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GIS-BASED PREDICTIVE MODELS OF HILLSLOPE RUNOFF GENERATION PROCESSES'

Mansour D. Leh and Indrajeet Chaubey

ABSTRACT: Successful nonpoint source pollution control using best management practice placement is a com-
plex process that requires in-depth knowledge of the locations of runoff source areas in a watershed. Currently,
very few simulation tools are capable of identifying critical runoff source areas on hillslopes and those available
are not directly applicable under all runoff conditions. In this paper, a comparison of two geographic information
system (GIS)-based approaches: a topographic index model and a likelihood indicator model is presented, in pre-
dicting likely locations of saturation excess and infiltration excess runoff source areas in a hillslope of the Savoy
Experimental Watershed located in northwest Arkansas. Based on intensive data collected from a two-year field
study, the spatial distributions of hydrologic variables were processed using GIS software to develop the models.
The likelihood indicator model was used to produce probability surfaces that indicated the likelihood of location
of both saturation and infiltration excess runoff mechanisms on the hillslope. Overall accuracies of the likelihood
indicator model predictions varied between 81 and 87% for the infiltration excess and saturation excess runoff
locations respectively. On the basis of accuracy of prediction, the likelihood indicator models were found to be
superior (accuracy 81-87%) to the predications made by the topographic index model (accuracy 69.5%). By com-
bining statistics with GIS, runoff source areas on a hillslope can be identified by incorporating easily determined
hydrologic measurements (such as bulk density, porosity, slope, depth to bed rock, depth to water table) and
could serve as a watershed management tool for identifying critical runoff source areas in locations where the
topographic index or other similar methods do not provide reliable results.
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INTRODUCTION that different watershed management practices may
have on the hydrological regime of a catchment. As

runoff is the dominant driving mechanism for non-

Watershed simulation models are widely used in
evaluating the hydrological and water quality
responses from various land use and land manage-
ment practices. Watershed and water resource man-
agers use simulation models to analyze the effects

point source pollutants in agricultural and mixed
land use watersheds, partitioning of rainfall into run-
off has received the bulk of attention in the scientific
community involved with hydrologic model develop-
ment and application, while little attention has been

Paper No. JAWRA-08-0072-P of the Journal of the American Water Resources Association (JAWRA). Received April 18, 2008; accepted
December 24, 2008. © 2009 American Water Resources Association. Discussions are open until six months from print publication.

2Respectively, Graduate Student, Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas;
and Associate Professor, Departments of Agricultural and Biological Engineering, and Earth and Atmospheric Sciences, Purdue University,

West Lafayette, Indiana 47907 (E-Mail/Chaubey: ichaubey@purdue.edu).

JAWRA

844 JoURNAL oF THE AMERICAN WATER RESOURCES ASSOCIATION



GIS-Basep PrebicTive MopeLs of HiLLsLore Runorr GENERATION PROGESSES

paid to the runoff generation mechanism and loca-
tions of runoff producing areas in a watershed. John-
son et al. (2003) categorized watershed models into
four types based on the runoff generating mechanism:
(1) infiltration excess based models, (2) saturation
excess based models, (3) empirically developed models
that do not differentiate between runoff mechanisms,
and (4) models that may be a combination of any of
the above. The infiltration excess runoff generating
mechanism is based on the assumption that runoff
will be produced when rainfall intensity rates exceed
the infiltration capacity of the soil (Horton, 1933).
Saturation excess based models were developed to
describe runoff mechanisms in areas where infiltra-
tion excess did not occur and the soil gradually satu-
rated to the surface to generate runoff. It is generally
recognized that for many rainfall storm events, the
entire watershed does not contribute to runoff gener-
ation (Engman, 1974) and this has led to the partial
area concept (Betson, 1964) and the variable source
area model of Hewlett and Hibbert (1967).

