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[1] Best management practices (BMPs) are effective in reducing the transport of
agricultural nonpoint source pollutants to receiving water bodies. However, selection of
BMPs for placement in a watershed requires optimization of the available resources to
obtain maximum possible pollution reduction. In this study, an optimization methodology is
developed to select and place BMPs in a watershed to provide solutions that are both
economically and ecologically effective. This novel approach develops and utilizes a BMP
tool, a database that stores the pollution reduction and cost information of different BMPs
under consideration. The BMP tool replaces the dynamic linkage of the distributed
parameter watershed model during optimization and therefore reduces the computation time
considerably. Total pollutant load from the watershed, and net cost increase from the
baseline, were the two objective functions minimized during the optimization process. The
optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in
combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)),

was developed and tested for nonpoint source pollution control in the L’ Anguille River
watershed located in eastern Arkansas. The optimized solutions provided a trade-off
between the two objective functions for sediment, phosphorus, and nitrogen reduction. The
results indicated that buffer strips were very effective in controlling the nonpoint source
pollutants from leaving the croplands. The optimized BMP plans resulted in potential
reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads,

respectively, from the watershed.
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1. Introduction

[2] Nonpoint source (NPS) pollution from agricultural
areas has become one of the biggest challenges in maintain-
ing surface water and groundwater quality. Agricultural
activities such as tillage practices and land application of
fertilizer and animal manure are significant factors contrib-
uting to NPS pollution, leading to excess runoff losses of
sediment, nutrients, and pesticides. NPS pollutants are a
major source of water quality impairment in many parts of
the globe [Novotny, 1999; U.S. Environmental Protection
Agency (USEPA), 2003]. Excess sediment loading is one of
the most pressing NPS pollution challenges. More than 50%
of the excess sediment loadings in many water bodies is
contributed by the erosion of agricultural areas [Ritfer and
Shirmohammadi, 2001], affecting more than 10% of the
impaired rivers and streams in the United States [USEPA,
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2006]. The other important NPS pollutants of concern are the
nutrients such as nitrogen (N) and phosphorus (P), affect-
ing approximately 9% of the impaired rivers and streams
[USEPA, 2006]. Sediment loading in the streams causes
increased silting, therefore decreasing the stream flow, and
also acts as a carrier for transportation of nutrients. Nutrients
when present in increased concentrations result in accelerated
eutrophication of the water bodies.

[3] Water quality affected by excess runoff, sediment, and
nutrient losses from agricultural areas can be improved by
implementing best management practices (BMPs) that con-
trol the movement of NPS pollutant loads. The BMPs can be
implemented at a field or farm scale to control NPS loads at
the source or to control the transport of pollutants once they
have left the source areas [Ritter and Shirmohammadi, 2001].
Over the past 2 decades, numerous studies have been con-
ducted to quantify BMP effectiveness at a field or farm scale.
However, considering the resource constraints, it is not
possible to implement BMPs at every farm in a watershed.
Similarly, BMP placement at every agricultural field may not
be needed because only a few “critical” areas in the water-
shed may potentially contribute disproportionately large
amounts of pollutant loads in the watershed. BMPs when
selected for implementation in these critical regions would
achieve maximum pollution reduction.
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[4] Another important constraint in designing a watershed
management strategy is the implementation and maintenance
cost of BMPs. It is always desirable to implement a BMP that
costs the least and gives the most reduction in pollutant load.
Thus a balance has to be achieved between the ecological and
economic implications of BMP implementation. For a given
watershed with many farms and multiple BMP options in
each farm, there can be many different ways of targeting
BMPs that give a cost-effective pollution reduction. Finding
such a solution through on-site evaluation of different target-
ing plans in a watershed is neither practical nor economically
feasible. For example, a watershed with 500 farms and four
different BMPs possible for every farm would require 4°°°
(~10°°") evaluations. Another alternative can be random
placement of BMPs in the watershed. However, such a
solution does not have a directional effect to find an optimal
solution. Therefore an efficient development of a watershed
management plan requires a BMP optimization technique.
The optimization technique searches for the best solution
from all the possible solutions to achieve maximum pollutant
reduction and minimum net cost increase for BMP placement.

[s] The BMP optimization problem usually contains a
large search domain for the objectives and variables that
needs to be solved to find an optimal solution. Genetic
algorithm (GA) [Holland, 1975; Goldberg, 1989] is a heu-
ristic global search algorithm, based on the idea of Darwin’s
evolutionary process. It searches the decision space based
on the principles of “natural selection” and “survival of the
fittest™ to reach the optimal solution. Genetic algorithm has
been used to optimize BMP selection and placement in a
watershed [Chatterjee, 1997; Srivastava et al., 2002; Veith
et al., 2003; Gitau et al., 2004; Arabi et al., 2006]. However,
most of the previous work has focused on using a single
objective function for optimization that combines BMP
effectiveness and cost for optimization [Chatterjee, 1997,
Srivastava et al., 2002] or sequential optimization of effec-
tiveness and cost as separate objective functions [Gitau et al.,
2004; Veith et al., 2003], thus putting constraint on one
objective function during optimization of the other. Some
optimal solutions might be lost if the two conflicting objec-
tives are considered separately. One exception to this ap-
proach was a study by Bekele and Nicklow [2005a] in which
the authors used a multiobjective optimization tool for the
selection and placement of BMPs in a watershed. However,
the BMPs considered were crop management practices and
did not include any structural or nutrient management BMPs.
Sensitivity analysis of GA operational parameter estimation
was also not provided in the model.

[6] Another major limitation with most of the optimization
schemes [Srivastava et al., 2002; Bekele and Nicklow, 2005a;
Arabi et al., 2006] was the large computation time needed
to run the dynamically linked watershed model after each
different BMP placement in the watershed, during the opti-
mization, to estimate the pollutant loads in the watershed.
The computation time for the optimization process was
typically in days, which restricted the researchers to test their
models on relatively small watersheds ranging in size from
3 to 133 km?. It should be noted that the large computation
time needed to find the optimal solution was not intrinsic
to the optimization scheme; it was due to a large run time
needed to simulate watershed processes using a distributed
parameter watershed model.

