. Map of War Eagle Creek basin, Arkansas, USA
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Weather data (including daily minimum and maximum
temperatures and rainfall) from two stations (Figure 1)
were available for the study. Other meteorological data,
such as solar radiation, were generated using a weather
generator program available in the SWAT model. In addi-
tion, point- and non-point-source data used in the model
included WWTP effluent flow rate and concentration and
animal manure and inorganic fertilizer application rates
in the watershed. The meteorological data and the stream-
flow data considered for the study were for a period of
4 years during 1999–2002 on a daily time step.

METHODOLOGY

Model calibrations

Available data during the period 1999–2000 were used
for the SWAT model calibration, and the model was val-
idated using the data for the period 2001–2002. Since
SWAT has a large number of parameters, a sensitivity
analysis was first conducted to identify the set of param-
eters that had the most influence on predicted flow, using
the procedure described by James and Burges (1982). The
relative sensitivity Sr was used to identify and rank all
the model parameters that influence predicted runoff:

Sr D O2 � O1

P2 � P1

P

O
�5�

where O was the predicted output, P was the parameter
value, and O2, O1 and P2, P1 represent š10% of the
initial output and parameter values respectively (James
and Burges, 1982).

Parameters having the highest relative sensitivity to
predicted runoff and total flow were curve number CN,
soil evaporation compensation factor ESCO, available
soil water capacity SOL AWC, average slope length
SLSUBBSN, and moist bulk density of soil SOL BD.
Detailed results of sensitivity analyses are presented else-
where (White and Chaubey, 2005). These parameters
were modified during the model calibration. Both cali-
bration and validation were done at annual and monthly
time steps.

The calibration of the model was achieved by the
procedure suggested by Neitsch et al. (2002a), which
is a sequential calibration process to achieve optimum
calibration results for the SWAT model. The model
was calibrated for flow predictions first at annual scale,
followed by monthly and daily scales. The objective
function used in annual calibration was minimization of
the relative error RE between measured and predicted
flow at the gauging location:

RE �%� D
∣∣∣∣qobs � qsim

qobs

∣∣∣∣ ð 100 �6�

where qobs �m3 s�1� is the measured annual flow and
qsim �m3 s�1� is the predicted annual flow. Once the
model was calibrated at the annual scale, the param-
eters were fine-tuned on a monthly scale using the

Nash–Sutcliffe coefficient of model efficiency RNS (Nash
and Sutcliffe, 1970) and R2:

RNS D 1 �

n∑
iD1

�qobs � qsim�2

n∑
iD1

�qobs � qcom�2

�7�

R2 D




n∑
iD1

�qobs.i � qobs��qsim.i � qsim�

[
n∑

iD1

�qobs.i � qobs�
2

n∑
iD1

�qsim.i � qsim�2

]0Ð5




2

�8�

where qcom �m3 s�1� is the average value of the observed
flow, and all other variables are as defined earlier. Note
that, at annual and monthly time steps, the accumulated
flows at these time steps are considered while evaluating
the objective function.

Because the SWAT model is a distributed parameter
model, many of the model parameters are unique at the
HRU level. During the calibration process, each model
parameter that was spatially variable was either increased
or decreased to achieve the calibration objective function.
However, the model is generally calibrated only at annual
and monthly time-scales, as calibration at a daily time
step becomes typically complex. In the current study,
as the major objective was to evaluate the impact of
the time-scale of the calibration objective function, the
calibrated model parameters at the monthly time-scale
(referred to as SWAT monthly calibrated (SMC) here-
after) were further tuned by employing an autocalibration
procedure at daily time steps (referred to as SWAT daily
calibrated (SDC) hereafter). Note that the calibration at
daily time steps requires complex optimization proce-
dures and is computationally expensive. The objective
function used for the automatic model calibration at the
daily time-scale was maximization of R2 values defined
by Equation (8). A list of the parameters, their range of
values and the final parameter values achieved after the
autocalibration of the model are shown in Table I.

