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ABSTRACT: The concern about water quality in inland water
bodies such as lakes and reservoirs has been increasing.
Owing to the complexity associated with field collection of
water quality samples and subsequent laboratory analyses, sci-
entists and researchers have employed remote sensing tech-
niques for water quality information retrieval. Due to the
limitations of linear regression methods, many researchers
have employed the artificial neural network (ANN) technique to
decorrelate satellite data in order to assess water quality. In this
paper, we propose a method that establishes the output sensi-
tivity toward changes in the individual input reflectance chan-
nels while modeling water quality from remote sensing data
collected by Landsat thematic mapper (TM). From the sensitivi-
ty, a hypothesis about the importance of each band can be
made and used as a guideline to select appropriate input vari-
ables (band combination) for ANN models based on the princi-
ple of parsimony for water quality retrieval. The approach is
illustrated through a case study of Beaver Reservoir in
Arkansas, USA. The results of the case study are highly promis-
ing and validate the input selection procedure outlined in this
paper. The results indicate that this approach could significantly
reduce the effort and computational time required to develop an
ANN water quality model.

(KEY TERMS: artificial neural network; water quality; remote
sensing; band combination.)
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INTRODUCTION

Observations of chlorophyll-a (chl-a) and suspend-
ed sediment (SS) concentration (and many other
parameters) provide quantitative information con-
cerning water quality conditions of a water body.
Accordingly, these observations can be used in various
numerical schemes to help characterize the trophic
status of an aquatic ecosystem. However, the number
of available in situ measurements of water quality
characteristics is usually limited, especially in spatial
and temporal domains, because of the high cost of
data collection and laboratory analysis (Panda et al.,
2004). As chl-a and SS are optically active water qual-
ity parameters, many researchers have employed the
digital evaluation of remote sensing information at
visible and near infrared (NIR) wavelengths to assess
these water quality parameters in various water bod-
ies (e.g., Ritchie et al., 1990; Lathrop, 1992; Choubey,
1994).

Morel and Prieur (1977) classified water bodies into
two types: Case I water body, or open ocean; and Case
IT water body, which is a coastal, estuary, or inland
water body. In Case I, the major optically active con-
stituent is chlorophyll, and the water does not have a
great amount of suspended sediments. Consequently,
the algorithms, though empirical, that relate sensor
radiances to surface concentrations are effective, and
the results are relatively good (Baruah et al., 2001).
However, for Case II water bodies, the relationship
between the sensor radiance and the water quality
parameters becomes complex due to the interaction of
many components such as chlorophyll, suspended
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sediments, and yellow substance, since all of them
may be present in high concentrations. There is con-
siderable scattering (even in NIR) from inland waters
with high sediments (Baruah et al., 2001). According-
ly, the relationship between the sensor data and the
constituent concentration become highly nonlinear,
and most of the models currently in use that are
based on linear regression or on principal component
analysis often fail to accurately simulate constituent
concentration under such conditions (Lathrop, 1992).
In this context, data driven models may be preferable
that can discover relationships from input-output
data even when the user does not have a complete
physical understanding of the system.

In recent decades, the advent of increasingly effi-
cient computing technology has provided exciting new
tools for the mathematical modeling of dynamic sys-
tems. The ANN is one such tool that relates a set of
predictor variables to a set of target variables. Artifi-
cial neural networks are well known, massively paral-
lel computing models that have exhibited excellent
performance in the resolution of complex problems in
science and engineering. In recent years, the ANN
technique, which is a data driven modeling tool, has
become an increasingly popular tool for water quality
modeling among researchers and practicing engineers
(e.g., Keiner and Yan., 1998; Gross et al., 1999; Tana-
ka et al., 2000, Baruah et al., 2001; Panda et al.,
2004).

Despite a plethora of studies on water quality mod-
eling from remotely sensed data using ANN, there are
still certain issues that are seldom addressed by the
researchers. For instance, besides the fundamental
question of defining an adequate neural topology,
choosing the right set of input variables for approxi-
mating a function by a neural network still remains
an unsatisfactorily resolved question. In remote sens-
ing applications where correlated data of many bands
are available, the selection of potential influencing
variables becomes a challenge to the researchers.
Constructing models such as ANN from data with
nontrivial dynamics involves the problem of how to
choose the best model from within a class of models or
how to choose among the competing classes. The
model selection problem involves selecting k nonzero
elements (A, the parameters of the model) in a given
nonlinear model, g(x,A). Following the principle of
parsimony, the smallest network that adequately cap-
tures the relationships in the training data could be
considered a good model (Morgan et al., 2000; Sud-
heer, 2000).