MARINGANTI ET AL.: MULTIOBJECTIVE OPTIMIZATION TOOL

W06406

[7] The motivation for the research was to develop a model
that would solve for BMP placements at any watershed size
of concern with a decreased computation time (which is
typically in days with most of the models). In this paper we
present a novel method to develop a multiobjective optimi-
zation model by establishing and incorporating a BMP tool
that replaces the requirement of dynamic linkage with a
hydrologic model in the BMP optimization architecture. A
hydrologic model dynamically linked with an optimization
engine to estimate the total pollutant loads from the water-
shed under various BMP solutions has been replaced with the
BMP tool. The BMP tool is a database that contains the
quantitative information regarding the effectiveness of a
BMP to reduce a particular pollutant from a given land use.
The method is tested for implementation on a large eight-digit
hydrologic unit code watershed (with areas typically in the
range of 14003000 km?) to effectively search a large
solution space for finding optimal watershed management
plans that meet the multiple objective functions of being
economically feasible and ecologically effective in control-
ling NPS pollutants in the watershed. The removal of
dynamic linkage also accelerates the progress of the optimi-
zation algorithm and makes it possible to perform the
optimization for relatively large number of iterations with
less computation time. The increased iterations create a
possibility to look into a greater horizon to find a near-
optimal solution for the BMP selection and placement
problem.

[8] The model is designed to provide a trade-off (Pareto-
optimal front) between the two conflicting objective func-
tions. The Pareto-optimal fronts generated can be used by the
decision makers to select a solution from an ensemble of
solutions that will meet the economical constraint while
generating the best possible ecologically effective solution
in the watershed. We hypothesize that the pollution reduc-
tions obtained by the optimization tool are achieved at lower
costs when compared with a random placement of BMPs in
the watershed. The following tasks are completed to accom-
plish the study goal: (1) development of a BMP tool that
contains estimation of the BMP pollution effectiveness using
the Soil and Water Assessment Tool (SWAT), a watershed
scale NPS model; (2) formulation and development of a
genetic algorithm based multiobjective optimization tool that
addresses the multiple objective functions and incorporates
land use constraints during the search process; (3) simulta-
neous estimation and sensitivity analysis of GA operational
parameters using a novel approach; (4) application of the
optimization tool on a watershed for phosphorus (P), nitrogen
(N), and sediment control; and (5) comparison of the results
obtained from the optimization tool with those of the random
selection and placement of BMPs. The Pareto-optimal front
developed after the final generation of the GA, for each NPS
pollutant, provides near-optimal solutions for the two objec-
tive functions. The SWAT model is used to simulate the
solutions obtained during the optimization to test the appli-
cability of the solutions obtained from the BMP tool when
implemented using a watershed model that incorporates
routing and in-stream processes.

2. Theoretical Background

[9] Genetic algorithm (GA) is a heuristic-based search
technique used to find solutions for optimization problems.
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GA is based on techniques inspired from evolutionary
biology such as selection, inheritance, crossover, and
mutation. A GA consists of a population of chromosomes
(solutions) with variables coded in the form of genes. The
initial population of chromosomes is randomly generated for
the given population size. During the selection process at
each successive generation (iteration) the existing solutions
are picked and/or duplicated based on fitness of the individ-
uals; the higher the fitness of the individual larger the chances
of it being selected into the mating pool. The individuals in
the mating pool then undergo genetic operations: crossover
and mutation. Crossover, also called as recombination or
reproduction, produces child solutions from the parent sol-
utions present in the mating pool. Crossover is necessary to
generate population for the next generation that shares many
of the positive characteristics of the parent. During mutation,
a bit in the chromosome sequence of population is selected
randomly and is altered from its original state. Mutation
is used to maintain genetic diversity from one generation
of solutions to the next. Goldberg [1989] introduced the
“mutation clock” operator to identify the net bit to be
mutated by skipping 7= —p,,In(1 — r) bits from the present
bit for any random number » and mutation probability p,,,
therefore reducing the number of random numbers to be
generated by O(1/p,,).

2.1.

[10] Most of the real-world hydrologic/water quality
problems that require optimization of multiple, often com-
peting, objectives are solved by combining them into a single
objective function. However, if an expression for single
objective function is not well known prior to the optimiza-
tion, the process needs to be formulated as a multiobjective
(MO) optimization problem with conflicting objective func-
tions. Single-objective optimization yields a single optimal
point, whereas the MO optimization produces a family of
near-optimal points known as Pareto-optimal set, which
provides decision makers with insight into different char-
acteristics of the problem before a final solution is chosen.

[11] Deb et al. [2002] tested the performance of the two
popular evolutionary based multiobjective optimization tech-
niques: nondominated sorted genetic algorithm (NSGA-II)
[Deb, 1999, 2001; Deb et al., 2002]; and strength Pareto
evolutionary algorithm (SPEA-2) [Zitzler and Thiele, 2000],
on nine test functions and concluded that NSGA-II gave a
better spread of the solutions and better convergence than
SPEA-2 in eight of the nine test functions. Nondominated
sorted genetic algorithm (NSGA-II) [Deb, 1999, 2001; Deb
et al., 2002] is a multiobjective optimization algorithm
(MOOA) that can search a large number of variables and
objective function space to find an optimal solution. The
overall computation complexity of the algorithm is O(MN?),
which usually is O(MN?) for most of the evolutionary
techniques [Deb et al., 2002]: where O is “order of,” M is
the number of objective functions, and N is the population
size. Nondominated sorting and elitism are utilized to main-
tain diversity in the solutions and to produce Pareto-optimal
set of solutions in NSGA-IIL.