Decisions related to nonpoint source pollution con-
trol to improve water quality depends on the accuracy
of runoff prediction as well as details about the mech-
anisms and locations of runoff source areas. The
accurate simulation of the locations of a watershed
that contribute dynamically to runoff will enable
watershed managers to implement best management
practices in those areas for effective nonpoint source
pollution control. Current water quality research has
focused on phosphorous (P) transport from agricul-
tural areas because of the role that P plays in anthro-
pogenic eutrophication of freshwater systems. In the
Ozark Highlands of the United States (U.S.), annual
land application of poultry litter to pasture land has
been a standard practice for over three decades now
(Steele and Adamski, 1987; Steele and MecCalister,
1991; USDA-ARS, 1998). This waste management
practice has led to environmental concerns of the
transport of P to nearby water bodies. Several studies
have focused on runoff water quality from areas that
have received poultry litter (Edwards and Daniel,
1993, 1994; Edwards et al., 1996a; Sauer et al., 1999,
2000), and hydrologic models have been used to simu-
late runoff volumes and pollutant loads coming from
these areas (Chaubey et al., 1995; Edwards et al.,
1996b; White and Chaubey, 2005). However, many of
these hydrologic models still consider watersheds as
a single homogenous unit with very little recognition
of the spatial variability (Wood et al., 1990). The
studies that have focused on locating and identifying
runoff contributing areas have mostly been based on
the variable source area hydrology, where saturation
excess runoff plays a major role in the runoff generat-
ing process (Zollweg et al., 1995; Walter et al., 2000;
Lyon et al., 2004, 2006a; Mehta et al., 2004). These
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models may be applied in management decision mak-
ing where saturation excess runoff is the dominant
runoff process by focusing only on the watershed
areas, which produce saturation excess runoff. How-
ever, it is shown that in the Ozark hillslopes, both
saturation excess and infiltration excess runoff can
occur and watershed management decisions must
consider both runoff mechanisms (Leh et al., 2008).
There is a need to develop and evaluate the infiltra-
tion excess runoff model or a combination of the infil-
tration excess and saturation excess runoff
generating mechanisms to successfully locate runoff
source areas.

The overall goal of this study is to develop a proce-
dure for quantifying critical runoff source areas in a
watershed. The specific objective is to apply and vali-
date Geographic Information System (GIS)-based
models to simulate the likely locations of the two
dominant runoff generating mechanisms (infiltration
excess runoff and saturation excess runoff) in a pas-
ture hillslope typical of the Ozark Highland agricul-
tural watersheds. Successful identification of runoff
mechanisms and source areas could improve
watershed management techniques by providing an
easy to use methodology to identify runoff “hot spots”
for nonpoint source pollution control measures.

MATERIALS AND METHODS

Study Area

This study was conducted within Basin 1 of the
1,250 ha Savoy Experimental Watershed (SEW)
located in northwest Arkansas. The SEW is about
20 km west of the University of Arkansas main cam-
pus at Fayetteville and serves as a collaborative
research site designed for long-term hydrologic moni-
toring (Brahana et al., 2005). The SEW is comprised
of six catchment basins including Basin 1, a 147 ha
subbasin, located in the southern part of the
watershed, which drains into the Illinois River
(Figure 1). The Illinois River, which serves as the
western boundary of the SEW is a transboundary
river that originates approximately 24 km southwest
of the city of Fayetteville, Arkansas, and flows into
Oklahoma. The mean annual (30 years) precipitation
measured in the city of Fayetteville (approximately
12 km east of the study location) is 117 cm (NOAA,
2002). A low average monthly precipitation of 5 cm
occurs in January and an average monthly high of
13 cm occurs in June. Winters are relatively short,
with brief periods of snow cover and average January
temperature of 1.3°C, whereas summers are long,
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FIGURE 1. Maps of the Major Soils, Elevation, and Location of the Study Site at the Savoy
Experimental Watershed (SEW). Subbasins are numbered 1 through 6.

warm, and humid with average July temperature of
26.1°C (NOAA, 2002).

Land use in the SEW represents typical pasture
dominated agricultural activities in the southeast U.S.
Land use within Basin 1 is 57% hardwood forest and
43% pasture (Sauer et al., 2005). The two major soils
within Basin 1 are the Clarksville cherty silt loam
and Nixa cherty silt loam (Figure 1) that account for
49 and 30%, of the area respectively (Sauer and Logs-
don, 2002). The Captina silt loam and Nixa cherty silt
loam are the major soils within the study field. The
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Captina silt loam soil is characterized by strong
brown subsoil that is 25-50 em thick typically found
on stream terraces and the Nixa chert silt loam typi-
cally have slow permeable fragipans that occur at the
36-60 cm depth (Harper et al., 1969).