Performance evaluation of models

Similar to other distributed parameter models, SWAT
also has limitations due to the non-identifiability of
parameters, i.e. there more than one combination of
parameter values exists that may result in the same model
output. Qualitative assessments of the degree to which
the model simulations match the observations are used to
provide an evaluation of the model’s predictive abilities.
Many of the principal measures that are used in the
hydrological literature have been critically reviewed by
Leagates and McCabe (1999). Still, there is diversity in
the use of global goodness-of-fit statistics to determine
how well the model forecasts the hydrograph. In the
current study, a multicriteria assessment was performed
in the absence of a single evaluation measure. The data
from 2001–2002 were used for model validation using
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Table I. List of parameters, their range of possible values, and final calibrated values (after autocalibration at daily time-scale) for
the SWAT model for War Eagle Creek, Arkansas

Parameter Name Range Final value

GW REVAP Ground water revap coefficient 0Ð02–0Ð20 0Ð19
ESCO Soil evaporation compensation factor 0–1Ð0 0Ð70
CN2 (%) Curve number 0–100 �38Ð73a

SOL AWC (%) Available water capacity of soil layer, mm H2O/mm soil 48Ð30a

surlag Surface runoff lag coefficient 0–10 3Ð78
GW DELAY Ground water delay time, days 0–100 0Ð16
Sol alb Soil albedo 0–1Ð0 0Ð93
epco (%) Plant uptake compensation factor 0–1Ð0 �44Ð72a

BIOMIX Biological mixing efficiency 0–1Ð0 0Ð00
ALPHA BF Baseflow alpha factor 0–1Ð0 0Ð99
RCHRG DP Deep aquifer percolation fraction 0–1Ð0 0Ð08
CH K2 (mm h�1) Effective hydraulic conductivity in main channel alluvium 0–150 5Ð70

a These parameters are HRU specific, having a unique value for each HRU. The final value represents the percentage by which the default parameter
value was changed for each HRU.

the criteria suggested by White and Chaubey (2005).
In summary, according to White and Chaubey (2005),
the model validation was considered successful if the
evaluation statistics were similar in ranges to those
determined during model calibration. The criteria that
are employed are the root-mean-square error (RMSE)
between the observed and simulated values, RNS, and
R2. In addition to these statistics, the model forecasts
were checked for validity of the hypothesis upon which
the calibration was based. The models are also evaluated
for their predictive capabilities to preserve the summary
statistics of the river flow series.

RESULTS, ANALYSES AND DISCUSSIONS

Performance of SWAT model at monthly time step

The goodness-of-fit statistics for the monthly flow
simulations of War Eagle Creek basin by the SWAT
model (SMC and SDC) are presented in Table II, from
which it is apparent that the simulations are reasonably
good. The high value of R2 during calibration (greater
than 0Ð80 for both SMC and SDC) indicates a good
agreement between the simulated and measured values of
monthly flows. Note that reported values of R2 for various
watersheds during SWAT calibration range between 0Ð63
and 0Ð98 (computed at monthly time-scale; e.g. Arnold
and Allen, 1996; Arnold et al., 1998; Srinivasan et al.,
1998; Cotter et al., 2003). It is noted that the efficiency
of the model, which is a measure of the model’s ability to
predict values away from the mean, is satisfactory during
calibration and validation (0Ð70–0Ð81 during calibration
and 0Ð41–0Ð79 during validation for SMC). The RMSE
is a measure of the residual variance and is indicative
of the model’s ability to predict high flows. The low
value of RMSE (3Ð98–7Ð22 m3 s�1 for SMC) implies
that the SWAT model is able to simulate the flows
with reasonable accuracy. The values of the performance
indices presented in the Table II were consistent during
calibration and validation for the SMC model, except for

Table II. Goodness-of-fit statistics during calibration and valida-
tion of the SWAT model calibrated for War Eagle Creek basin
at a monthly time-scale (SMC) and a daily time-scale (SDC).

(Note: the statistics are computed at monthly time-scale)

Calibration period Validation period

1999 2000 2001 2002

SMC
R2 0Ð82 0Ð80 0Ð52 0Ð89
RNS 0Ð81 0Ð70 0Ð41 0Ð79
RMSE (m3 s�1) 3Ð98 5Ð13 7Ð22 5Ð79

SDC
R2 0Ð83 0Ð89 0Ð84 0Ð78
RNS 0Ð65 0Ð87 0Ð76 0Ð67
RMSE (m3 s�1) 5Ð29 3Ð44 4Ð81 5Ð98

the year 2001, the reason for which needs to be explored
further.