2.2. Domination and Nondomination

Multiobjective Optimization Algorithm

[12] In a multiobjective optimization problem, ifg;, {i=1,
..., M} are the objective functions that need to be minimized,
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Figure 1. A conceptual Pareto-optimum front progress

during multiobjective optimization.

a solution x'" is said to dominate x® if both the following
conditions are true [Zitzler and Thiele, 2000]:

i.e., x? is dominated by x" or in other words x'"’ is non-
dominated by x?.

[13] If each individual in a population of size N has
solutions that are nondominated, then the representative of
the solutions in the objective space determines the Pareto-
optimal front. The objective of multiobjective optimization is
to search for solutions in the global Pareto-optimal region
(i.e., optimal for all the objective functions) and to achieve
solutions that are separate from one another to the maximum
possible extent in the nondominant front (Figure 1). This also
helps in checking the premature convergence of the optimi-
zation process [Deb et al., 2002].

2.3. Elitism and Crowding Distance

[14] There always exists a set of best solutions at each
generation, which can be comparable to the population size N
that can go along to the next generation. Such solutions that
are nondominated among all the individual generations are
called as elite solutions and are stored in an external set called
the elite set. After every generation a percentage of popula-
tion is replaced by individuals from the elite set.

[15] The crowding distance is defined as the sum of the
side lengths of the cuboid that touches the neighboring
solutions in case of the nonextreme solutions and is infinite
for the extreme solutions [Coello et al., 2005]. It is used by
the NSGA-II to ensure that the solutions generated at each
generation are well spread along the Pareto-optimal front and
are far apart in the solution space.

2.4. Description of the Watershed Model

[16] The watershed model used in this study was the Soil
and Water Assessment Tool (SWAT) model. SWAT is a
process-based distributed-parameter watershed-scale model
designed to simulate long-term effects of various watershed
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Figure 2. Flowchart for the different processes during the multiobjective optimization. The area within

the dashed line denotes the optimization algorithm.

management decisions on hydrology and water quality
response [Arnold et al., 1998]. The SWAT model is designed
to be applicable not only in gauged basins but also in
ungauged basins [Arnold et al., 1998]. It performs well for
long-term continuous simulations at both monthly and annual
scales [Borah and Bera, 2004; Gassman et al., 2007]. The
SWAT model divides the watershed into subwatersheds or
subbasins based on the outlets selected within the watershed
by the user. It further divides subbasins into land areas, called
hydrologic response units (HRUs), based on land use, man-
agement, and soil properties. All the model calculations are
done at the HRU level. Flow and water quality response
generated from each HRU is routed at subwatershed scale.
The model generates daily, monthly, and annual simulation
outputs at HRU, subwatershed, and watershed scales.

[17] The input data needed by the model are related to
watershed physical characteristics, climate, plant growth,
reservoir data (if any), and management practices at HRU
level. The geographic information system (GIS) interface in
the model simplifies the preparation of input files [Di Luzio
et al., 2004]. The typical GIS data needed by the model are
digital elevation model (DEM), soil, and land use maps. The
climatic input data required by SWAT are precipitation,
temperature on a daily or subdaily basis from multiple
climatic gauge locations, solar radiation, relative humidity,
and wind speed. Agricultural activities can be given as input
to the model by modifying the management files. SWAT
simulates the flow, nutrients, sediment, and chemicals at the
subbasin or HRU level. Surface runoff is computed using
a modification of the SCS curve number technique [Soil
Conservation Service (SCS), 1972], or modified Green-
Ampt infiltration method. Modified universal soil loss equa-
tion (MUSLE) [Williams, 1975] is used by the SWAT model
to estimate the soil erosion and sediment yield in the
watershed. Nitrogen and phosphorus are applied through
fertilizer, manure, or residue application, which can be mod-
eled as inputs in SWAT for each HRU in the watershed. The
important feature in SWAT is that it aids in modeling the

various BMPs (structural and management based) by chang-
ing appropriate parameters in the input files of the model.
This feature is utilized in the development of the BMP tool,
which estimates the effectiveness of BMPs for a particular
NPS pollutant reduction.

3. Methodology

[18] Figure 2 describes the methodology followed during
the multiobjective optimization for selection and placement
of BMPs in a watershed. The variables (equal to the number
of HRUs) are initiated randomly for a given population size.
The following are required as inputs into the optimization
model to evaluate the objective functions of the population:
(1) the baseline sediment and nutrient loading at a HRU level
in the watershed estimated using a SWAT model run without
any BMPs implemented in the watershed, (2) an allele set that
provides land use constraints for the placement of BMPs, and
(3) a BMP tool that provides pollutant reduction efficiency
and corresponding costs for implementation. The population
then undergoes selection and genetic operations (mutation
and crossover) to create population for the next generation.
After every generation a check is performed to see if the
generation number has exceeded the maximum generations
fixed. The model terminates if this condition is true to give a
range of optimized solutions for the two objective functions
at the final generation of the optimization.

3.1. Study Watershed

[19] The L’Anguille River watershed (LRW) is located
in the Mississippi delta region in eastern Arkansas (Figure 3).
The watershed covers an area of 2520 km?* and drains the
entire stretch (157 km) of the L’Anguille River. The main
crops grown in the watershed are rice (26%) and soybeans
(46%) and represent most (~72%) of the agricultural land
(~95%) in the watershed (Table 1). The L’Anguille River
is included in the list of impaired water bodies by the
Arkansas Department of Environmental Quality (ADEQ)
[2002]. Excessive sediment and nutrients originating from
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Figure 3. Location of L’Anguille River watershed in Arkansas, location of U.S. Geological Survey
stream gauging stations in the watershed, and subwatershed delineation used in Soil Water and Assessment

Tool (SWAT) modeling.

nonpoint sources are identified as the principal causes for
impairment.