Methods

Three 23 x 23 m adjacent bermed plots (labeled
Plots 1, 2, and 3) were instrumented with a grid of
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paired subsurface saturation sensors (SSS) and sur-
face runoff sensors (SRS) (hence forth called satura-
tion and runoff sensor respectively) and installed at
33 points on the plots (12 on Plot 1, 11 on Plot 2, and
10 on Plot 3, Figure 2). The sensors used in this
study were similar to that of Srinivasan et al. (2000).
The saturation sensors are printed circuit boards
with sensing pins that indicate the level of soil satu-
ration at preset depths (1 cm, 5 cm, 10 cm, 20 cm,
31 cm, and 46 cm). The runoff sensors are miniature
v-notch weirs made of 2 mm thick galvanized sheet
metal with a sensor pin and ground pin set 2 cm
apart and 2.5 cm away from the v-notch, at the same
level as the bottom of the v-notch. The runoff sensor
operates on a “yes-no” basis to indicate the presence
or absence of surface runoff. A detailed description of
both sensors can be obtained from Srinivasan et al.
(2000). A 0.305 m H-flume at the downslope end of
each plot measured the total volume of runoff and
hydrograph from each plot. Each H-flume had a Kel-
ler pressure transducer (Model 173; Keller America
Inc., Newport News, Virginia) that was used to record
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FIGURE 2. Site Layout and Orientation Showing Instrumentation
Infrastructure Including Weather Stations, Spring, H-Flumes
(H), Surface Runoff Sensors (SRS) and Subsurface Sensors
(SSS), and Monitoring Wells (W) on Plots 1 Through 3.
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water depth; the predetermined stage-discharge rela-
tion was used to estimate runoff rate. Rainfall occur-
ring on each plot was determined by installing a
tipping bucket rain gage (HOBO RG2 model, Onset
Corp., Bourne, Massachusetts) on each plot. The rain-
fall data collected on each plot was supplemented by
data collected from a weather station located approxi-
mately 0.4 km north of the study site (Figure 2). The
weather station was instrumented with a Campbell
CR-10X (Campbell Scientific Inc., Logan, Utah) data
logger that recorded rainfall, air temperature, soil
temperature, relative humidity, global radiation,
wind speed, and wind direction at 5-min intervals.
Finally, a shallow ground-water well with a Keller
pressure transducer was installed (0.6-0.7 m deep)
near each saturation sensor upslope of each H-flume
to monitor depth to ground water.

Figure 2 shows the locations of all instruments
used for data collection in this study. Data collected
by each sensor was logged at 5-min intervals with a
Campbell CR-23X data logger on Plots 1 and 2, and a
Campbell CR-10X data logger on Plot 3. The data
presented in this study covers the period between
2004 (April) and 2005 (December).

Topographic and Geophysical Surveys

A survey grade (mm level accuracy) Global Posi-
tions System (GPS) unit (Leica 500 GPS system, Le-
ica Geosystems AG, St. Gallen, Switzerland) was
used to conduct a topography survey of the field area.
The GPS survey was performed in 2004 by establish-
ing approximately 1,500 grid points across the plots.
The data obtained was used to derive a 1 m resolu-
tion digital elevation model (DEM) of the field.

Two surface geophysical techniques [Ground Pene-
trating Radar (GPR) and electrical resistance] were
employed in characterizing the subsurface attributes
beneath the plots that could potentially affect the
runoff response of each plot (Ernenwein and Kvam-
me, 2004). The GPR and resistance methods are well
known techniques used to determine bedrock depth
and integrity (Ernenwein and Kvamme, 2004). The
electrical resistance was determined by measuring
the potential voltage after a weak electrical current
was introduced into the ground. The amount of elec-
tric current that flows through the soil is directly
related to soil moisture, clay content, and solutes
present in the soil and rock. GPR data collection was
accomplished by dragging a 400 MHz antenna con-
nected to a Subsurface Imaging Radar system over
the surface of equally spaced profiles and recording
the reflections obtained.

Soil depth, porosity, and bulk density were mea-
sured on a grid of 65 points located across the plots.
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Undisturbed soil core samples were taken from the
0-5 cm depth of the points to determine soil bulk den-
sity and total porosity. A 1 cm diameter graduated
metal rod was used to determine the depth to subsur-
face material by insertion into the soil until refusal
at the 65 measuring points. Three measurements
were made at each location and the mean value was
recorded for each point. Measurements for the 65
points were imported into ArcGIS software (ESRI
Inc., Redlands, California) and interpolated using the
inverse weighted distance algorithm to derive the
spatial distribution of soil properties across the plots.
Soil water saturation levels were determined using
sensor readings at each location. As rainfall events of
small magnitudes were less likely to induce soil satu-
rated conditions, a 1 cm threshold was used to select
rainfall events that fell within this criterion for the
entire 2004-2005 study period. Based on these rain-
fall events, preevent depth to saturated soil levels
were determined for each sensor location and the
points were interpolated to obtain a surface of pre-
event saturated soil water level.