It is observed that in most of the reported ANN-
based models for water quality from remote sensing
data, the input information was selected either by a
trial-and-error procedure or arbitrarily. The trial-and-
error procedure involves considerable computational
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time and requires the development and assessment of
a number of models. When building models such as
ANNg, it is natural to assume that having more infor-
mation is better than having less. Instinctively, one
might think that ANN would work better if more
inputs are presented because the input vector con-
tains all the vital information. However, in practice,
this is not the case, particularly when multivariate
models are developed using ANN, because inclusion of
any spurious input may significantly increase the
learning complexity and lead to reduced performance
of the models.

Our focus in this paper is to propose an analytical
approach to identify the appropriate combination of
input variables (remote sensing band data) while
developing ANN water quality models from remote
sensing data. We also illustrate the impact the incor-
poration of spurious input variables has on the perfor-
mance of ANN water quality models that use spectral
reflectance. The central idea of the proposed method
is that, based on the output sensitivity toward
changes in the individual input reflectance channels
(wavelength bands), a hypothesis about the impor-
tance of each band can be made and used as a
guideline for selecting the appropriate input variables
for modeling. We illustrate the proposed approach
through a case study of Beaver Reservoir in Arkan-
sas, USA.

ARTIFICIAL NEURAL NETWORK

An ANN attempts to mimic, in a very simplified
way, human mental and neural structures and func-
tions (Hsieh, 1993). It can be characterized as mas-
sively parallel interconnections of simple neurons
that function as a collective system. The network
topology consists of a set of nodes (neurons) connected
by links and usually is organized in a number of lay-
ers. Each node in a layer receives and processes
weighted input from previous layer and transmits its
output to nodes in the following layer through links.
Each link is assigned a weight, which is a numerical
estimate of the connection strength. The weighted
summation of inputs to a node is converted to an out-
put according to a transfer function (typically a sig-
moid function). Most ANNs have three layers or more:
an input layer, which is used to present data to the
network; an output layer, which is used to produce an
appropriate response to the given input; and one or
more intermediate layers, which are used to act as a
collection of feature detectors (Figure 1).

The multilayer perceptron (MLP) is the most popu-
lar ANN architecture in use today (Dawson and
Wilby, 1998). It assumes that the unknown function
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input layer

Figure 1. General Structure of a Typical Three-Layer ANN.

(between input and output) is represented by a multi-
layer, feed forward network of sigmoid units. The
working of a three-layer ANN can be mathematically
described as follows.

In an ANN model with n input neurons (xq, ..., X,),
h hidden neurons (zq, ..., z,), and m output neurons
(¥1, --» Ym), let 1, j, and % be the indices representing
input, hidden, and output layers, respectively. Let t;
be the bias for neuron z; and ¢, the bias for neuron
yi- Let wj; be the weight of the connection from neu-
ron x; to neuron z; and B;, the weight of connection
from neuron z; to yj. The function that the ANN cal-
culates is

n

Zj:fA inwij+1j e8]
i=1
n

ZjZfA inwij+’cj (2)
i=1

where g4 and f4 are activation (transfer) functions,
which are usually continuous, bounded, and nonde-
creasing. The most commonly employed transfer func-
tion is the logistic function, which is defined for any
variable s

1
1+e”

f(s)= (3)

S
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The training of MLP involves finding the optimal
weight vector for the network. Many training tech-
niques are available. The aim of training the network
is to find a global solution to the weight matrix, which
typically is a nonlinear optimization problem (White,
1989). Consequently, the theory of nonlinear optimiza-
tion is applicable to the training of MLP. The suitabil-
ity of a particular method is generally a compromise
between computation cost and performance, and the
most popular is the back propagation algorithm
(Rumelhart et al., 1986), which we have employed in
this study.

METHODOLOGY

Absolute Variation and Residual Potential for
Selection of Input

In the ANN modeling, the combination of all possi-
ble variables (input and output) locates a point in a
multidimensional space (input-output space) called
“phase space” (Stewart, 1989). The main tenet of the
ANN methodology is that a great amount of informa-
tion is contained in the sample paths in the phase
space of a dynamic system beyond the usual statistics
collected such as the means and variances of various
output variables.

Here we consider an ANN model that represents
the functional relationship y = flx) between attributes
x (n-dimensional inputs) and class y that is evaluated
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at a set of points S (input patterns) lying inside the
domain D (input range). If the magnitudes of the par-
tial derivatives of the function with respect to the
inputs are to be a measure of significance, it is implic-
itly assumed that the variables can change freely and
independently from one another. For the analysis of
data where the influencing factors can be varied indi-
vidually, this assumption is valid. However, if the
measured attributes are correlated (which is the case
in most ANN-based models in hydrology), this
assumption is not appropriate, with regard to the sys-
tem represented by the ANN, because a change in one
input feature may be accompanied by a change in
another covariant feature.