3.2. SWAT Model Development

[20] The inputs that go into the setup of SWAT model, such
as digital elevation model (DEM), soil, and land use GIS
maps, were obtained from Center for Advanced Spatial Tech-
nologies (CAST) at the University of Arkansas, Fayetteville.
A sensitivity analysis was performed, using the built-in Latin
hypercube one-at-a-time (LH-OAT) technique, to determine
the parameters that were sensitive in the SWAT model for
flow, sediment, and nutrients. A curve number technique
developed by the SCS [1986] was used by SWAT to estimate
the runoff. Curve number parameter (CN2), which is a
function of soil’s permeability, land use, and antecedent soil
moisture conditions, was the most sensitive parameter for
flow and sediment. The most sensitive parameters for N and
P were the initial organic N concentration in the soil layer
(SOL_ORGN) and the initial organic P concentration in the
soil layer (SOL_ORGP), respectively. The flow information
for the watershed was obtained from two U.S. Geological
Survey (USGS) gauging stations. The upstream gauge is
located near Colt, Arkansas (USGS gauge 07047942), and
the downstream gauge is located near Palestine, Arkansas
(USGS gauge 07047950) (Figure 3). The SWAT model was
calibrated for flow at these two gauging stations. However,
continuous sediment and nutrients (N and P) data were only
available for the Palestine gauging station; consequently
calibration for sediment and nutrients were performed
only at this station. The SWAT model was calibrated for
15 years (January 1990 to December 2004). An autocalibra-
tion tool in SWAT 2005 was used for calibration of the model.
Performance indices R* (R%s) for monthly streamflow at Colt
gauge station are 0.42 (0.58) and 0.68 (0.70) for calibration
and validation periods, respectively. Monthly calibrated
streamflow and sediment performance indices R? (R&s) for
Palestine gauge station are 0.41 (0.43) and 0.17 (0.23),

respectively. Measured data for phosphorus and nitrogen at
the gauging stations were very sparse and therefore could not
be used for model calibration using these objective functions.
Model outputs for nitrogen and phosphorus were compared
with the quarterly measurements done in the watershed to
make sure that the calibrated outputs were within the range of
the values measured quarterly in the watershed. Detailed
procedures about the SWAT model calibration can be
obtained from Schaffer [2007]. The watershed was divided
into 32 subbasins and 433 HRUs. The SWAT model was used
to get the estimates of the pollutant loading at the HRU level
for the watershed for 15 years of the calibration period
(1990-2004). Average annual pollutant load from each
HRU was considered in the study.

3.3. Allele Set Preparation

[21] The BMPs are land use and land cover specific; that is,
every land use has a unique set of BMPs that can be applied
for NPS pollution control. These sets of BMPs applicable to
each HRU are called allele sets and serve as an input in the
optimization model by narrowing the search space for a given
land use to a definite set of BMPs. Table 2 shows the allele set
for rice and soybean, the two crops that constitute major
agricultural land use in the LRW. For rice, three nutrient
management plans (NMP) were the only BMPs considered
for placement, as it is not feasible to have buffer strips in rice

Table 1. Distribution of Land Use/Land Cover in the L’Anguille
River Watershed

Percent Distribution in the Watershed

Rice 25.7
Soybean 45.8
Cotton 4.5
Forest 16.8
Pasture 2.9
Urban 1.7
Other 2.6
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Table 2. Allele Set of Best Management Practices in L’Anguille
River Watershed

Crop Allele Set
Rice type 1; NMP 1, NMP 2, NMP 3*
Soybean type 1; NMP 1, NMP 2, NMP 3

type 2; buffer 0 m, 5 m, 10 m
type 3; conservative till, no till

“NMP 1, 2, and 3 represent 25% below optimal, optimal, and 50% above
optimal application of P fertilizer, respectively.

fields. Selection of BMPs directly stemmed from our dis-
cussion with the stakeholders, such as famers and county
extension agents. Rice fields in the southeastern United
States typically have ponded water that stay in fields for an
extended period of time. This allows the sediment to settle in
rice fields. Prior to harvesting, the fields are drained into
drainage ditches as concentrated flow. Because of low
sediment concentration in effluent discharge from rice fields
and concentrated flow discharge, buffer strips are not a
feasible option and are not practiced in this and other water-
sheds. Also, a no-till option was not considered for rice
because it is not practical to cultivate rice without tillage.
However, buffer strips and no-till BMPs can be selected for
soybean crops.

3.4. BMP Tool

[22] BMP tool provides an estimate for the costs and pol-
lution effectiveness for each BMP that can be implemented
at a HRU scale in the watershed. To develop the BMP tool
(Figure 4), all the HRUs in the watershed that have a common
land use are selected. The allele set is used to choose BMPs to
be placed in the selected HRUs. One BMP at a time is allotted
from the allele set corresponding to the chosen land use and
placed in all the selected HRUs. There were 54 difterent BMP
placements possible after combing the various combinations
of individual and set of BMPs that can go into a particular
land use. The SWAT model was run for these 54 different
scenarios to generate input data for the BMP tool. The pol-
lutant load in the watershed is estimated by evaluating the
SWAT model for the given BMP scenario. BMP pollution
efficiency is estimated by calculating the percentage reduc-
tion in the pollution load for the BMP scenario when com-
pared with the baseline pollutant load. The cost information is
used to estimate the total costs for the placement of BMPs.
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This process is repeated for all the possible BMPs in the allele
set to develop the database that constitutes the BMP pollution
reduction and corresponding BMP implementation costs.
This database, termed the BMP tool, was used to estimate
the BMP pollution reductions, thus removing the need of a
dynamic linkage with the SWAT model during the optimi-
zation process.

[23] The following are the assumptions/limitations of the
BMP tool developed in this study:

[24] 1. The goal of the BMP optimization is to minimize
pollution reduction at the HRU level. It is assumed that when
the impact of in-stream processes is minimal in pollutant
transport, HRU level optimization will produce efficient
solution. Routing and in stream processes are not considered
when the tool is applied at an HRU level. However, in a
watershed where in-stream processes are highly critical, the
full dynamically linked optimization model needs to be used.