Modeling Runoff Mechanisms

Two different modeling approaches (topographic
index model and a likelihood indicator model) were
compared to identify runoff mechanism and spatial
locations of runoff events that occurred between 2004
and 2005.

The Topographic Index Model. The spatial dis-
tribution of the TOPMODEL topographic index (TI)
of Beven and Kirkby (1979) was computed for each
plot. In its simplest form, TI is calculated as:

TI:ln( a ) (1)

tan B

where a is the upslope contributing area per unit
contour length, and tan B is the slope. Upslope con-
tributing area was determined using the D-infinity
algorithm (Tarboton, 1997). The D-infinity algorithm
computes multiple flow directions by a recursive pro-
cedure that divides slope angles in all directions.
The upslope contributing area is then found by accu-
mulating the area of the contributing cell and the
fraction drained into it by its adjacent grid cells.
The TI values were normalized with the highest
value to obtain a probability surface of TI values
that ranged between 0 and 1. High values of TI
indicate areas that are most likely to induce satura-
tion excess overland flow. To identify areas of high
likelihood of saturation excess runoff generation, a
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threshold of 0.6 was used to highlight the most
likely saturated regions that produced saturation
excess runoff. The 0.6 threshold is a soil dependent
parameter that was empirically derived based on

field observations after major storm events (Leh
et al., 2008).

The Likelihood Indicator Model. The dominant
runoff mechanisms observed during each runoff
event for the period of study (2004-2005) were quanti-
fied as

n
RRR; = M7 (2)
n

where RRR was the runoff response ratio, B, was the
number of 5-min occurrences of a particular runoff
process p (i.e., p = saturation excess, infiltration
excess or no runoff) at a sensor location and n was
the total number of 5-min readings taken (nonrunoff
events inclusive). The runoff response ratio for the
period of the study (2004-2005) was used to delineate
the locations of the two controlling runoff mecha-
nisms — saturation excess runoff and infiltration
excess runoff. The delineated runoff mechanism maps
were converted to probability of occurrences by nor-
malizing with the maximum runoff response ratio. A
threshold probability of occurrence was determined
for each mechanism to create a training map of bi-
nary indicator values. The training maps represented
areas of high probability of occurrence of each runoff
mechanism and were used by the algorithm to iden-
tify locations of similar characteristics. Locations
greater than or equal to the threshold were assigned
a value of 1 and locations below the threshold were
assigned a value of 0.

Binary logistic regression procedures were per-
formed on the observed saturation excess and infiltra-
tion excess maps (Figure 3) by linkage to JMP
statistical software (SAS Institute Inc., Cary, North
Carolina). This methodology is similar to that
employed by Lyon et al. (2006b) to determine factors
that influenced saturated regions in the Town Brook
watershed of New York. Binary logistic regression
employs an iterative maximum likelihood procedure,
which determines values of unknown parameters and
maximizes the probability of occurrence of the
observed data (location of infiltration excess and satu-
ration excess mechanism areas) by a logistic regres-
sion equation (Hosmer and Lemeshow, 2000).
Assuming I = 1 is the event that a particular runoff
mechanism occurs at location i, and I = 0 is the event
that the runoff mechanism does not occur at that loca-
tion, then the logistic regression could be expressed as:
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FIGURE 3. Flow Chart of the Modeling Approach Used in the Likelihood Indicator Models to Determine Runoff Generation Processes.

Logit(p) = ln(1 P p) =a+ X1+ rXo+ ... + B X,

3)

where p is the probability that I =1, a is the
intercept and f;, fs...f; are coefficients of the
independent variables X;, X, Xs;...X;. Using the
logistic transformation;

eXpLogit(p)

T r explogit(p)

4)

GIS map algebra operations were employed to map
the probability surface of the occurrence of infiltra-
tion excess or saturation excess mechanism locations
once the respective coefficients of the independent
variables were obtained.

Statistical Analysis and Accuracy Assessment

The degree of fit of the model predictions were
evaluated using residual plots and other goodness
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of fit statistics such as User’s, Producer’s, and
Overall accuracy, as described by Story and Congal-
ton (1986). The accuracies were represented in an
error matrix (sometimes called confusion matrix or
contingency table), which provides an effective way
to evaluate errors and to determine the perfor-
mance of individual categories (Congalton et al.,
1983).