The performance statistics, computed for the SDC, are
also presented in Table II. Note that the monthly cali-
brated model (SMC) has been further fine-tuned at the
daily time-scale using an autocalibration procedure; the
fine-tuning autocalibration required ¾4 days of continu-
ous computations that produced ¾4000 model runs. It
is evident from Table II that improved SWAT predic-
tions were obtained when the model was calibrated at
the daily time-scale (see Table II for SDC). Higher R2

values were obtained for all years, except in 2002, when
the model was calibrated at daily time-scale. The val-
ues of RNS ranged from 0Ð65 to 0Ð87 and RMSE ranged
from 4Ð81 to 5Ð98 m3 s�1 for daily calibration results. It
is worth noting that the simulations during the year 2001
were improved in this case (an increase in efficiency from
0Ð41 to 0Ð76) in addition to improvement in other indices
of model performance.

A plot of the simulated and measured flow values dur-
ing calibration and validation years for SWAT models
(SMC and SDC) is presented in Figure 2 for compari-
son. From Figure 2, it is observed that the SWAT sim-
ulated flows clearly follow the trend and variations in
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Figure 2. Comparison of SWAT simulated and measured monthly flow for monthly time-scale calibration (SMC) and daily time-scale calibration
(SDC)

Table III. Summary statistics (of monthly flow) of SWAT simulations calibrated at a monthly time-scale (SMC) and a daily time-scale
(SDC) for War Eagle Creek basin

Calibration period Validation period

1999 2000 2001 2002

Obs. SMC SDC Obs. SMC SDC Obs. SMC SDC Obs. SMC SDC

Mean (m3 s�1) 10Ð95 11Ð63 7Ð82 5Ð88 8Ð62 7Ð30 6Ð93 9Ð94 8Ð09 10Ð35 12Ð97 12Ð65
Standard deviation 9Ð38 7Ð56 6Ð39 9Ð79 9Ð76 9Ð92 10Ð28 6Ð99 6Ð78 13Ð00 9Ð12 7Ð99
Skewness coefficient 0Ð24 �0Ð26 0Ð12 3Ð12 2Ð12 2Ð11 2Ð05 0Ð99 1Ð02 1Ð82 1Ð05 0Ð50

the observed flow records. It should be noted that the
flow from War Eagle Creek basin during the months
of August to November is relatively low compared with
other months of the year, and the SWAT model is able to
mimic these variations reasonably well, though SMC is
consistently overpredicting the low flows. Similar model
results have been reported by other researchers, where
SWAT was found to overestimate low flow predictions
(e.g. Bosch et al., 2004; Chu et al., 2004). Model simu-
lations significantly improved when calibrated on a daily
time-scale (SDC) by more accurately predicting the high
flows and low flows. Assessment of the potential of the
SWAT model to preserve the statistical properties of the

historic flow records reveals that the first two statistical
moments (i.e. mean and standard deviation) were repro-
duced reasonably well by the model in both cases (see
Table III).

Considering the above-discussed goodness-of-fit statis-
tics and the summary statistics, it is generally rea-
sonable to conclude that the SWAT simulations cal-
ibrated at a monthly time step are reasonably good,
and the calibrated model may be employed for further
analysis. However, the model has been calibrated with
the objective to minimize the sum square of deviation
between the observed and simulated flow values. Con-
sequently, the above-considered goodness-of-fit statistics
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Figure 3. Plot of residuals versus SWAT simulated monthly river flow for War Eagle Creek: (a) model calibrated at a monthly time-scale (SMC);
(b) model calibrated at a daily time-scale (SDC)

Figure 4. Autocorrelation of residual from the SWAT model monthly simulations of War Eagle Creek (the dotted line indicates š95% confidence
level) for SWAT calibrated at a monthly time-scale (SMC) and SWAT calibrated at a daily time-scale (SDC)

would certainly suggest good performance for the model,
as all the statistics are derived from the deviation between
observed and simulated flow. Therefore, in order to test
the robustness of the model, it is important to evaluate
the model using some other performance indices. Accord-
ingly, the residuals from the model simulations have been
further analysed for verifying the basic assumptions dis-
cussed earlier.