These interrelationships could be taken into
account by focusing on the variations of f that actually
occur inside the domain D. This can be done by
accounting the variation of f when moving between
points in S. To facilitate this variation, absolute varia-
tion v(f) of the function flx) between the points i and j
could be computed and defined as the absolute value
of the directional derivative of flx) integrated along a
straight line between the two points. Thus,

v (F) = [ [AF(x).udx 4)

13

where u is the unit vector in direction x; to x;. This
variation can be ciphered in all pairs of points in S,
assuming the target output values as true value of
the f. When an attribute is insignificant to the func-
tion for the domain D, the variation in the function
will be unrelated to the variation in the attribute.
Thus a measure of significance of an attribute x; for a
function f over a dataset S would be the correlation
between the absolute variation of the function v;(f)
and the absolute variation of that attribute v;;(x;)
taken between all possible pairs of points in S. Thus
the variables with significant correlation between
absolute variation v;i(f) and v;;(x;) could only be taken
into the input vector for ANN modeling.

However, defining the significance for an indepen-
dent variable based on the correlation between the
absolute variations is not trivial, as variables may
possess varying degrees of correlation. In order to
overcome this difficulty, we coin the term “residual
potential,” which we define as the difference in the
correlation between absolute variations v;;(f) and
v;;(x;) and the Pearson correlation between the output
and x;. It should be noted that the correlation between
absolute variations v;;(f) and v;;(x;) is a measure of
total correlation (linear and nonlinear) between the
influencing variable and the output, as it accounts for
the effect of perturbation of the influencing variable
on the output, while the Pearson correlation gives the
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strength of linear relationship between the dependent
and independent variables. Hence the residual poten-
tial can suggest a nonlinear correlation between the
variables in question. If the relationship between x;
and the output is significantly nonlinear and sensi-
tive, the residual potential for x; will be positive,
implying that x; should be included in the ANN mod-
els’ input vector. On the contrary, if the residual
potential for x; is negative, it implies that the rela-
tionship between x; and the output is neither signifi-
cant nor sensitive and that it need not be included in
the input vector. Hence, the input vector for the ANN
model can consist of only those independent variables
that have a positive residual potential. We illustrate
this approach for input selection through a case study.

Development of ANN Model

The development of an ANN model consists of
three steps: selection of input-output variables; selec-
tion of model structure and estimation of its parame-
ters; and validation of the identified model. In this
study, we have selected the input variables according
to this procedure. However, in order to validate the
proposed approach to input selection, we develop a
number of ANN models during the study, as we will
further describe below, after first describing the gen-
eral procedure we adopted for developing these ANN
models.

We developed all the models by using a standard
back propagation algorithm with adaptive learning
and momentum rates (Nayak et al., 2005) for estimat-
ing the weights. We identified the number of hidden
neurons in the network that were responsible for cap-
turing the dynamic and complex relationships among
input and output variables by various trials, as no
guideline currently is available to optimize it. The
trial-and-error procedure started with two hidden
neurons initially, and the number of hidden neurons
was increased to 10 during the trials with a step size
of one in each trial. For each set of hidden neurons,
the network was trained in batch mode to minimize
the mean square error at the output layer. In order to
check any overfitting during training, we performed a
cross validation by keeping track of the efficiency of
the fitted model. The training was stopped when
there was no significant improvement in the efficien-
cy, and the model was then tested for its generaliza-
tion properties. We selected for validation the
parsimonious structure that resulted in minimum
error and maximum efficiency during training as well
as testing.

While developing an ANN model, generally the
total available examples are divided into training and
validation sets prior to the model building, and in

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION



LAKE WATER QuALITY ASSESSMENT FROM LANDSAT THEMATIC MAPPER DATA USING NEURAL NETWORK:
AN APPROACH TO OPTIMAL BAND COMBINATION SELEGTION

some cases a cross validation set is also used. In most
ANN applications in water resources, the data are
divided arbitrarily into the required subsets. Howev-
er, recent studies have shown that the way the data
are divided can have a significant impact on the gen-
eralization properties of the model (Tokar and John-
son, 1999). In the present study, we have employed a
method proposed by Sudheer and Jain (2004) for data
division into a training set and a validation set. Their
method of data division ensures representative sam-
ples from all ranges of data.

Since the sigmoid function is used as the activation
function, the model output and input were scaled
appropriately to fall within the function limits (0 to 1)
to get over the “saturation” in training. The scaling
has been performed using the maximum value of the
output variable in the dataset. The convergence of the
training process has been controlled by the sum of
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squared error (SSE) between the network output and
target output.