The overall accuracy was computed as the ratio
of the total number of correct classifications (lead-
ing diagonal values in the error matrix) to the total
number of observations (Congalton and Green,
1999). The producer’s accuracy (also referred to as
error of omission) is the probability that a ground
sample is correctly classified (Story and Congalton,
1986) and was computed as the ratio of the number
of areas correctly classified for a particular runoff
generating process to the total number of areas in
that runoff generating process. The user’s accuracy
(also referred to as error of commission) indicates
how well a map actually represents the observed
data (Story and Congalton, 1986) and was com-
puted as the number of areas correctly classified as
a particular runoff generating process divided by
the total number of areas that were classified in
that runoff generating process. A residual surface
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for each prediction was computed by subtracting
the predicted surface from the observed surface
using GIS map algebra. Residuals ranged between
-1 and 1, where greatest error of fit occurred at
the maximum residual of 1 or a minimum residual
of —1, and a perfect fit would indicate a residual of
0 for each pixel location. The Likelihood Ratio sta-
tistic was used to compute a pseudo-R2 (U) (also
called the uncertainty coefficient), which is similar
to R? expressed as

L(B)

pseudo— 122 =1 —m7

()

where L(0) is the value of the log-likelihood function
if all coefficients except the intercept are 0 and L(B)
is the value of the log-likelihood function for the full
model (Clark and Hosking, 1986). Psuedo-R® (U)
ranges from zero for no improvement to 1 for a per-
fect fit.

RESULTS AND DISCUSSION

Runoff Generating Mechanisms

Rainfall depth recorded in 2004 was 106 cm, rep-
resenting 106 rainfall events; in 2005, 95 cm rainfall
depth was recorded, which represented 111 rainfall
events. These rainfall events were defined as any
24 h period with measurable rainfall. The dominant
runoff mechanisms that were measured in the field
during the monitoring period are shown in Figure 4.
Both infiltration excess and saturation excess runoff
were observed. Infiltration excess seemed to be the
dominant runoff process that occurred in about 58%
of the total area and was mainly located in the
southern portions of the field. Saturation excess run-
off occurred in about 26% of the total field area and
appeared to be dominant on Plot 3 and along the
southwestern boundary of Plot 1. These findings val-
idate previous studies conducted in Basin 1 (Sauer
et al., 1998, 2000, 2005; Sauer and Logsdon, 2002)
where infiltration excess is thought to occur fre-
quently in upland areas and saturation excess in
the valley bottom. Other field-scale studies con-
ducted on hillslopes have also reported the occur-
rence of saturation excess runoff in the lower
portions of hillslopes and near streams (e.g., Hew-
lett, 1961; Dunne and Black, 1970a,b; Srinivasan
et al., 2002; Meyles et al., 2003; Rezzoug et al.,
2005; Badoux et al., 2006).
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FIGURE 4. Map of Dominant Runoff Process That Occur at
Study Site, Savoy, Arkansas. A is the total percentage area of a
runoff process over the area of the three plots.

The Topographic Index Model

Figure 5 shows the locations of the plots most
likely to contribute to saturation excess runoff as
indicated by the TI model. The locations of saturation
excess runoff appeared to be spatially distributed
across the plots and did not correlate well with the
observed data (Figure 4). The percent total area most
likely to generate saturation excess runoff with a
threshold of 0.60 is 19%. Table 1 shows the model
accuracies when the predicted locations of saturation
excess runoff are tabulated against the observed
saturation excess locations. The producer’s accuracy
is the probability that a pixel location of a saturation
excess runoff generating mechanism is correctly rep-
resented spatially; and the user’s accuracy indicates
the probability that a pixel location correctly corre-
sponds to the saturation excess runoff source area as
it exists in the field. Overall accuracy was 69.5% with
an average producer’s accuracy of 48.8%. The model
predicted nonsaturation excess areas relatively well
(77-86%), whereas the prediction of saturation excess
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FIGURE 5. Normalized Distribution of Topographic
Index Across Plots Showing Areas Most Likely
to Generate Saturation Excess Runoff.

TABLE 1. Classification Accuracies of the Saturation Excess (SE)
Locations as Indicated by the Topographic Index Model.

Observed
Non-SE SE User’s
Areas Areas Total Accuracy
Predicted (pixels) (pixels) (pixels) (%)*
Non-SE areas 23,739 6,977 30,716 77.3
(pixels)

SE areas (pixels) 3,829 912 4,741 19.2
Total (pixels) 27,568 7,889 35,457

Producer’s accuracy 86.1 11.6

(%)?

Notes: Overall accuracy = (23,739 + 912)/35,457 = 69.5%; Average
producer’s accuracy = 48.8%.