Figure 3 depicts the residuals plotted against the SWAT
model simulated monthly flows for the calibration and
validation periods (for both SMC and SDC). It is evident
from Figure 3 that the SMC model predictions have
a systematic bias in simulating the lower values of

runoff. Further, we observed that the residuals’ variability
increases with increasing runoff in the case of the SMC
model. This observation suggested that the assumption of
constant error variance (homoscedasticity) was violated
for the model calibrated at a monthly time step. However,
the assumption of homoscedasticity was reasonably valid
for the model calibrated at a daily time step (see Figure 3
for SDC); there was evidence that model predictions
could be improved.

The residual autocorrelations together with the 95%
confidence intervals are plotted in Figure 4 for both the
SMC and SDC models. Residuals did not have a sig-
nificant correlation (except at lag 1 during the validation
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period for SMC). This implies that the hypothesis of inde-
pendence of residuals for the SMC model was fulfilled
in the simulations. This observation was also true in the
case of the model calibrated at a daily time-scale. How-
ever, it must be noted that the decay of autocorrelation
was systematic for SMC model.

The foregoing discussions illustrate that a judgment
on the model performance purely based on performance
indices (such as RMSE, R2, etc.) may be misleading (i.e.
they do not give any information about the homoscedas-
ticity and independence of residuals) and that model per-
formance benefits from being evaluated using a number
of evaluation measures.

Performance of SWAT model at daily time step

As stated earlier, the SWAT model has generally been
calibrated at monthly time-scales, whereas the model
performs all of its calculations on a daily time step.
Hence, the model performance at the smaller time-
scale also needs evaluation before it can be further
employed for making management decisions. The SWAT
model simulated daily flows and the observed flows

are presented in a scatter diagram in Figure 5 for both
the SMC and SDC models. SMC simulations were not
satisfactory and did not coincide with measured values.
Note that the R2 value for the SMC model was only
0Ð36 during the calibration period (1999–2000) and 0Ð56
during the validation period (2001–2002). A reduced
scatter plot for the SDC model clearly illustrates a
reasonably good simulation, with an R2 value for the SDC
that was greater than that for the SMC.

The goodness-of-fit statistics were computed on daily
time step (Table IV). The results indicate that SMC
model efficiency values are often negative (except for
2002), which is indicative of highly biased model simu-
lations. The RMSE values for the SMC model are high
compared with the observed mean values for these years
(cf. Table IV with Table III). On the contrary, the perfor-
mance indices for the SDC model (see Table IV) were
realistic (positive efficiency values) and were better than
the monthly calibrated model. The R2 for the daily sim-
ulations ranged from 0Ð36 to 0Ð81, and R2 for the SMC
was between 0Ð28 and 0Ð63. An improvement of 39%
in RMSE was observed for the SDC model compared

Figure 5. Scatter plot of daily values of SWAT simulated and observed flow for War Eagle Creek for model calibrated at a monthly time-scale (SMC)
and model calibrated at a daily time-scale (SDC)
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Table IV. Goodness-of-fit statistics during calibration and valida-
tion of the SWAT model calibrated for War Eagle Creek basin
at a monthly time-scale (SMC) and a daily time-scale (SDC).

(Note: the statistics are computed at daily time-scale)

Calibration period Validation period

1999 2000 2001 2002

SMC
R2 0Ð28 0Ð46 0Ð41 0Ð63
RNS �0Ð33 �0Ð35 �0Ð07 0Ð47
RMSE (m3 s�1) 22Ð79 22Ð14 22Ð25 25Ð91
SDC
R2 0Ð36 0Ð81 0Ð73 0Ð44
RNS 0Ð33 0Ð80 0Ð68 0Ð37
RMSE (m3 s�1) 16Ð14 8Ð3 12Ð09 20Ð47

with the SMC model. This improved optimization of the
model after autocalibration is in agreement with many
reported studies.

