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Abstract

Most hydrologic/water quality (H/WQ) models that use rainfall as input assume spatial homogeneity of rainfall. Under this
assumption this study assesses the variability induced in calibrated model parameters solely due to rainfall spatial variability.
The AGNPS model and a network of 17 raingauges were used. Model parameters were estimated using rainfall observed at each
gauge location, one at a time, as though that rainfall covered the entire catchment. A large uncertainty in the estimated
parameters resulted from the spatial variability of rainfall. The uncertainty in the estimated parameters using the rainfall
observed by a single gauge exceeded the rainfall measurement error. A large uncertainty in estimated model parameters can
be expected if detailed variations in the input rainfall are not taken into account.q 1999 Elsevier Science B.V. All rights
reserved.

Keywords:Spatial variability; Water quality; Hydrologic modeling; AGNPS; Parameter uncertainty

1. Introduction

Hydrologic/Water Quality (H/WQ) models are one
of the most important ways to estimate the impact of
land use on nonpoint water quality. During the last
decade many such models requiring several input
parameters have been developed for making environ-
mental decisions. Rainfall is a key input for all H/WQ
models because it activates flow and mass transport
process in hydrologic systems.

In applying H/WQ models, rainfall is generally
taken as spatially uniform and is assumed not to

contribute to parameter and output uncertainty, even
though the storms that cause the greatest movement of
sediment and nutrients are rarely uniform (Young et
al., 1992). Goodrich et al. (1995) noted that even
though the spatial variability of rainfall plays an
important role in the process of runoff generation,
rainfall is assumed to be uniform in the application
of models to predict hydrological behavior of small
watersheds. Often the model developers and users
have available rainfall measured by only one gauge,
or a few gauges. The model parameters may be esti-
mated by calibration using an average rainfall
uniformly distributed throughout the watershed. The
spatial variability in rainfall may introduce significant
uncertainty in these parameters when they are based
on a comparison of observed and predicted hydrologic
responses.
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Although it is acknowledged that, in general, water-
sheds have an integrating effect on rainfall both in
time and in space, the complex relationships among
the degree of spatial variability of rainfall, watershed
characteristics (topography, channel network, soils,
etc.), antecedent soil moisture conditions and
watershed response is poorly understood (Shah et
al., 1996). Very few studies have been conducted to
investigate the significance of spatial variability of
rainfall on H/WQ processes. Most of these studies
have focused on hydrograph properties, such as,
runoff volume, time to peak runoff, and peak runoff
rate predictions (e.g. Dawdy and Bergman, 1969;
Wilson et al., 1979; Beven and Hornberger, 1982;
Corradini and Singh, 1985; Seliga et al., 1992; Faures
et al., 1995; Shah et al., 1996) where the storm runoff
hydrographs are shown to be sensitive to the spatial
distribution and accuracy of rainfall inputs. Based on
a study conducted to assess the effect of rainfall
spatial variability on water quality outputs, Young et
al. (1992) and Luzio and Lenzi (1995) have demon-
strated sediment yield, total N and total P predictions
to be sensitive to the spatial variability of rainfall.

The knowledge of uncertainty in the calibrated
parameters due to rainfall spatial variability is very
limited. A study conducted by Troutman (1983)
attempted to assess the effect of rainfall spatial pattern
on estimated model parameters. The model consid-
ered was a rainfall-runoff model. The author used a
synthetic rainfall to simulate the spatial correlation
pattern of an actual rainfall. Because of the simplicity
of the stochastic rainfall model, the results reported
may not be expected to define the variability in actual
rainfall-runoff modeling applications. Hamlin (1983)
mentioned that a modeled rainfall may not describe
the patterns and amounts of real rainfall adequately.

The overall objective of this research was to study
the variability in estimated H/WQ model parameters
solely due to the spatial variability of rainfall. This
will help isolate this source of variability in the model
parameters from other sources.

2. Background

Haan (1989) gave a generic representation of
hydrologic models as

O � f �I ;P; t�1 e �1�

whereO is ann × k matrix of hydrologic responses to
be modeled,f a collection of functional relationships,
I ann × mmatrix of inputs,P a vector ofp parameters,
t time,eann × k matrix of errors,n the number of data
points,k the number of responses, andm the number
of inputs.