Overall accuracy was obtained by dividing total correct predictions
(diagonal, bold) by the total number of pixel predictions (bold).
User’s accuracies were obtained by dividing the number of correct
predictions in a row by the total number of pixel predictions in
that row. Producer’s accuracies were obtained by dividing the
number of correct predictions in a column by the total number of
pixel predictions in that column.

Non-SE areas = 23,739/30,716 = 77.3%; SE areas = 912/4,741 =
19.2%

2Non-SE areas = 23,739/27,568 = 86.1%; SE areas = 912/7,889 =
11.6%
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locations were rather poor (11-19%) (Table 1). While
several studies have applied the TI as a surrogate for
critical source area identification (e.g., Juracek, 1999,
2000; Endreny and Wood, 2003), the results obtained
from this study show that only 19% (Table 1) of the
saturation excess area was correctly identified, hence
this method may not be suitable for the investigated
site. Lyon et al. (2006b) used binary logistic regres-
sion models to determine that the TI was inadequate
in describing the spatial distribution of saturated
areas in the Townbrook watershed. Page et al. (2005)
reported a similar conclusion in an attempt to find a
relation between TI and the distribution of soil P
for two contrasting soil types, and concluded that
TI alone could not be used as an indicator of
critical source areas in two catchments in the United
Kingdom.

The Likelihood Indicator Model

Figure 6 shows the probability map and a residual
surface of the location of saturation excess mecha-
nism. Visual comparison with the observed data indi-
cates a relatively good prediction of the location of
saturation excess areas. Table 2 shows the explana-
tory variables that were used in the model along
with a Chi-square value, which could be interpreted
as the p-value for each variable, and a pseudo-RZ (U)
which is analogous to the R? in linear regression.
Positive parameter estimates indicate that high val-
ues of the corresponding variables are related to the
saturation excess mechanism location and negative
coefficients link low variables to the location of satu-
ration excess areas. Thus saturation excess runoff
source areas are predicted to be located in areas of
low bulk density, total soil porosity, depth to bedrock,
and low preevent depth to saturated soil. This predic-
tion is consistent with the saturation excess theory.
Typically, water would easily infiltrate the soil in
areas with low soil bulk density while areas of a low
total porosity indicate that the pore space available
for storage of water is limited. The areas of low depth
to bedrock would have a limited volume of soil avail-
able to store water and a low preevent depth to satu-
rated soil level indicates near soil surface water
table, hence a high propensity of generating satura-
tion excess runoff. The local slope and the TI were
not found to be significant predictors of the location
of saturation excess runoff. The pseudo-R? for the
overall model was 0.48. For logistic regression,
pseudo-R? (U) greater than 0.2 may be considered a
relatively good fit (Clark and Hosking, 1986). GIS
cross tabulation with the observed locations revealed
an overall accuracy of 86.7% in model predictions
(Table 3).
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FIGURE 6. Probability of Occurrence of Saturation Excess (SE) Runoff Mechanism
and Residual Surface Performed Using Binary Logistic Regression.

TABLE 2. Parameter Estimates and Fit Statistics for the
Saturation Excess Runoff Mechanism Binary Logistic Regression
Model: L, = a;, + Z; - 1,6 frX; Applied to Each Pixel Location %.

Parameter Estimates Estimate Units Prob > Chi-Sq
Intercept (a) 113.03 - <0.0001
Bulk density (f7) -35.84 g/cm® <0.0001
Total porosity (fs) -79.85 g/cm® <0.0001
Depth to bedrock (f3) -0.095 cm <0.0001
Local slope (f4) 0.007 % 0.0531%
Topographic index (f5) 0.020 - 0.05941
Preevent depth to -0.623 cm <0.0001

saturated soil (fig)

Notes: Pseudo-R? (U) = 0.48.
Parameters not significant at « = 0.05.

The probability map developed for the location of
infiltration excess runoff areas and its associated
residual plot are shown in Figure 7. Table 4 indicates
that infiltration excess runoff areas are located in
areas of low soil bulk density, total porosity, and soil
electrical resistance while areas of high local slopes
and depth to bedrock influence the location of infiltra-
tion excess areas.