The summary statistics (standard deviation and skew-
ness with observed counterparts) of the daily flow series
simulated by the model are depicted in Figure 6. The
results from the SMC model indicate that the variance in
the flow is not preserved, but that the skewness of the
data is. In addition, the SDC model is able to maintain
the variance better than the SMC model (Figure 6). In
the case of model calibration on a monthly time-scale,
the preservation of mean and skewness of the flow series
indicates that the SWAT model is able to capture the non-
linear features of the rainfall runoff process and the local
patterns, but fails to represent the dynamic nature of the
flow series effectively that was explained by the variance
of the time-series. An examination of homoscedasticity
and independence of the residuals at the daily time step
suggests that the SWAT models calibrated on a monthly
time-scale result in simulations where the daily predic-
tions are not valid. However, the performance of the
model calibrated on a daily time-scale based on these
measures (homoscedasticity and independence of residu-
als) is satisfactory. The results are not presented herein
for brevity.

The results indicate that model simulations calibrated
on a daily time-scale (SDC) significantly improve the

model calibrated on the monthly time-scale (SMC). The
results indicate that the good model performance at an
aggregated time-scale (e.g. monthly scale) is ensured by
calibrating them at a disaggregated time-scale (e.g. daily
scale).

REMARKS

It should be noted that, irrespective of the time-scale of
calibration, the SWAT model computations were made on
a daily basis at the HRU levels, and the total watershed
runoff was estimated by routing the flows from individual
HRUs. Hence, any uncertainty in the model simulations
implies that the model is not accurately representing the
runoff process at the scale of HRU levels. This claim was
not substantiated, given the typical lack of data other than
the stream flow at the watershed outlet. Moreover, when
the model was calibrated at aggregated time steps, the
model parameters were assigned values by comparing the
accumulated monthly and annual flow values, which in
turn neutralizes the errors at the daily time-scale. Further,
linking error diagnostics with specific model deficiencies
would require an in-depth examination of the model used
in this illustration. The goal of this paper was to examine
the impact of time-scale of calibration objective function
on the model performance, not to diagnose the model
itself.

Most of the studies that have used the SWAT model
did not report the model’s performance at the daily
time-scale, whereas all of them have been calibrated
at the annual and/or monthly scales (see White and
Chaubey (2005) for a compilation of SWAT model
application results). Although this may be attributed to
the requirement of complex optimization procedures for
calibrating a number of model parameters at a daily
time step, the results from this study clearly illustrate
that the model’s performance at the smaller time-scale
cannot be ensured by calibrating the model at a larger
time-scale. Our results suggest the need for a simple
calibration procedure for watershed models that can be
easily implemented for a daily time step.

Figure 6. Plot of standard deviation and skewness of SWAT simulated daily flow for model calibrated over a monthly time-scale (SMC) and model
calibrated over a daily time-scale (SDC)
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SUMMARY AND CONLUSIONS

We have discussed the simulation of watershed runoff
in hydrologic models in terms of their calibration. The
objective of this paper was to evaluate the effect of
time-scale of the calibration objective function on the
model performance at disaggregated time levels. The
results imply that evaluation of models based on any
single overall statistic computed between the simulated
and observed values, which aggregate the model perfor-
mance over a large range of hydrological behaviour, does
not ensure a good model performance. Furthermore, one
should be careful not to arrive at erroneous conclusions
about the model parameters without recourse to exam-
ining a number of different measures, each emphasizing
different aspects of model behaviour. The study leads to
the following conclusions:

1. Model performance should be rigorously evaluated for
the assumptions based on which they are calibrated.
The results of this study indicate that a general
assessment of the model performance merely based on
goodness-of-fit statistics may mislead the modeller on
the behaviour of model simulations.

2. A calibration of the model with an annual/monthly
time step does not guarantee a good performance at
daily time steps. We suggest that watershed model cal-
ibrations be completed on a daily time step in order to
preserve the hydrological behaviour of the watershed
accurately. Hence, we identify a need for developing
methods for simple and effective calibration proce-
dures at a daily time step for watershed models.

It should be mentioned that the conclusions and find-
ings of this study were conditioned on the hydrologi-
cal and meteorological characteristics of the watershed
selected. Expanding the experiments performed herein to
include watersheds of different sizes and rainfall–runoff
process characteristics would further evaluate the per-
formance of each model and sensitivity to calibration
time-scale.
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