Generally I represents inputs some of which are
time varying such as rainfall, temperature, etc.,
while P represents coefficients or parameters particu-
lar to a watershed which remain constant. The values
of the most of the model parameters are seldom
known. They must be estimated by calibration before
the model can be applied in a particular situation.
Parameter uncertainty reflects incomplete models,
incomplete information and incomplete parameter
estimation techniques (Haan, 1989). The error term,
e represents the difference between what actually
occurs,O, and what the model predicts,Ô

Ô � f �I ;P; t� �2�

Troutman (1983) classified the modeling errors into
two components: (1) model errors with correct input
I p andPp and (2) errors due to erroneous input. We
can denoteI p as the error-free true input andPp as the
true parameter values for the model, andI andP as
erroneous input and parameter values, respectively.
Putting I p and Pp in Eq. (1) will give the relation
between actual and predicted output. Even when the
true input and parameter values are known, predicted
output is different from the observed output because
models are simplified approximations of the processes
occurring in nature. This type of error is known as
model error and is not considered in this study. Only
input error and its effect on estimated parameter
uncertainty is studied in this research. Troutman
(1982, 1983, 1985) and others discuss errors that
can be expected due to erroneous rainfall input in
rainfall-runoff modeling.

A problem in using an erroneous input in a H/WQ
model is that the predicted output should no longer be
equal to the observed data. Evaluating a model with
erroneous inputI introduces a bias in the output. In
contrast, if the correct output is known, an erroneous
input will influence the value ofP and the estimated
parameter values may not be the true parameter values
(Pp).

The input of interest in this research is rainfall
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depth. The outputs considered are runoff volume, total
sediment yield, sediment-attached N load, and sedi-
ment-attached P load at the watershed outlet. Correct
input means that the true rainfall pattern is known at
every point in the watershed. Input error is present
when measurements from only a small number of
gauges are used when a more extensive network
might be necessary to give an adequate representation
of precipitation over the watershed of interest (Trout-
man, 1983).

3. Methodology

3.1. Description of the study area

The study was conducted using data from the Little
Washita basin in Southwest Oklahoma, USA. This
basin covers 610 km2 and is a tributary of the Washita
river in Southwest Oklahoma (Agricultural Research
Service (ARS), 1991). Fig. 1 shows the location of the
watershed. A network of 48 recording raingauges,
known as Micronet, has been operated by the US
Department of Agriculture, Agricultural Research
Services (USDA–ARS) for a long time. A detailed

description of the soils, topography, geology, and
climate of the watershed can be found in ARS
(1991). A subwatershed, known as Cement watershed,
was delineated from the Little Washita basin and was
used in this study. The location of the Cement
watershed and the 17 Micronet stations used to
capture rainfall spatial variability is shown in Fig. 1.
Total area of the Cement watershed is 159 km2. The
watershed has a typical continental climate, character-
ized as moist subhumid with average annual precipi-
tation of 747 mm. The Natural Resources
Conservation Services (NRCS) have extensively
surveyed the soils in the watershed and have classified
64 different soil series and 162 soil phases within
these soil series. Land use and cover is primarily
rangeland (63%), winter wheat (20%), and woodland
(12%). Summer crops occupy about 4% of the
watershed area. Impervious areas and water bodies
comprise less than one percent of the total area each.

3.2. Description of the model

The model used to assess the effect of rainfall
spatial variability was the Agricultural Non-Point
Source Pollution model (AGNPS). It is an event-
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Fig. 1. Location of Little Washita basin, Cement watershed and the Micronet stations used.



based model that simulates surface runoff, sediment,
nutrients and pesticide transport primarily from agri-
cultural watersheds (Young et al., 1989). The nutri-
ents considered are soluble and sediment-attached
forms of nitrogen (N) and phosphorus (P). Basic
model components include hydrology, erosion, and
sediment and chemical transport. The model operates
on a geographic cell basis that is used to represent
upland and channel conditions. Cells are uniform
square areas subdividing the watershed and allowing
analyses at any point within the watershed. The model
requires specification of 20 different input parameters
for each cell. All watershed characteristics and inputs
are expressed at the cell level. Potential pollutants are
routed through cells from the watershed divide to the
outlet in a stepwise manner so that flow at any point
between cells can be examined. More details about the
model may be found in Young et al. (1989).

One of the limitations of the AGNPS model, like
most of the H/WQ models, is that it allows only one
value of rainfall assuming it to be homogeneous
across the watershed of interest. The model was modi-
fied to input grid-based rainfall depth and energy
intensity. The modifications were based on the work
done by Grunwald and Frede (1997).