The location of infiltration excess areas in low
soil bulk density areas does not seem to follow the
infiltration excess theory. One would rather expect
that areas of high bulk density would result in low
water storage capacity which is directly related to
areas of lower infiltration rates (Holtan, 1961) and
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hence infiltration excess areas. One important infil-
tration excess variable that was not included in the
model is soil infiltration rates. Due to the limited
data (three measurements per plot) on the spatial
distribution of infiltration rates across the plots,
this variable could not be included in the model. In
order to obtain the spatial distribution of infiltra-
tion rates, one would need approximately 65 point
measurements of infiltration capacity to obtain data
of the same resolution as the other measured vari-
ables from this site. Given the complexity of the
karst geologic features beneath the plots (Leh
et al., 2008) and the heterogeneous nature of the
soil properties at SEW (Sauer et al., 2005), a rather
large dataset would be required to obtain reliable
estimates of the spatial variability of infiltration
capacity across the field. Perhaps its inclusion in
the model would have identified the infiltration
excess areas in locations with higher bulk density
and increased the accuracy of the predictions. How-
ever, a low total porosity area has very little pore
space available for storage of water. Also, soil elec-
trical resistance is inversely related to the amount
of moisture present in pore spaces. Areas of low
electrical resistance will therefore indicate soil pore
spaces that are already filled with water and hence
any excess water would runoff. The local slope and
the TI were not found to be significant predictors of
the location of infiltration excess runoff.
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TABLE 3. Classification Accuracies of the Saturation Excess (SE) Model Applied to the Observed Data.

Observed

SE Areas (pixels)

Total (pixels) User’s Accuracy (%)!

Predicted Non-SE Areas (pixels)
Non-SE areas (pixels) 25,302

SE areas (pixels) 2,444

Total (pixels) 27,746
Producer’s accuracy (%)>? 91.2

2,266 27,568 91.8
5,445 7,889 69.0
7,711 35,457

70.6

Notes: Overall accuracy = (25,302 + 5,445)/35,457 = 86.7%; Average producer’s accuracy = 80.9%.

Overall accuracy was obtained by dividing total correct predictions (diagonal, bold) by the total number of pixel predictions (bold). User’s
accuracies were obtained by dividing the number of correct predictions in a row by the total number of pixel predictions in that row. Pro-
ducer’s accuracies were obtained by dividing the number of correct predictions in a column by the total number of pixel predictions in that

column.

'Non-SE areas = 25,302/27,568 = 91.8%; SE areas = 5,445/7,889 = 69.0%.
2Non-SE areas = 25,302/27,746 = 91.2%; SE areas = 5,445/7,711 = 70.6%.
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FIGURE 7. Probability of Occurrence of Infiltration Excess (IE) Runoff Mechanism
and Residual Surface Performed Using Binary Logistic Regression.

A visual examination of the results indicated that
the infiltration excess model did not perform as well
as the saturation excess model. Areas located in the
“no runoff” zones were classified as infiltration excess
areas. Nonetheless the model performed satisfactorily
as indicated by an overall accuracy of 81% (Table 5).
While individual classes varied between 71 and 91%
in the case of saturation excess runoff location
(Table 3) and between 74 and 83% in the case of
infiltration excess mechanism (Table 5), it is obvious
that a greater percentage of the observed data was
correctly represented spatially.
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Extension to Other Watersheds

The modeling procedures outlined in this manu-
script could be easily extended to other agricultural
watersheds by following the three main stages of the
likelihood modeling procedure suggested by Dalla
Bona (1994): (1) primary stage, which includes
hypothesis building, data collection strategies and
collection; (2) secondary stage, which is the deductive
phase and involves association between environmen-
tal variables, literature review and integration into
model, development or application of initial model,
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TABLE 4. Parameter Estimates and Fit Statistics
for the Infiltration Excess (IE) Runoff Mechanism
Binary Logistic Regression Model: L, = a; + %; - 7 5 frX;

Applied to Each Pixel Location .

Parameter Estimates Estimate  Units  Prob > Chi-Sq

Intercept (a) 149.9 - <0.0001
Bulk density (1) -63.6 g/cm® <0.0001
Total porosity (f2) -141.6 g/cm?® <0.0001
Electrical resistance (fi3) -0.004 Q <0.0001
Depth to bedrock (84) 0.055 cm <0.0001
Local slope (f5) 0.003 % 0.2158!

Notes: Pseudo-R? (U) = 0.25.
Parameter not significant at o = 0.05.

testing of model on previously surveyed areas; and
(3) tertiary stage, which is a continuous application
and refinement of the model and incorporation of new
data into the process and into the existing model.
Decisions regarding the scale at which modeling will
take place, the spatial boundaries within which the
model is applicable and the temporal scope of the
model are usually made during the primary stage.
The collected baseline data should be at relatively
similar scale. Also, the environmental characteristics
that are determined to be the independent variables
should be representative of the whole study area to
be modeled (Dalla Bona, 1994).