STUDY AREA AND DATA
Beaver Reservoir

Beaver Reservoir is the principal source of drinking
water to more than 300,000 people in northwestern
Arkansas (Figure 2). It has a surface area of 103 km?2,
a mean depth of 18 m, and a maximum depth of 60 m.
The average hydraulic retention time of the reservoir
is about 1.5 years. The contributing watershed area to
the reservoir is 4,300 km2. The reservoir was con-
structed in 1963 on the White River in northwestern
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07049691: Beaver Lake at the dam near Eureka Springs
07049500: Beaver Lake at Highway 12 near Rogers

Figure 2. Location of the Study Area, Watershed Stream Network, USGS Gaging Stations,
and Other Water Sample Collection Stations in Beaver Reservoir in Northwest Arkansas.
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Arkansas and is operated by the U.S. Army Corps of
Engineers for the purposes of hydroelectric power,
flood control, and recreational activities. White River,
Richland Creek, Brush Creek, and War Eagle Creek
form primary tributaries to the reservoir. The major
land uses within the watershed are forest (60 per-
cent), agriculture and pasture (40 percent), and urban
(2 percent). Haggard et al. (2003) have reported a
mean total phosphorus (TP) load of 75 Mg/year into
Beaver Reservoir between 1993 and 1995, with
approximately 62 percent of the total load coming
from the White River. The soluble reactive phospho-
rus (SRP) constitutes approximately 65 percent of the
TP entering the reservoir and is considered bioavail-
able. Increased concerns over the eutrophication rate
in Beaver Reservoir due to increasing urbanization
and expanding agricultural production within the
watershed have accelerated many investigations
within this reservoir and its contributing watershed.

In Situ Water Quality Data

Water samples were collected from various spatial
locations in the Beaver Reservoir on dates coinciding
with TM acquisition dates (Table 1) of the reservoir
for 2003 and 2004. In addition, for2001 and 2002, the
chl-a data were obtained from the U.S. Geological Sur-
vey (USGS) for two of its gauging stations, No.
07049500 and No. 07049691 (Figure 2).

TABLE 1. Details of Landsat TM Data and
In Situ Water Quality Sampling Dates.

Number

Water Image of Water

Sampling Acquisition Sampling

Year Date Date Path/Row Points

2001  April 18 April 17 25/35 2
June 13 June 13 26/35 2
October 16 October 19 25/35 2
2002 July 10 July 9 26/35 2
July 24 July 21 26/35 2
2003 July 21 July 21 25/35 10
August 6 August 7 25/35 12
December 19 December 19 26/35 12
2004 February 21 February 21 26/35 11
April 4 April 2 25/35 11

Water sampling was done at three depths (surface,
1 m below surface, and 2 m below surface) for each
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location. Four liters of water samples were collected
each time and stored in dark, and on ice for laborato-
ry analyses. These samples were analyzed at Univer-
sity of Arkansas laboratory using standard
procedures to determine SS and chl-a concentration.
Average values of chl-a and SS concentrations were
used for the modeling study.

Remote Sensing Data

Landsat thematic mapper (TM) data for 10 cloud
free dates were acquired for the study. The TM
images were precision corrected by radiometric and
geometric means. The data pertaining to spectral
bands were used to retrieve water quality characteris-
tics of the Beaver Reservoir. Because the spatial reso-
lution of band 6 (57 m) was not consistent with that of
other bands (28.5 m), the radiance data for Band 6
were not considered in this study.

Beaver Reservoir has a fairly typical dendrite
shape, and many samples were taken from narrow
locations (Figure 2). Therefore, while extracting the
radiance information from Landsat images, a single
pixel gray value (digital numbers, DN) was used. The
DN values for each TM band for the water sampling
location on each date were extracted, after radiomet-
ric calibration, atmospheric correction, and radiomet-
ric rectification, and employed in the current study. A
statistical analysis was performed on the extracted
DN data to check for inconsistencies. One outlier
datum was observed based on student t-test and was
not considered for further analysis. The software
employed for image processing in the current study
was Geomatica 9.1 (PCI geomatics, Richmond Hill,
Ontario, Canada) and IDRISI 32.2 (IDRISI Produc-
tion, Worcester, Massachusetts).

In remote sensing, in order to improve the predic-
tive characteristics of various band data, it is common
to use various derivative indices (Thiam and East-
man, 1999; Yang and Anderson, 2000). These indices
are normally derived by arithmetic manipulations of
different combinations of TM band data. To evaluate
the impact of such indices in ANN models for water
quality retrieval, we used various indices suggested
by Panda et al. (2004) (Table 2).