[25] 2. Meteorological factors are the only dominant pro-
cesses affecting temporal variability in BMP performance
from one year to another.

[26] 3. The pollution reductions established for various
BMPs are specific for the watershed under consideration.

[27] The BMP costs that were used in the model were
annual net costs per unit area of the watershed. These costs
included the establishment, maintenance, and opportunity
costs. The cost information for the various BMPs for year
2007 were obtained from University of Arkansas Coopera-
tive Extension Service (CES) [CES, 2007] rice and soybean
production budgets and Natural Resources Conservation
Service [2006]. The cost information included the costs of
production (fertilizers, fungicides, herbicides, irrigation,
labor, fuel, seed, etc.) for different tillage systems [Rodriguez
et al., 2007] as shown in Table 3. Some of the BMPs
considered resulted in increased crop yields, which was also
added into the cost component. All the cost estimates were
made per unit area ($/ha).

3.5. Multiobjective Genetic Algorithm Model
Development

[28] As already mentioned, the watershed was delineated
into 32 subbasins, which were further divided into 433 HRUs.
These 433 HRUs are the variables for which the BMPs are to
be searched to meet the two objective functions: (1) minimi-
zation of pollutant loading and (2) minimization of the net
cost increase at the watershed because of the placement of

Land
All HRU Use ALLELE Choose a BMP
from each type
Cost Information Baseline
Run SWAT

Pollution Effectiveness +
Cost for BMP
implementation

Figure 4. Best management practices (BMP) tool implementation in a watershed. The allele set contains
the variables (BMPs) that need to be chosen for placement. Baseline indicates the calibrated SWAT model
against which costs and pollution effectiveness of BMPs are evaluated.
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Table 3. Cost Estimates for Rice and Soybean Production, 2007 Prices

Tillage System ($ ha ')

Rice Soybean
Cost Distribution Conservation Conservation No-Till

Variable expenses

Custom work 255.61 80.00 78.00

Diesel fuel 36.02 36.02 36.02
Fertilizer

Nitrogen 104.37 NA NA

Phosphorus 68.54 60.61 60.61

Phosphorus (+50%) 102.82 90.92 90.92

Phosphorus (—25%) 51.41 45.46 45.46
Filter strips

Five-meter width NA 14.79 14.67

Ten-meter width NA 29.57 29.35
Fungicide and seed treatment 33.01
Herbicides and insecticides 128.92 38.77 61.53
Interest on operating in capital 46.87 11.84 11.74
Irrigation expenses 256.05 122.31 122.31
Operator labor 26.79 14.49 9.91
Repair and maintenance 32.50 18.13 12.15
Seed 35.76 92.58 92.58
Fixed expenses: Machinery and equipment 147.75 83.18 53.31

BMPs at the farm (HRU) level. The chromosome string cor-
responding to the optimization problem consists of 433 genes
(Figure 5).

[29] The two objective functions that need to be optimized
are mathematically expressed as

min[( /(X)) A (g(X))]Vf € [P, N, Sed]. )

Total reduction in the pollution load is expressed as weighted
average of the HRUs in the watershed f{X):

> (P(x) X A())(1 = R(x))
FX) === : (3)

> AW

xeX

The net cost of the placement of BMPs in the watershed is
estimated as g(X):

> CA()
g(X) = * ; (4)

D AR

xeX

BMP :: f(HRU,LUSE)

/

where X represents the HRUs in the watershed, P is the unit
pollutant load from a HRU, R is the pollutant reduction
efficiency of BMP, A is the area of HRU, and C is the unit
cost of the BMP.

[30] During the optimization process, the algorithm
searches first for a particular management practice from the
given allele set for a particular land use. The subsequent
estimation of the pollution loading and cost estimates for the
placement of this particular BMP in the selected HRU are
obtained from the BMP tool. A weighted average of the
pollutant loading and the net costs at HRU level are calcu-
lated to get an estimate at the watershed level.

[31] The SWAT output (baseline scenario) for the pollutant
loading at HRU level, BMP effectiveness estimated from
various SWAT runs, economic data, and allele sets form the
inputs for the optimization model. One pollutant (P, or N, or
sediment) is considered at a time during the optimization; that
is, three different optimization models were developed for
each of the pollutants of concern in the watershed.

[32] The various parameters of a GA are population size,
number of generations, crossover rate, and mutation proba-
bility. Population size determines the number of individuals
considered for the evolutionary process. The members of this

72131451016

433

Chromosome

(Size: No. of HRUs)

Figure 5. Gene string for BMP representation in a watershed.
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Table 4. Default and Optimal Parameters Chosen for Genetic
Algorithm From Sensitivity Analysis

Parameter Default Optimal
Population 100 200
Number of generations 1000 40000
Crossover probability 0.9 0.9
Mutation probability 0.0001 0.001

population undergo genetic modifications through the pro-
cess of mutation and crossover to obtain a new set of indi-
viduals that might be stronger than the parent. The weaker
individuals from the pool are eliminated during this process
so that the number of individuals in the population remains
the same but the population is more fit than before. This pro-
cess is continued for a given number of iterations known as
generations.

[33] Usually the performance of GA is improved by
increasing the population size and number of generations,
but that also increases the computation time to reach a near-
optimal solution. Crossover and mutation probability are the
parameters that create the offspring, and hence are critical in
driving the algorithm toward an optimal solution.

3.6. Sensitivity Analysis and Estimation of GA
Parameters

[34] A sensitivity analysis was performed on GA param-
eters to determine the influence of these parameters on the
Pareto-optimal front. The various GA parameters (population
size, generations, mutation, and crossover probability) were
changed, one at a time, to evaluate the effects of each param-
eter on the Pareto-front. Estimating the goodness of the
Pareto-optimal front is subjective. The closer the front gets
to the origin, the better the solution is to minimize the two
objective functions (Figure 1). The parameter value for which
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the Parcto-front was closest to the origin in sensitivity
analysis was taken as the parameter estimate for the optimi-
zation process.