Preparation of the input file for AGNPS is very time
intensive. For a relatively large watershed with small
cell size (e.g. less than 1 ha), generating, organizing
and managing the model input data and analyzing and
displaying the model output data can be tedious, time-
consuming and problematic. The WATERSHEDSS
GRASS–AGNPS modeling tool developed by
Osmond et al. (1997) was used to develop the input
file. The GIS layers required were watershed bound-
ary, topography, tillage, USLEK and C factors,
hydrologic soil groups, percent sand, percent clay,
nutrient application rate, land use, and a management
practice map. All input layers were prepared in raster
format using a 30 m cell resolution. The cell size used
in AGNPS modeling was 200 m× 200 m. This cell
size was used to insure the adequate representation of
the watershed properties without increasing the
complexity of the input file and the AGNPS run
time. In a study done on the Upper Little Washita
basin which encompasses the Cement watershed,
Ma (1993) concluded that a cell size less than
300 m× 300 m would preserve the presence of high
runoff producing areas. Once the input file for AGNPS

was prepared using the GRASS–AGNPS modeling
tool, the cell-based rainfall values were added to the
input file.

Because of the large number of input parameters, it
was not possible to study the uncertainty in all of the
model parameters. Also the output of a H/WQ model
is not equally sensitive to all parameters. A relative
sensitivity index (Sr) was used to rank the model para-
meters in terms of their sensitivities in affecting the
model outputs. TheSr was defined as

Sr � 2O
2P

P
O

�3�

whereO is the output andP is the parameter of inter-
est. The parameters with the highestSr have the great-
est impact on model output. Sensitivity analysis of
AGNPS was performed using 20 parameters. The
most sensitive parameters for these outputs were
curve number (CN), USLEK, C, P factors, and land
slope. For the AGNPS model, USLEK, C, and P
factors always appear as the product KCP and thus
cannot be separated for parameter estimation. There-
fore, uncertainty of only one of three parameters can
be analyzed and the other two parameters can be
expected to show the same variability. USLEK factor
was used in this study. Thus, the three parameters
considered were CN, slope, andK factor.

3.3. Description of the rainfall events and data set

Rainfall data for the Micronet stations were
obtained from USDA–ARS. The rain gauges used in
the Micronet are Belfort 5-780 series dual-traverse
weighing bucket rain gauges. An automatic data
logger was used to measure the rainfall amounts.
Stream flow data were obtained from the US Geolo-
gical Survey (USGS) (USGS http://2o.er.usgs.gov).
Daily discharge in cubic feet per second was
available.

A total of 9 rainfall dates (3/27/96, 3/28/96, 4/21/
96, 4/23/96, 5/31/96, 6/1/96, 7/9/96, 7/10/96, and 10/
27/96) were selected. The base flow was separated
from the total flow to get the surface runoff. For
March 27 and 28, April 21 and 23, May 31 and June
1, and July 9 and 10, it was not possible to separate the
base flow from the total flow for the rainfall on each
day, because often several days elapsed as the runoff
volume was occurring. The total rainfall for the two
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days was considered as one rainfall event and was
used in the analysis. Thus, the total number of rainfall
events considered was five. The events are indicated
by the first day of the event. Rainfall during the four
days preceding the event date was also obtained to
characterize the antecedent moisture conditions used
in CN calculations.

3.4. Estimation of parameter uncertainty due to
spatial variability of rainfall

The available observed data were the rainfall and
runoff volume. No measured water quality or sedi-
ment data were available. Two steps were used to
estimate the parameter uncertainty due to the spatial
variability of rainfall. In the first step, grid-based rain-
fall depths, considered as the ‘true’ rainfall, were
captured using the Thiessen polygon method.
AGNPS was calibrated for CN using observed ‘true’
rainfall and runoff volume by adjusting the individual
cell curve numbers either all upward or downward by
a constant percentage until predicted runoff volume
equaled observed runoff volume. All other parameters
were estimated based on the observed watershed char-
acteristics. Runoff volume, total sediment, sediment-
attached N, and sediment-attached P were obtained by
running the model using calibrated CN, and ‘true’
rainfall values for each event. These outputs were
considered as the ‘observed’ values for further analy-
sis. Characteristics of rainfall, runoff, sediment, and
nutrient data for all events analyzed are shown in
Table 1.