RESULTS AND DISCUSSION
Band (Input) Selection

The Pearson correlation matrix (R) between vari-
ous TM bands (DNs) and the two water quality
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parameters (SS and chl-a) are presented in Table 3.
The correlation of TM bands with chl-a range between
0.14 (for TM1) and 0.31 (for TM3), and therefore it is
obvious that a linear regression between the TM data
and an attribute such as chl-a would not produce
much accuracy. It should be noted that four of the
bands (TM2, TM3, TM4, and TM5) have comparable
strength of relationship with chl-a (R = 0.27-0.31).
However, in the case of SS, the strength of relation-
ship is less for each band when compared to chl-a; the
R in this case ranges from -0.20 (for TM1) to 0.30 (for
TMS3). The strength of linear relationship between the
TM bands and SS is comparable for all the bands
except TM3. A high correlation is observed between
TM bands themselves (0.48 to 0.94), and it probably
means that these bands are measuring similar aquat-
ic properties in the study and that the DN values
from these bands are covariant in nature. Hence a
prioritization of bands for input vector is not a trivial
task.

TABLE 2. Details of Various Derivative
Indices Considered in the Study.

Index Band Combination and Form
IND1 (TM1+TM2+TM3)/3
IND2 TM1/TM2

IND3 TM1/TM3

IND4 TM2/TM3

IND5 (TM5+TMT7)/2

IND6 (TM4+TM5+TM7)/3
IND7 (TM1-TM3)/(TM1+TM3)
INDS8 (TM1-TM2)/(TM1+TM2)
IND9 (TM2-TM3)/(TM2+TM3)
IND10 TM2+TM3

IND11 TM4+TM5+TM7

The derivative indices, in contrast to the individual
band DNs, are more correlated to the water quality
parameters, as is evident from the Pearson correla-
tion matrix presented in Table 4. The sign of the cor-
relation may be related to the magnitude of the DN
values in individual bands and the arithmetic opera-
tion but can be ignored since the interest here is on
the strength of relationship between the variables. It
appears that a linear combination of first three bands
(IND1 with R = -0.01, Table 4) may not result in an
accurate model for SS when linearly regressed. How-
ever, other combinations of these bands (as in IND2,
IND3, IND4, IND7, INDS8, IND9, and IND10) have
good potential for retrieving the SS information
(R = 0.21 to -0.69, Table 4). The results also show the
indices IND5, IND6, and IND11, which are derived
from TM4, TM5, and TM7 (Table 2), have relatively
less potential to model SS (R = 0.07 to -0.14), but have
significant relationships with chl-a (R = 0.25 to 0.41).
In the case of chl-a, all the indices show good correla-
tion. Because the indices' degrees of correlation vary,
a prioritization of indices is a difficult task for build-
ing ANN models.

The correlation matrix of absolute variation, com-
puted using Equation (4), between the individual
bands and the two water quality parameters is pre-
sented in Table 5. It is evident that the absolute vari-
ation provides a better picture of the strength of
relationship among the variables, that is, the values
in Table 5 compared with their counterparts in Table
3. A significant observation is that the data for bands
TM5 and TM7 are not sensitive to SS, and hence
incorporation of DNs from these bands in modeling
SS would only increase the model complexity. On the
other hand, TM5 and TM7 have significant relation-
ships to chl-a and can be potential input variables in
modeling. It appears that TM2 and TM3 are the domi-
nant bands in modeling both SS and chl-a. TM1 is
more sensitive to chl-a (R = 0.24) than to SS (R = 0.19)
(Table 5). Furthermore, TM4 is more correlated

TABLE 3. Correlation (R) Matrix of Landsat TM DNs With Water Quality Parameters.

TM1 T™M2 TM3 TM4 TM5 T™M7 SS CHL-a
T™™1 1.00
T™M2 0.92 1.00
TM3 0.81 0.94 1.00
T™M4 0.73 0.70 0.62 1.00
T™5 0.60 0.56 0.57 0.77 1.00
™7 0.51 0.48 0.49 0.70 0.94 1.00
SS -0.20 0.12 0.30 -0.14 -0.12 -0.11 1.00
Chl-a 0.14 0.30 0.31 0.27 0.28 0.20 0.54 1.00
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 1689 JAWRA
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TABLE 4. Correlation (R) Matrix of Derivative Indices With Water Quality Parameters.