[35] Default genetic algorithm operational parameters
were considered as shown in Table 4. Sensitivity analysis
was performed by changing a particular operational param-
eter while keeping the other three parameters fixed. Bounded
parameters such as crossover (0 to 1) and mutation probabil-
ity were varied such that it covered a range of values between
the bounds. Pareto-optimal fronts were plotted after every run
and the progress in the front was observed.

[36] The total pollutant load and net cost for the placement
of BMPs in the watershed were estimated from equations (3)
and (4). All the estimates were based on an annual average
per unit area in the watershed. These two objective functions
are plotted against each other during the sensitivity analysis
to get a subjective estimate of the GA operational parameter
sensitivity and simultaneously obtain an optimal value for
these parameters.

4. Results and Discussion

[37] The baseline watershed response consisted of conser-
vative tillage for both rice and soybean with no buffer strips
and nutrient management plans (NMP) implemented. The
annual average HRU area weighted baseline loadings from
the watershed for sediment, phosphorus, and nitrogen yield
were 1.8tha 'a ' 1.5 kg ha'a' and 17.4 kg ha 'a™ !,
respectively.

4.1. Sensitivity and Estimation of GA Operational
Parameters

[38] The closer the Pareto-optimal front gets to the origin
the better the solution is for the two objective functions
considered in this study. Figure 6 shows the sensitivity of GA
parameters, namely, population size, number of generations,
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Figure 6. Pareto-optimal front for the sensitivity analysis of genetic algorithm (GA) parameters.
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crossover probability, and mutation probability. Increases in
the population size provided more freedom for the individ-
uals in the solution space as more individuals were present
during each evolution and there was therefore a higher
probability of obtaining a better offspring. Improvement in
the Pareto-optimal front was observed in the beginning when
the population was increased from 10 to 200. However, when
the population was further increased to 400, considerable
change was not observed in the front. This can be explained
by the increased freedom of the solution space that the
population of 400 has, which requires more generations for
the individuals to show a considerable change in the objective
functions. Additionally, as all the runs were made for a fixed
number of generations, some of the individuals in the popula-
tion did not get enough chance to converge. The results could
be improved if a population of 400 was chosen and the model
was run for a larger number of generations, but that would
considerably increase the computation time.

[39] The number of generations had a significant influence
on the shift of the Pareto-optimal front toward the origin, i.e.,
in finding a better optimal solution. The more the number of
generations, the more the changes obtained in a gene string
resulting in the survival of the fittest. Initially during the
sensitivity analysis the model was run for 40,000 generations.
It was noticed that there was a definite improvement in the
front as the number of generations increased. A total of
80,000 generations were used in the final BMP optimization
model.

[40] No consistent pattern in the shift of Pareto-optimal
front was noticed for the crossover probabilities. The solution
improved when it was increased from 0.1 to 0.4, but when
it increased to 0.5 the front moved away from the origin.
However, when the crossover probability was increased
further (>0.5) the front again shifted toward the origin, sug-
gesting faster convergence for high crossover probability.

[41] The mutation probability range suggested by
NSGA-II was between 0 and 0.0004 (the maximum sug-
gested limit value was calculated based on the chromosome
length), but it was noticed that for a slightly higher mutation
probability (= 0.001) the Pareto-optimal front moved toward
the origin. However, further increase in the mutation proba-
bility (= 0.1) had a drastic deterioration in the performance.
This can be explained by the decrease in convergence of the
population due to excessive mutation rates.

[42] Although increasing the population size yielded a
better solution, considering the increased computation time
and delayed convergence for higher population values, an
average value of 100 was chosen for the model. The cross-
over probability and mutation probability, following the
assessment, were 0.9 and 0.001, respectively, which showed
a faster convergence during the sensitivity analysis. As
previously mentioned, the number of generations was set at
80,000, which was large enough to allow the model to reach a
near-optimal solution. The various parameters that were used
for the development of the model are shown in Table 4. The
optimization model runs made for each pollutant (sediment,
phosphorus, and nitrogen yield) with a population size of 100
for 80,000 generations took 2 h to complete on a Centrino
Duo@2.16GHz computer.

[43] Aninteresting observation made was that the pollutant
reduction was noticed without an increase in the total net cost
(Figure 7). This can be explained as the increase in the crop
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yield because the placement of a certain BMP nullifies the
increase in cost because of implementation and maintenance
of the BMPs at a watershed scale. Such a reduction can be
termed as “zero net cost BMP scenario.”

[44] Figure 7a shows that sediment yield (SYLD) was
observed to decrease right from the first generation because
most of the BMPs applied were effective in reducing the
sediment loads from the HRUs. However, the sediment yield
range tends to narrow toward the final generations where the
solutions begin to reach saturation with respect to sediment
yield reduction and only increase in net cost was observed.
As the convergence of the solution space was achieved with
respect to the sediment yield objective function, the Pareto-
optimal front still followed a smooth pattern with a good
spread of solutions in the variable space; that is, the solutions
were not concentrated toward either the higher-cost or the
lower-cost scenarios. It is noticed in Figure 7b that the range
of solutions after the final generation would lead to a reduc-
tion in sediment yield by 31-33% for a net cost increase of
$0—55 ha ' a™ !, respectively. Population during the initial
generations had no solution for zero-dollar sediment reduc-
tion, but as the optimization progressed the algorithm could
search for some zero net cost BMPs that were effective. A
smooth Pareto-optimal front with a good spread illustrated
the effectiveness of the multiobjective optimization algo-
rithm to search nondominant solutions. It was observed that
the front started to get saturated as the number of generations
was increased.