In the second step, parameter uncertainty due to
spatial variability of rainfall was estimated. It was
assumed that each of the 17 gauges was the only
gauge available for the rainfall measurement and the
rainfall depth recorded by that gauge was spatially
homogeneous across the watershed. Model para-

meters were estimated using the rainfall observed at
each gauge location, one at a time, and the ‘observed’
runoff, total sediment, sediment-attached N, and sedi-
ment-attached P values. The objective function used
in the parameter estimation was the sum of the abso-
lute values of relative errors defined by Eq. (5) for
runoff, sediment and nutrients.

A two stage “brute force” optimization procedure
described by Allred and Haan (1996) was used to find
the optimum parameter values. In the first optimiza-
tion stage, a rough estimate of the optimum parameter
set was obtained by setting a percentage by which
each parameter was to be changed. The parameter
values in each cell were increased or decreased by
this percentage. Eight increments or decrements
were performed for each parameter. Curve numbers
were always increased or decreased by a whole
number. For three parameters a total of 512 model
runs were performed and objective function values
calculated for every possible permutation of the para-
meters. If the optimum values of any of the three
parameters were obtained at the upper or lower
boundary of the parameter values, the step sizes of
the parameter values were increased and the same
procedure was repeated to insure that the optimum
parameter estimates did not fall at the boundary
values. Mathematically, the optimum parameter
value can be represented as (Pi)j, wherePi is the aver-
age optimum value of parameteri obtained at stepj
(j � 1,2,…,8). If j was equal to one or eight, then the
range of the step size was increased, and the optimi-
zation procedure was repeated. The first estimate of
the optimum parameter set was chosen that had the
minimum objective function value.

The second optimization was conducted in a similar
manner as the first one by further refining the para-
meter values. Refinement was accomplished using a
much narrower range of parameters obtained from the
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Table 1
Rainfall, runoff, sediment and nutrient values for the watershed

Rainfall date Rainfall (mm) Runoff (mm) Total sediment (Mg) Sediment-N (kg/ha) Sediment-P (kg/ha)

3/27/96 33 0.5 242 0.07 0.03
4/21/96 25 0.8 443 0.1 0.06
5/31/96 83 3 3395 0.53 0.27
7/9/96 64 1.5 2367 0.39 0.2
10/27/96 23 0.3 68 0.02 0.01



first optimization. If the optimum parameter obtained
by the first approximation was (Pi)j, then the range of
the parameters in the second optimization was (Pi)j21

to (Pi)j11. In some instances, more than one set of
parameter values, very close to each other, were
obtained that minimized the objective function. In
that case, the range was set such that all the parameter
estimates minimizing the objective function were
bracketed. In the second optimization, a step size in
the form of a fraction for each parameter was calcu-
lated that divided the range of the parameter into 10
evenly distributed values. Each parameter at the cell
level was then increased or decreased by this fraction
and model runs were performed. In this step also, the
curve numbers were increased or decreased by a
whole number. A total of 1000 model simulations
were performed for each possible permutation of the
parameter values. The set of parameters that mini-
mized the objective function was considered as the
final optimum parameter set. This “brute force” opti-
mization procedure, although being computationally
less efficient than other methods, has the advantage of
not being sensitive to local minimums in the objective
function (Allred and Haan, 1996).

For the watershed, 17 sets of parameters were
obtained for each event corresponding to rainfall

observed at each gauge location. Since the parameter
values were different at each cell level, the values
shown in the subsequent sections represent the aver-
age parameter values. The variability in the model
parameters induced by the spatial variability of rain-
fall is termed the parameter uncertainty and is quanti-
tatively described using average error (AE), relative
error (RE), standard error (SE), and coefficient of
variation (CV). These error statistics can be defined as

AE � 1
n

Xn
i

�uPi 2 Ou� �4�

RE� AE
O

�5�

SE�
�������������������
1
n

Xn
i

�Pi 2 O�2
vuut �6�

CV � SE
O

�7�

where Pi is the predicted value,O is an observed
parameter value,O is the mean of the observed
data, andn (i � 1,2,3,…,n) is the number of data pairs.