IND1 IND2 IND3 IND4 IND5 IND6 IND7 INDS IND9 IND10 IND11 SS Chl-a
IND1 1.00
IND2 -0.45 1.00
IND3 -0.53 0.79 1.00
IND4 -0.40 0.29 0.81 1.00
IND5 0.58 -0.17 -0.35 -0.36 1.00
IND6 0.69 -0.22 -0.35 -0.29 0.95 1.00
IND7 -0.53 0.79 0.98 0.80 -0.31 -0.31 1.00
INDS8 -0.46 0.99 0.81 0.33 -0.16 -0.21 0.83 1.00
IND9 -0.43 0.35 0.84 0.99 -0.38 -0.33 0.84 0.39 1.00
IND10 0.97 -0.63 -0.71 -0.52 0.55 0.64 -0.73 -0.65 -0.56 1.00
IND11 0.72 -0.37 -0.49 -0.37 0.90 0.97 -0.46 -0.37 -0.41 0.71 1.00
SS -0.01 -0.67 -0.66 -0.42 -0.12 -0.14 -0.69 -0.69 -0.46 0.21 0.07 1.00
Chl-a 0.22 -0.55 -0.49 -0.22 0.25 0.28 -0.43 -0.52 -0.23 0.31 041 0.54 1.00
TABLE 5. Correlation (R) Matrix of Absolute Variance of TM Bands and Water Quality Parameter.
TM1 TM2 TM3 TM4 T™M5 T™7 SS Chl-a
TM1 1.00
T™M2 0.88 1.00
TM3 0.74 0.90 1.00
TM4 0.54 0.58 0.54 1.00
TM5 0.45 0.39 0.43 0.71 1.00
T™M7 0.34 0.29 0.30 0.69 0.93 1.00
SS 0.19 0.50 0.57 0.22 0.00 -0.04 1.00
Chl-a 0.24 0.33 0.30 0.19 0.23 0.17 0.55 1.00

(R = 0.22) to SS than is TM1 (R = 0.19). Again, it is
evident that an assessment of the potential influenc-
ing variables based on their correlations to absolute
variance is difficult.

The correlation matrix between the absolute vari-
ance of derivative indices and the two water quality
parameters, presented in Table 6, suggests that a
combination of TM1, TM2, and TMS3 is significant in
retrieving SS information from remote sensing data
(R ranges from -0.69 to 0.55). It is observed that the
IND5 and IND6 are not sensitive to SS as is evident
from low value of correlation (R = -0.01 and 0.09,
respectively). However, these indices (IND5 and
IND6) show good correlation with chl-a (0.21 and
0.22). In the case of chl-a, all the indices show compa-
rable correlation (R = -0.18 to -0.37). Similarly to the
correlation of absolute variation for band data, a deci-
sion on the potential influencing derivative indices is
not trivial because of the varying degrees of correla-
tion in this study.
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The residual potential, as defined in the Methodol-
ogy section above, computed for each of the influenc-
ing variables is presented in Table 7. It can be
observed from Table 7 that the maximum residual
potential is for TM1 among the six bands for modeling
both chl-a (0.10) and SS (0.39). It should be noted that
TM3, TM4, TM5, and TM7 show negative residual
potential in modeling chl-a, while they possess posi-
tive residual potential to model SS, though to a lesser
magnitude. In the case of derivative indices, the maxi-
mum potential is observed for IND1 (0.40) to model
SS, which is obvious, as this index is derived from the
first three bands. A similar argument holds for
IND10, with a residual potential of 0.34. All the
indices derived from TM4, TM5, TM7 (IND5, INDG6,
and IND11) show negative residual potential to model
chl-a, implying that these bands are not significant in
modeling chl-a. The indices IND2 and INDS, derived
from TM1 and TM2, possess a negative residual
potential to model SS, suggesting that a forced nonlin-
ear combination of these bands may not perform well
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TABLE 6. Correlation Matrix of Absolute Variance of Derivative Indices With Water Quality Parameters.

IND1 IND2 IND3 IND4 IND5 IND6 IND7 IND8 IND9 IND10 INDI11 SS Chl-a
IND1 1.00
IND2 -0.53 1.00
IND3 -0.62 0.61 1.00
IND4 -0.44 0.12 0.86 1.00
IND5 0.42 -0.13 -0.33 -0.29 1.00
IND6 0.52 -0.23 -0.38 -0.28 0.95 1.00
IND7 -0.65 0.66 0.97 0.80 -0.27 -0.34 1.00
INDS -0.55 0.99 0.64 0.17 -0.11 -0.22 0.71 1.00
IND9 -0.49 0.18 0.88 0.99 -0.31 -0.32 0.85 0.24 1.00
IND10 0.96 -0.68 -0.77 -0.54 0.39 0.50 -0.82 -0.71 -0.60 1.00
IND11 0.61 -0.37 -0.50 -0.34 0.88 0.97 -0.47 -0.37 -0.39 0.61 1.00
SS 0.39 -0.69 -0.63 -0.36 -0.01 0.09 -0.68 -0.73 -0.40 0.55 0.29 1.00
Chl-a 0.29 -0.37 -0.36 -0.19 0.21 0.22 -0.30 -0.35 -0.18 0.32 0.32 0.55 1.00

in modeling SS. In general, the results suggest that
chl-a could be modeled using TM1 and TM2 and any
indices derived from these bands. For SS, all the TM
bands could be employed; however, the first four are
relatively significant.