The application of this predictive modeling proce-
dure to other watersheds will vary according to the
environmental data available, however readily avail-
able spatial data such as elevation data (DEM) and
soil data (e.g., SSURGO) could be used to supplement
field measurements if data such as those used in this
study are not available. Soil properties (bulk density,
total porosity, hydraulic conductivity, and soil depth)
could be estimated from the soil database. Juracek
(2000) used soil permeability data derived from the

U.S. Department of Agriculture’s 1:24,000-scale soils
database (SSURGO) to identify infiltration excess
runoff locations in Kansas. In well-instrumented
watersheds, such as the SEW with relatively well-
documented data such as the one used in this study,
more accurate predictive models with greater spatial
resolution could be possible. However, this modeling
procedure may actually prove more useful in ungaged
watersheds where the occurrences of runoff processes
are unknown due to inadequate data collection.

Generating information about runoff processes and
spatial locations can greatly increase the success of a
selected BMP plan. Nonpoint sources from agricul-
tural watersheds can be minimized by implementing
BMPs that: (1) reduce the source of pollutants, (2)
minimize off-site losses by reducing pollutant trans-
port from source areas, or (3) treat the water body
affected by specific pollutants of interest. The minimi-
zation of off-site losses of pollutants directly depends
on the identification of runoff processes and the loca-
tion of runoff generating areas since runoff is the pri-
mary pathway of NPS pollution from agricultural
fields. Lyon et al. (2006a) demonstrated the impor-
tance of applying the appropriate BMP plan to the
proper runoff generating areas. A saturation excess
based BMP implementation in areas indicated by the
TI model in this study would only be effective in 19%
of the area whereas a saturation excess based BMP
implemented in areas indicated by the likelihood
indicator model would be effective in 69% of the area.
The infiltration excess likelihood model indicates that
an infiltration excess based BMP would be effective
in 93% of the area.

By explicitly outlining the variables associated
with specific sites and processes, the likelihood
indicator model may actually identify specific hydro-
logical pathways. The principal advantage of the like-
lihood indicator model is its ability to identify
processes beyond those indicated in the training data.

TABLE 5. Classification Accuracies of the Infiltration Excess (IE) Model Applied to the Observed Data.

Observed
Predicted Non-IE Areas (pixels) IE Areas (pixels) Total User’s Accuracy (%)*
Non-IE areas (pixels) 4,715 5,058 9,773 48.2
IE areas (pixels) 1,687 23,997 25,684 93.4
Total (pixels) 6,402 29,055 35,457
Producer’s accuracy (%)? 73.6 82.6

Notes: Overall accuracy = (4,715 + 23,997)/35,457 = 81.0%; Average producer’s accuracy = 78.1%.

Overall accuracy was obtained by dividing total correct predictions (diagonal, bold) by the total number of pixel predictions (bold). User’s
accuracies were obtained by dividing the number of correct predictions in a row by the total number of pixel predictions in that row. Pro-
ducer’s accuracies were obtained by dividing the number of correct predictions in a column by the total number of pixel predictions in that
column.

'Non-IE areas = 4,715/9,773 = 48.2%; IE areas = 23,997/25,684 = 93.4%.

2Non-IE areas = 4,715/6,402 = 73.6%; IE areas = 23,997/29,055 = 82.6%.
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Specifically, runoff generating areas are identified
that possess characteristics similar to the known site
features but that are not apparent in the indepen-
dently measured data.

SUMMARY AND CONCLUSIONS

Data from a two-year field study of runoff generat-
ing mechanisms in a pasture hillslope underlain by
karst terrain were used to quantify the spatial distri-
bution of occurrence of two runoff generating mecha-
nisms — infiltration excess and saturation excess. Two
approaches (TI and binary logistic regression proce-
dures) were used to develop models that predicted
the locations of the runoff mechanisms based on the
significant hydrologic features that influenced each
runoff process. By combining spatial analysis with
statistical analysis, the accuracy of predicting the
location of the major runoff processes was improved.
Results suggest that the binary logistic regression
model for the saturation excess mechanism provided
more realistic results than the common TI model.
Even though the models developed for both runoff
mechanisms produced fairly accurate results, the
saturation excess mechanism model was a better fit
than the infiltration excess model. This method
combines complex hydrologic information to produce
better estimates of runoff contributing areas and may
be applied in areas where the TI does not provide
reasonable estimates of critical source areas.
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