The variability in the rainfall amounts observed by
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Table 2
Spatial variability of rainfall

Statistics Rainfall date

3/27/96 4/21/96 5/31/96 7/9/96 10/27/96

Average (mm) 32 26 78 69 19
Area-weighted average (mm) 33 25 83 64 23
Range (mm) 18–41 17–50 57–95 31–137 0–45
Average error (mm) 6.35 7.15 6.47 27 9.34
Relative error 0.2 0.27 0.08 0.39 0.51
Standard error (mm) 7.95 9.08 8.87 31.6 11.7
CV 0.25 0.35 0.11 0.46 0.64
No. of gauges 13 16 17 17 17

Table 3
Parameter variability induced by spatial variability of rainfall

Statistic Parameter values for the rainfall dates

3/27/96 4/21/96 5/31/96 7/9/96 10/27/96

CN
Average 58 65 43 44 66
Range 51–70 47–72 36–52 23–64 47–76
CV 0.12 0.11 0.12 0.51 0.26
Standard error 6.83 6.98 4.85 16.9 14.2
Average error 4.38 5.81 3.75 13.8 12.7
Relative error 0.07 0.09 0.1 0.42 0.23
Slope (%)
Average 3.96 5.69 3.93 4.12 3.62
Range 3.11–5.34 3.33–6.79 3.32–5.14 2.07–6.22 2.1–5.54
CV 0.2 0.58 0.12 0.33 0.26
Standard error 0.75 2.15 0.46 1.24 0.95
Average error 0.48 2.02 0.3 1.02 0.77
Relative error 0.13 0.55 0.09 0.28 0.21
K factor
Average 0.35 0.44 0.32 0.51 0.36
Range 0.23–0.58 0.25–0.68 0.28–0.38 0.27–0.87 0.14–0.59
CV 0.38 0.54 0.08 0.85 0.5
Standard error 0.13 0.18 0.03 0.28 0.16
Average error 0.08 0.14 0.02 0.21 0.15
Relative error 0.23 0.43 0.08 0.62 0.45
Retention parameter (S) (mm)
Average 188 144 351 388 139
Range 109–244 98.9–287 234–452 143–850 80.3–287
CV 0.23 0.33 0.17 0.49 0.44
Standard error 46.7 48.5 67.1 251 92.2
Average error 32.2 37.6 54.9 223 84.6
Relative error 0.16 0.25 0.14 0.43 0.41



17 raingauges for each event was quantified using
Eqs. (4)–(7). HerePi is the rainfall observed at the
gaugei, O is the average rainfall for the area, andn is
the number of gauges used to capture the rainfall
spatial variability.

4. Results and discussion

4.1. Spatial variability of rainfall

Consideration of spatial variability of rainfall is
very important in studying the process of generation
and transport of runoff, sediment, and nutrients from a
watershed. Fig. 2 shows the hourly distribution of
rainfall that occurred on 8/3/96 over the Little
Washita basin as recorded at 42 Micronet stations.
A large variation in the cumulative rainfall depth
over the area is evident. The event rainfall depth
varied from almost zero to 43 mm. Traditionally, rain-
fall is measured at a few gauges (possibly only one)
scattered throughout the basin and these point
measured values are used to determine the average
rainfall depth for use in hydrologic/water quality (H/
WQ) models. In an ideal condition, where the density
and distribution of gauges are adequate, rainfall depth
can be estimated with sufficient accuracy at any point
in the basin by using a spatial interpolation technique.
Unfortunately, this ideal condition rarely exists. In
fact, it is not uncommon to have no rain gauge within
the basin of interest. If each of the 42 gauges in Fig. 2
is assumed to be the representative gauge for the
watershed, the result obtained using the rainfall
recorded at each gauge location, one at a time, will
have a large variability. A H/WQ model like AGNPS
may not predict any significant output using the low
rainfall values as compared to a larger rainfall depth
( . 30 mm) observed at some other gauge locations.

The characteristics of the rainfall observed by 17
gauges associated with the Cement watershed are
shown in the Table 2. The average rainfall ranged
from 19 to 78 mm for the five events analyzed. The
CV ranged from 0.11 to 0.64. The smallest CV and
relative error were associated with the rainfall on 5/
31/96 and largest with the rainfall on 10/27/96. The
standard error was smallest for the rainfall on 3/27/96.
For the watershed, 13 rain gauges were used in the
Thiessen polygon method to capture the true rainfall

pattern and is shown as area-weighted rainfall in
Table 2. The average rainfall was obtained from all
of the 17 gauges. The average rainfall and the area-
weighted rainfall were different for all events. Inclu-
sion of additional gauges that were in the vicinity of
the watershed but not a part of the Thiessen network
introduced a bias in the average rainfall estimate. In
actual conditions, it is not uncommon to have a rain
gauge located outside the watershed of interest. As the
number of rain gauges available to estimate the area-
weighted rainfall increases, this bias can be expected
to decrease.