TABLE 7. The Computed Residual Potential for Each
Variable Corresponding SS and Chl-Concentrations.

Variable SS Chl-a
TM1 0.39 0.10
TM2 0.38 0.03
TM3 0.27 -0.01
TM4 0.36 -0.08
TM5 0.12 -0.05
T™M7 0.07 -0.03
IND1 0.40 0.07
IND2 -0.02 0.18
IND3 0.03 0.13
IND4 0.06 0.03
IND5 0.11 -0.04
IND6 0.23 -0.06
IND7 0.01 0.13
IND8 -0.04 0.17
IND9 0.06 0.05
IND10 0.34 0.01
IND11 0.22 -0.09

Therefore, according to the proposed procedure for
input selection, TM1, TM2, TM3, and TM4 could be
the best combination of input vectors to model SS,
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while for chl-a the most influencing combination could
be TM1 with TM2. The indices might not be intro-
duced in the input vector, since those indices with pos-
itive residual potential are derived from these bands
themselves. Following the principle of parsimony, they
result in only model complexity and do not possess
any extra information. However, the effectiveness of
this approach needs to be reinforced by developing
and comparing ANN models with different input com-
binations. Accordingly, we have developed a number
of ANN models with the input variables as described
in Table 8. The selection of input combinations for
each model developed is done in such a way that the
effect of variables that result in negative residual
potential can be evaluated. Also, it is intended to eval-
uate the impact of derivative indices in input vector
on the models’ performance.

Performance of ANN Chl-a Models

The performance of the ANN models in chl-a pre-
diction (M1 through M10) is also presented in Table 8
in terms of the common statistical indices used for
performance evaluation of models (efficiency and root
mean square error, RMSE). The efficiency is a mea-
sure of the models’ ability to predict values away from
the mean, while the RMSE indicates the residual
variance. It is observed from Table 8 that the highest
efficiency is produced by M3, which is made from TM1
and TM2 band information, and this confirms the ear-
lier considerations of input selection procedure. When
TM3 band data are added to the M3 model, resulting
in M4, the performance slightly deteriorated, suggest-
ing the impact of negative residual potential; TM3
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TABLE 8. Input Variables of ANN Models for SS and Chl-a and the Corresponding Model Performance.

Model Training Validation
Acronym Input Band/Index Combination Output Efficiency RMSE Efficiency RMSE
M1 TM1 chl-a 30.42 15.23 30.58 15.24
M2 TM2 chl-a 32.65 14.98 32.88 14.99
M3 TM1,TM2 chl-a 54.29 12.34 54.53 12.34
M4 TM1, TM2, TM3 chl-a 54.19 12.35 54.41 12.35
M5 TM1, TM4 chl-a 5.64 17.73 541 17.79
M6 TM1, TM5 chl-a 5.60 17.73 5.35 17.80
M7 TM1, TM2, TM3, TM4, TM5, TM7 chl-a 53.53 12.44 53.69 12.45
M8 IND2, IND3 chl-a 47.98 13.17 48.13 13.18
M9 TM1, TM2, IND11 chl-a 50.76 12.81 50.97 12.81
M10 TM2, TM3, IND11 chl-a 15.58 16.77 15.18 16.85
M11 TM1 SS 81.55 6.50 82.36 6.35
Mi12 TM1, TM2 SS 92.76 4.07 92.72 4.08
M13 TM1, TM2, TM4 SS 95.82 3.09 95.78 3.11
M14 TM1, TM2, TM3 SS 95.40 3.24 95.43 3.23
M15 T™M1, TM2, TM3, TM4 SS 98.21 2.02 98.04 2.12
Mi6 TM1, TM2, TM3, TM4, TM5 SS 88.80 5.06 88.79 5.06
M17 TM1, TM2, TM3, TM4, TM5, TM7 SS 83.24 6.19 83.28 6.18
M18 IND7, IND8 SS 85.83 5.69 85.72 5.71

Note: Efficiency is in percentage; RMSE for chl-a is in pg/l and RMSE for SS is in mg/l.