[45] Figure 7c demonstrates the progress in the Pareto-
optimal front during the optimization of the phosphorus
model. The starting population was spread around the base-
line phosphorus load considering the presence of some
management practices, such as NMP (+50% above normal
P application) that would increase the P loading from the
baseline, if selected. This pattern was noticed only during the
early stages of the optimization where the individuals are
selected randomly. However, as the optimization progressed
the algorithm could search for sets of solutions that would
lead to reduction in total phosphorus loads in the watershed.
Zero net cost phosphorus reduction was observed with a few
solution sets. The optimized solution in the last generation
(Figure 7d) has solutions in range of 17—32% reduction in
total phosphorus for a net cost of $0—58 ha~' a™', respec-
tively. It was noticed that the solutions at the final generation
followed a very good spread and the solution space had
populations distributed far from each other, which would
give a broader option to be chosen when making a watershed
management decision.

[46] Figures 7e and 7f show the progress in the nitrogen
optimization model and the solution at the final generation of
the BMP optimization process, respectively. It was noticed
that nitrogen generally had a higher initial loading than the
phosphorus. The reduction in the nitrogen yield was notice-
able from the first generation as there were no management
practices, unlike phosphorus, that would increase the nitro-
gen losses from the farms. The Pareto-optimal front got closer
to the origin as the number of generations was increased.
After 30,000 generations it followed a vertical trend with
very little variation in the nitrogen yield observed. However,
a significant change in the net cost was observed. The opti-
mized solution in the last generation has solutions in the
range of 11—13% reduction of nitrogen for a net cost increase
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Figure 7. Parcto-optimal fronts (a, c, ¢) during the optimization and (b, d, ) after the final generation for

sediment, phosphorus, and nitrogen reduction.

of $0—53 ha~' a!, respectively. It should be noted that
almost all the models converged much before (~30,000) the
maximum number of generations (80,000) selected for the
optimization. The additional generations served to validate
that the optimization algorithm had reached the global
optimal solution.

[47] The GIS maps shown in Figures 8, 9, and 10 represent
the spatial allocation of BMPs in the watershed for sediment,
phosphorus, and nitrogen reduction, respectively. As HRUs
are defined in the SWAT model based on the land use and soil
distribution within a subbasin, the location of HRUs cannot
be explicitly described. In order to represent the optimization
solutions that were obtained at HRU level for 433 HRUs
present in the watershed, the subbasins were divided manu-
ally into a number of HRUs present in each subbasin. It
should be noted that the spatial representation of HRUs could
also be obtained by subdividing the watershed into approx-
imately 433 subbasins, and then using the option of dominant
land use and soils for HRU distribution, resulting in a single
HRU per subbasin. Figures 8, 9, and 10 present three differ-
ent BMP scenarios for a given pollutant. The three scenarios
represent the solution for the BMP selection and placement
corresponding to (1) the solution that has a high net cost, and
the best ecologically effective solution, (2) the solution that is
median of the range of net cost and pollution reduction, and
(3) the solution that has the least net cost. All the scenarios
had the similar placement of BMPs for rice, as there were not
many choices (three NMPs) for the placement of BMPs in
rice. For soybean fields, scenario 1 typically had BMPs that
would reduce the pollutant to the fullest extent possible,
therefore representing larger buffer strips (10 m) and nutrient
management plans that would result in least pollutant load
(mostly NMP 1 or NMP 2). It was observed that scenario 3

had a large number of BMPs that contributed to the reduction
in the pollutant load without an increase in the net cost
primarily because the increase in crop yield revenue nullified
the increase in cost because of the placement of BMPs in the
watershed. It was also observed that there were many more
sets of BMPs selected for scenario 3 when compared with
scenario 1 and scenario 2.

[48] It was hypothesized that the optimal selection and
placement of BMPs in a watershed would yield higher
pollution reductions at much lesser costs when compared
with a random BMP selection approach. In order to test the
hypothesis, BMPs were selected randomly to be placed in the
watershed. Figure 11 shows that the random placements of
BMPs were all clustered in a fixed region and the optimized
results are proven to be superior in minimizing the two
objective criterion of total pollutant load and total cost
increase because of the placement of BMPs in the watershed.
It should be noted that placement of BMPs in agricultural
watersheds is largely random. Many state agencies adminis-
tering cost-share programs for BMPs do not prioritize BMP
selection or placement, resulting in random selection and
placement of BMPs in the watershed. The results from this
study indicate that an optimal BMP placement can be per-
formed very efficiently using the BMP tool developed in this
study. When implemented, the optimal BMP selection and
placement will result in significantly greater reduction in
NPS pollution in agricultural watersheds compared with the
random BMP placement.

4.2. Applicability of the Optimization Solutions When
In-Stream Processes Are Considered

[49] The objective function used with the BMP tool opti-
mized BMP placement to minimize pollutant losses at field
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Figure 8. Type and location of BMPs selected in L’ Anguille River watershed for sediment reduction.

scale. This approximation helps in reducing the model com-
plexity by using an area-weighted average for pollutant
reduction in the watershed as the objective function. How-
ever, when the in-stream processes are considered, the
dynamic linkage of the optimization model with the water-
shed model may be necessary; however, a dynamic linkage
will result in large computation time required to find near-
optimal solutions. The dynamic linkage with the watershed
model may not be necessary if the solutions are able to per-
form similar when the in-stream processes are considered or
if in-stream processes do not alter the magnitude of pollut-
ant transported from the watershed. Migliaccio et al. [2007]
reported that SWAT-simulated nitrogen and phosphorus
losses were not significantly affected by in-stream processes
at an annual timescale. In order to test the applicability,
solutions were sorted according to the cost and picked at
regular intervals starting from the lowest-cost to the highest-
cost solutions with a 10% increment each time. This process
was repeated after 10, 40, 100, 1000, and 5000 generations.
All of these selected solutions were used to simulate the
SWAT model by changing the input files accordingly.
Figure 12 provides the Pareto front when the SWAT model
is used to simulate the annual pollutant loadings (sediment, P,
and N) at the Palestine gaging station (Figure 3) considering
the in-stream processes in the watershed. The estimates
provided on the x axis of Figure 12 are different (in magni-