4.2. Effect of rainfall spatial variability on model
parameter uncertainty

Parameter variability induced by spatial variability
of rainfall is shown in Table 3. AGNPS is a distributed
parameter model. The model parameters vary from
cell to cell. The parameter estimates discussed here
represent the average parameter values. In AGNPS,
land slope is used to calculate the amount of sediment
and nutrients eroded within each cell and the subse-
quent routing of the sediment and nutrients from each
cell to the watershed outlet. TheK factor is used in
Universal Soil Loss Equation (USLE) to calculate the
amount of sediment and nutrients eroded within each
cell. CN indicates the runoff potential of an area. The
CV in CN ranged from 0.11 to 0.51 for the five events
considered. The SE ranged from 4.85 to 16.85. Here
the largest SE in the rainfall was associated with the
largest SE in CN. Coefficient of variation and SE are
numerical representations of the variability in the
data. It means that a rainfall with a large variation in
observed depth will produce a higher variability in
CN. This can be expected since for a fixed runoff,
there is a one-to-one correspondence between rainfall
and CN. For a small observed rainfall value, CN must
be higher to produce a volume of runoff equal to the
measured runoff and vice-versa. In general, the stan-
dard error in CN decreased with a decrease in the SE
for rainfall depth.

The CV in the estimated slope ranged from 0.12 to
0.58 for the watershed. The range of SE were 0.46 to
2.15%. Although the largest CV and SE in the esti-
mated slope were not associated with the rainfall
having largest CV and SE, in general a higher varia-
bility in rainfall resulted in a higher variability in
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estimated slope. The rainfall on 5/31/96 was the most
homogeneous in nature. This resulted in the smallest
CV in the slope estimates.

Coefficient of variation and SE in theK factor
ranged from 0.08 to 0.85, and 0.03 to 0.28, respec-
tively. The corresponding ranges in CV and SE for the
retention parameter (S) were 0.17 to 0.49, and 46.7 to
251 mm, respectively. Similar to the CN, the smallest
variation in S resulted from the rainfall most homo-
geneous in nature (5/31/96).

In general, a wide range in estimated parameters

resulted when the rainfall measured at each gauge
location was used individually, one at a time. None
of the parameters can be considered unlikely when
viewed individually for each event. Together the
sets of parameter values obtained illustrate the possi-
ble range depending upon the rainfall spatial variabil-
ity.

A larger range in the rainfall values within a single
event resulted in a higher range in all estimated para-
meters. When compared to the true parameter values,
the variation was very large for all events. For slope,
K, andS the range varied by several factors for some
events. Parameter uncertainty comes into play when
developing and testing a model. One might have
several observed events and use each to estimate
model parameters. The result may be quite inconsis-
tent estimates. Usually this uncertainty in the model
parameters is attributed to the errors in the structure of
the models. Results of this study indicate that even in
the case of physically-based distributed-parameter
models, uncertainty in the parameter estimates
would be observed because of the input error coming
from the spatial variability of rainfall.

One of the sources of the uncertainty in the model
parameters/outputs could be inappropriate algorithms
used to model the processes. Since we used the
AGNPS model to get the true situations for the
model outputs, this eliminates the possibility that
the variability in the model parameters were due
to the model shortcomings. In other words, the
variability in the AGNPS parameters were not
due to algorithmic problems, but due to rainfall
spatial variability. The size of the watershed on
which the model is applied is also not a source
of this uncertainty because AGNPS model has
been validated for relatively larger watersheds
(Young et al., 1989).

When the model is calibrated against a number of
‘true’ rainfall events, i.e. when all stations are used to
compute the most correct rainfall pattern from different
events of different magnitude and spatial patterns, some
uncertainty in the model parameters/outputs may still
remain due to other sources defined in the Section 2.

4.3. Relative errors in estimated parameters due to
rainfall spatial variability

Errors for estimated parameters relative to the
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Table 4
Relative errors in estimated parameters due to rainfall spatial varia-
bility

Rainfall date Parameter Relative error

Maximum Minimum

3/27/96 CN 0.23 0.02
S 0.46 0.04
Slope 0.41 0.01
K factor 0.75 0

4/21/96 CN 0.25 0
S 0.92 0
Slope 0.83 0.1
K factor 1.06 0.03

5/31/96 CN 0.33 0
S 0.4 0
Slope 0.39 0.02
K factor 0.15 0.03

7/9/96 CN 0.94 0.03
S 0.72 0.04
Slope 0.67 0.01
K factor 1.63 0

10/27/96 CN 0.38 0.03
S 0.61 0.08
Slope 0.49 0
K factor 0.78 0.03

Table 5
Relative errors in rainfall values

Rainfall date Relative error

Maximum Minimum

3/27/96 0.45 0.01
4/21/96 1.04 0
5/31/96 0.31 0.02
7/9/96 1.13 0.05
10/27/96 0.9 0.13



calibrated parameter values were calculated. Table 4
shows the errors in estimated parameters relative to
the calibrated parameter values. The maximum and
minimum relative errors in rainfall as compared to
the area-weighted average rainfall for all events
analyzed are shown in Table 5. Rainfall observed at
each gauge location gave a different set of parameters
that minimized the objective function.