showed a negative residual potential of -0.01. The
results imply that the magnitude of the residual
potential is also important, as a value of -0.01 is very
near to zero and may not deteriorate the models’ per-
formance if included in the input vector. This observa-
tion can be further confirmed from the performance of
M5 and M6 models that a higher negative residual
potential (-0.08 for TM4 and -0.05 for TM5) diminish-
es the performance of models built using these data (a
reduction in efficiency from 30.42 percent for M1 to
5.64 percent for M5 and 5.60 percent for M6). Even
though model M7 performs similarly to model M3, its
input vector is not parsimonious. The inclusion of
bands TM4, TM5, and TM7 in M3 (resulting in model
MT7) has reduced the performance of the model com-
pared to M3. This indicates that the bands TM4,
TM5, and TM7 do not contain much information to
model chl-a from remote sensing data. This may be
due to the absorption of light by water in these bands
(TM4, TM5, and TM7), and hence no significant infor-
mation could be obtained from them (Dekker and
Peters, 1993). The performance of model M8, which
uses IND2 and IND3, indicates that an ANN model
built using derivative indices may not perform as well
as a model that is developed using direct individual
band information (M3). The inclusion of IND11 in
model M3, resulting in M10, also confirms the earlier
considerations that including a variable in the input
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vector that has a negative residual potential would
diminish the model’s performance. Hence, those vari-
ables can be considered as spurious and should not be
included in the input vector. The measured and com-
puted chl-a during training and validation for M3 is
presented in Figure 3, which indicates good model
performance. It is noted that the model underpredicts
higher chl-a concentration during validation, probably
because fewer example data were available for learn-
ing.

Performance of ANN Sediment Models

The performance of the ANN models in predicting
sediment concentration in the reservoir is presented
in Table 8. It is observed from Table 8 that model
M15, which considers all the variables having signifi-
cant positive residual potential (TM1, TM2, TM3, and
TM4), performs the best among all ANN SS models.
The progressive performance of the models from M11
to M15 (an increase in efficiency from 81.55 percent to
98.21 percent) reinforces the considerations of incor-
porating variables with positive residual potential in
the input vector. The performance of M13 and M14
are comparable. The slightly better performance of
M13 over M14 (a gain in efficiency of 0.42 percent)
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Figure 3. Scatter Plot of Measured and Computed Chl-a Concentrations
During Training and Validation of ANN Model (M3).

confirms the effect of magnitude of the residual poten-
tial on model performance; TM4 has a higher residual
potential (0.36) than TM3 (0.27). However, the perfor-
mance of M16, which has the TM5 band in addition to
those in M15, is relatively inferior to that of M15,
even though the TM5 has a positive residual poten-
tial. This is observed with M17 also. The magnitude of
the residual potential for both TM5 and TM7 in SS
modeling is much less compared to the other four
bands. Also, these models increase the complexity of
ANN architecture, which may result in poor training
due to a relatively large number of parameters to be
estimated from the same number of example data.
The poor performance of these models (M16 and M17)
can therefore be attributed to the uncertainty in
parameter estimation. Similarly to ANN chl-a models,
the ANN SS model M18 built using derived indices
(IND7 and INDS8) does not perform well. This sug-
gests that the nonlinear relationship between the
band data and the SS can be captured well by the
ANN model directly, even without inducing any trans-
formation. On the contrary, derivative indices lose
some nonlinear information when transformed, which
may be the reason for an inferior performance of M18
relative to M11.

The sediment concentrations computed by M15 are
presented in a scatter plot against their measured
counterparts in Figure 4. The scatter is close to the
45-degree line and indicates a good performance dur-
ing training as well as validation. The training and
validation datasets contained all ranges of data and
hence show good generalization properties for the
model. On the other hand, a model built by arbitrary
division of data into training and validation datasets
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did not perform well during validation (for brevity the
results are not presented here), suggesting the impor-
tance of data division while ANN model building.

SUMMARY AND CONCLUSIONS

In this study we propose a method that establishes
the output sensitivity toward changes in the individu-
al input reflectance channels while modeling water
quality from remote sensing data. From the sensitivi-
ty, a hypothesis about the importance of each band
can be made and used as a guideline to select appro-
priate input variables (band combination) for develop-
ing ANN models for water quality retrieval. The
approach is illustrated through a case study of Beaver
Reservoir. The results of the case study validate the
input selection procedure outlined herein. It is
observed that a linear regression-based modeling for
water quality information retrieval from remote sens-
ing data may not result in good results, as the rela-
tionship between the radiance and water quality
parameters is highly nonlinear. While this observa-
tion has been reported by many researchers, the anal-
yses of the data used in this study reinforce it. The
study suggest that using derivative indices as input to
develop ANN models is not an appropriate approach,
as the performance of models developed based on the
indices did not show good performance; rather, they
result in reduced model performance. However, these
indices may explain more variance in the data by lin-
ear regression as opposed to using individual bands.
Overall, the study demonstrates that significant
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Figure 4. Scatter Plot of Measured and Computed SS Concentrations
During Training and Validation of ANN Model (M15).

influencing variables for modeling a water quality
parameter can be identified by analyzing the strength
of relationship between absolute variance of individu-
al variable and the targeted output and can lead to
the development of parsimonious ANN models.
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