tude) from the estimates provided on the x axis of Figure 7;
the former represent the total loading of the pollutant passing
through the particular gauge location (Palestine) in the
watershed and the latter represents the total average area-
weighted loading at a HRU scale in the entire watershed. It is
observed that the optimized solutions obtained using the
BMP tool are able to capture the behavior of the trend in
the objective functions when the in-stream process are
considered. The Pareto front moved closer to the origin with
increase in the number of generations. Also, the optimized
solutions resulted in smaller loadings of sediment, P, and
N compared with baseline load at the gauging station. The
loading reductions due to BMP placement were also very
similar with the in-stream process and the BMP tool, indi-
cating that the BMP tool could be used to efficiently optimize
BMP placement in large agricultural watersheds.

5. Summary and Conclusions

[s0] Watershed level placement of BMPs to achieve max-
imum NPS pollutant reduction with minimal increase in
BMP implementation costs is an active area of research. This
requires finding an optimal solution from many millions
of feasible alternatives for the selection and placement of
BMPs. The BMP optimization problem requires searching
a large variable space to get an optimal solution. Genetic
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Figure 9. Type and location of BMPs selected in L’ Anguille River watershed for phosphorus reduction.

algorithms (GA) are search techniques that search the solu-
tion space globally and hence perform better than the local
search techniques (for example, back propagation, SIMPLEX,
etc.) to solve problems with large variable space. Most of the
previous work done in developing models for this problem
has used GA for optimization by considering the two objec-
tives of cost increase and pollution reduction individually by
placing a constraint on one objective while optimizing the
other. The drawback with this approach is that some solutions
might be lost because the two objectives are considered
separately. We have addressed this problem with the devel-
opment of a multiobjective optimization algorithm frame-
work that considers both objectives simultaneously. Also,
the previous models developed were confined to either field
scale or small watersheds (area < 13 km?), as most of these
models used a dynamic linkage between the optimization
model and the watershed simulation model, which increased
the computation time considerably. In this study we have
developed a BMP tool that replaces the dynamic linkage in
the model architecture. The BMP tool required running the
watershed simulation model for all 54 different combinations
of BMPs possible in the watershed. BMP pollution efficiency
was computed for each of the combination of BMPs by
comparing the pollutant load for the particular BMP place-
ment scenario with the baseline scenario when there was no
BMP implemented. BMP implementation costs were esti-

mated based on the unit cost information and considering a
fixed interest rate. The replacement of the dynamic link with
the BMP tool considerably improved the computation time
(1077 s per evaluation per unit area (in hectares) of the water-
shed size when compared with 0.02 s [Arabi et al., 2006] and
0.07 s [Bekele and Nicklow, 2005a] per evaluation per unit
area (in hectares) of the watershed size) and therefore was
extended for BMP placement in a larger USGS eight-digit
HUC watershed (LRW).

[s1] The multiobjective optimization of the two objec-
tive functions was performed using the genetic algorithm
NSGA-II. The inputs for the optimization algorithm included
initial pollutant yield from a calibrated SWAT model, allele
set with various options for BMP selection in a particular land
use, BMP tool which consisted of pollutant reduction effi-
ciencies, and cost estimates for each BMP. The SWAT model
was used to simulate various BMP scenarios for the water-
shed; these scenarios were then used in the development of
pollution reduction effectiveness for the various BMPs. A
sensitivity analysis of the parameters of NSGA-II was per-
formed to find the parameters that had significant influence
on the solution. This process also estimated the parameters
for NSGA-II. The final optimized result gave a trade-off
between the two objective functions. Overall the nutrient and
sediment optimization models performed well in reducing the
pollutant loads from the watershed. This trade-off can be used
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Figure 10. Type and location of BMPs selected in L’ Anguille River watershed for nitrogen reduction.
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Figure 12. Simulation of the solutions obtained during opti-
mization using the SWAT model for estimating the (a) sedi-
ment, (b) phosphorus, and (¢) nitrogen loads at Palestine gage
station in the watershed.

in the development of total maximum daily loads (TMDLs)
in the watershed to meet the water quality goals by providing
a cost-effective solution. In order to test the applicability of
the solutions when implemented at a watershed scale, sol-
utions were picked for selected generations and populations
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and modeled in the SWAT model to simulate the pollutant
loads. It is observed that the amount of reductions obtained
at the Palestine gauge station are similar to the reductions
obtained when a spatially weighted value for pollutant load
is used as an objective function with the aid of BMP tool in
the optimization. The increased performance of the BMP tool
was therefore innovative to extend the BMP solution and
placement to larger watersheds.

[52] The optimization model developed is a general model
and can be easily extended to any other watershed to develop
the Pareto-optimal fronts. The model gives a range of options
available for pollution reduction and their corresponding
costs for the implementation of BMPs. This trade-off can
aid the watershed modelers in TMDL development and to
estimate the corresponding cost for the placement of BMPs
to achieve TMDL goals.

[s3] The global optimization techniques, genetic algo-
rithms, are slow in convergence when compared with local
search techniques such as back propagation, conjugate gra-
dient method, and SIMPLEX. Hybrid search techniques that
combine the advantages of global and local search techniques
have been used to address some of the watershed level
hydrologic problems [Bekele and Nicklow, 2005b]. Future
developments in the model should try incorporating a local
search technique into the search process of genetic algorithm.
Three different BMP selection and placement optimization
models were developed for the three NPS pollutants of con-
cern, as no weightage was sought to be placed on these pol-
lutants to develop the objective function. However, future
work can consider the product of percentage reduction from
baseline of each of the pollutants loads to develop the com-
bined objective function to be maximized for the selection
and placement of BMPs in the watershed.
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