The minimum and maximum relative errors for the
parameters were derived from 13 to 17 sets of para-
meters for each event. The maximum relative error in
CN, S, slope, andK factor were 0.94, 0.92, 0.83, and
1.63, respectively, for all events considered. The
corresponding rainfall relative errors were 0.52,
1.04, 0.32, and 0.52, respectively. Maximum relative
error in CN was obtained at the gauge 161 for rainfall
on 7/9/96. The rainfall at this gauge location was

minimum for this event. ForS, the maximum relative
error occurred at gauge 163 on 4/21/96. For this event,
rainfall relative error and rainfall depths were maxi-
mum at this gauge location. Maximum relative error in
slope estimate was at the gauges 132 and 150 on 4/21/96.
The rainfall observed by these gauges was the minimum
for the event. The maximum relative error in estimated
K factor was associated with the minimum rainfall
observed at the gauge 161 on 7/9/96.

The minimum relative errors for CN,S, slope, and
K factor were zero. The corresponding rainfall relative
errors were 0.09, 0.26, 0.09, and 0.15, respectively.
The minimum relative error was close to zero for all
events for all parameters. Here it should be noted that
the minimum relative errors in the parameters were
not associated with the rainfall minimum relative
errors. For example, event on 4/21/96 had the rainfall
measured at gauge 147 very similar to the area-
weighted rainfall, but the relative errors in the para-
meters were not minimum at this location.

Maximum relative errors in CN and S were asso-
ciated with the minimum rainfall observed at a gauge
location for all events, except on 4/21/96. For the
rainfall on 4/21/96, the maximum rainfall observed
at the gauge 163 produced the maximum relative
error in CN, andS. For estimated slope andK factor,
the maximum relative error resulted from the gauges
that observed the minimum rainfall. Since AGNPS is
designed to predict erosion events, not low flow
events, the relative errors in parameter estimates can
be expected to be large for smaller rainfall events.

4.4. Correlation structure among the parameters

The correlation among the parameters and the input
rainfall was calculated for all events (Table 6). The
correlation ofS with other parameters is not shown
becauseS is derived from CN and its correlation will
be similar, but opposite in sign, to that shown for CN.

The correlation analysis shows that for a particular
event, the model parameters are highly correlated.
High parameter correlation contribute to the difficulty
of finding optimum parameter values for models
having several parameters. When calculated over all
events, the correlations are reduced as would be
expected, but still indicate that the optimum para-
meter values are not independent of each other (a �
0.05).
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Table 6
Correlation among the estimated parameters

Rainfall Slope CN K factor

3/27/96
Rainfall 1
Slope 2 0.96 1
CN 2 1 0.96 1
K factor 2 0.99 0.97 0.99 1
4/21/96
Rainfall 1
Slope 2 0.98 1
CN 2 1 0.98 1
K factor 2 0.86 0.87 0.89 1
5/31/96
Rainfall 1
Slope 2 0.98 1
CN 2 1 0.98 1
K factor 2 0.91 0.86 0.91 1
7/9/96
Rainfall 1
Slope 2 0.97 1
CN 2 0.97 0.98 1
K factor 2 0.89 0.91 0.96 1
10/27/96
Rainfall 1
Slope 2 0.94 1
CN 2 1 0.95 1
K factor 2 0.87 0.92 0.89 1
Overall
Rainfall 1
Slope 2 0.54 1
CN 2 0.97 0.64 1
K factor 2 0.38 0.73 0.48 1
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Fig. 3. Cumulative probability plot of estimated slope.

Fig. 4. Cumulative probability plot of estimatedK factor.



A high correlation between optimized CN and rain-
fall was expected. In AGNPS, land slope is used to
calculate the amount of sediment and nutrients eroded
within each cell and the subsequent routing from each
cell to the watershed outlet. A high significant nega-
tive correlation between slope-rainfall means for a
given amount of sediment and nutrient transported
at the watershed outlet, if the rainfall is higher,
slope should be lower, and vice-versa to predict the
sediment/nutrient transport equal to the observed
output. TheK factor is used in the Universal Soil
Loss Equation (USLE) to calculate the amount of
sediment and nutrients eroded at each cell. A high
correlation between slope-K factor can be expected.

4.5. Probability structure of the estimated parameters

Cumulative probability plots of estimated para-
meters for all events are shown in Figs. 3–5. A chi-
square test was conducted to see if slope andK factor
estimates were normally distributed. Slope was found to
be normally distributed for the rainfall events on4/21/96,
7/9/96, and 10/27/96 (a � 0.05). USLEK factor was

normally distributed for the events on 4/21/96 and
10/27/96 (a � 0.05). Retention parameter (S) is
plotted on a log normal scale (Fig. 5) becauseS is
assumed to have a log normal distribution. A chi-
square test showed that the estimatedS followed a
log–normal distribution for the events on 4/21/96,
7/9/96, and 10/27/96 (a � 0.05). Here, the total
number of data points available for all events ranged
from 13 to 17. These number of data points may be
relatively small for determining the probability
distribution function of the parameters.

These probability plots should be considered as
marginal distributions. The true probability structure
of the parameters taken as a group is multivariate
since the parameters do have a correlation structure.

Fig. 3 shows that the probability of estimating a
slope less than the true slope (3.71%) is greater than
0.50 for the rainfalls on 3/27/96 and 10/27/96. It
means that, for a rainfall pattern like this, slope will
be underestimated using the rainfall observed at
majority of the gauges. For the other events analyzed,
Fig. 3 shows that the probability of estimating a slope
less than the true slope is less than 0.50 and the slope
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Fig. 5. Cumulative probability plot of estimated retention parameter.



is overestimated using the rainfall observed at the
majority of the gauges.

The true parameter value for theK factor was 0.33.
Fig. 4 shows thatK factor is overestimated for the
rainfalls on 4/21/96 and 7/9/96 using the rainfall at a
majority of the gauges and is underestimated for other
events. The base values for the retention parameter
were 188, 144, 351, 410, and 139 mm, respectively,
for the rainfalls on 3/27/96, 4/21/96, 5/31/96, 7/9/96,
and 10/27/96. The retention parameter was overesti-
mated for the rainfall on 3/27/96, and underestimated
for the rainfalls on the other events when the rainfall
at each gauge location was used, one at a time, to
estimate the parameter (Fig. 5).

5. Summary and conclusions

In general, a wide range in estimated parameters
resulted when the rainfall measured at each gauge
location was used individually, one at a time, to esti-
mate the model parameters. A larger range in the rain-
fall values within a single event resulted in a higher
range in all estimated parameters. The smallest para-
meter uncertainty resulted from the rainfall that was
most spatially homogeneous in nature. The variations
were very large when compared to the true parameter
values. For slope,K factor, and retention parameter
the range varied by several factors for some events.
Traditionally, variability in the estimated parameters
is considered as the model uncertainty because the
models are simplified descriptions of the processes
occurring in the field. Results of this study indicate
that even in the case of physically-based distributed-
parameter models, uncertainty in the parameter esti-
mates would be observed because of the input error
coming from the spatial variability of rainfall.

The correlation analysis among input rainfall and
calibrated parameters showed that rainfall, CN, slope,
andK factors were highly correlated. This correlation
is a major contributor to the difficulty of estimating
parameters in H/WQ models. A high correlation
between two parameters means that one parameter
cannot be estimated without adjusting the value of
the other.

Spatial variability of rainfall must be captured and
used in H/WQ models in order to accurately predict
the hydrologic and water quality responses of water-

sheds. Since rainfall is a driving force behind many
kinds of pollutant release and subsequent transport
and spread mechanisms, ignoring this property of
rainfall in the application of H/WQ models limits
the accuracy of the model results. O’Connell and
Todini (1996) have stressed the use of radar and
dense network of rain gauge data to gain a better
understanding of the hydrologic importance of rainfall
spatial variability. Rainfall spatial pattern can be
better captured using a network of rain gauges and
radar rainfall data. A radar data, when calibrated
with raingauges can give an accurate estimate of rain-
fall that are continuous in space and provide informa-
tion on the spatial variability of rainfall. Ease of
availability of radar rainfall data has provided the
model developers and users an opportunity to capture
and use spatially rainfall pattern to eliminate the
errors due to input rainfall data.
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