

Nutrient Attenuation under Natural Conditions in Agricultural Drainage Ditches

Laurent Ahiablame ¹, Graduate Student Indrajeet Chaubey ¹, Associate Professor Douglas Smith ², Research Soil Scientist Bernard Engel ¹, Professor

¹Department of Agricultural and Biological Engineering ²National Soil Erosion Lab, USDA-ARS

Background and Motivation

(Adapted from Alexander et al., 2008)

Over 51 million acres are subject to surface and subsurface drainage systems in the Midwest (Sharpley et al., 2007. JSWC 62(4)).

Background and Motivation

- Tile-fed drainage ditches in the Midwest have been reportedly associated with the pollution of downstream waters.
- However, the ability of sediments to retain nutrients upstream and downstream from tile outlets, is not clear.
- Effects of tile inputs on the magnitude and transport of nutrients in drainage ditches are still not well understood.

Marshall Ditch, 2008

Tile drain outlet

Objectives and Study Sites

- Evaluate effects of tile effluents on nutrient uptake in drainage ditches.
- Examine sediment-water interactions in drainage ditches.

	Box and Marshall Ditches	J.B. Foltz Ditch					
Watershed area	53.0 km²	182 km²					
Location	W. Lfytt, IN	Reynolds, IN					
Area drained by ditch	8 km²	8 km²					
Land use	agriculture (90%) low residential (10%)	agriculture (9%) low residential (7%)					

Selected Tile Outlets

J.B. Foltz Ditch study reach = 1 km

Box Ditch and Marshall Ditch study reach = 1/2 km each

Uptake Length

turnover length $\leftarrow S_p \rightarrow$ particulate

Source: Modified from Dr. Chaubey lecture notes, Spring 2008

Net uptake length for P and NO3-N:

$$S_{net} = \sum \frac{S_{net(i)} * x_i}{x_{total}}$$

Mass transfer coefficient:

$$V_f = \frac{v * h}{S_{net}}$$

spiraling length (S)

Sediment-Water Interactions

- EPCo is the concentration at which the net exchange rate of P between sediments and the water column is negligible (Klotz, 1988).
 - If P > sediment EPCo => sediments act as a sink of P.
 - If P < sediment EPCo => sediments act as a source of P.
- PSI is a measurement of the ability of sediments to absorb P and was determined with 2 mg/L of additional P (Bache and Williams, 1971).
- Ex-P/ Ex-N is the amount of easily available P/N for release into the water column and was determined with 1M of MgCl2 /2M of KCl.

Methodology

- Two types of ditch water samples were collected (3x each) in low, midrange and high flow regimes from Feb to Jul 2008.
 - Soluble P (SP)
 - Ammonia (NH3-N)
 - Nitrate + nitrite (NO3-N)

- Total phosphorus (TP)
- Total nitrogen (TN)
- Quarterly sediments were collected 5m upstream and downstream from selected tile outlet from Jul 2007 to Jul 2008.

Water sampling

Sediment sampling

Uptake Length in Box Ditch

Uptake Length in JB Foltz Ditch

Uptake Length in Marshall Ditch

Sediment-Water Interactions

Sediment-Water Interactions

	Box Ditch		J.B. Foltz Ditch		Marshall Ditch	
	Ex-P	Ex-N	Ex-P	Ex-N	Ex-P	Ex-N
Jul-Sep	1.51	231.0 <mark>*</mark>	2.34	825.7 <mark>*</mark>	1.51*	70.1
Oct-Dec	5.98 <mark>*</mark>	20.24	3.16	439.1	1.85*	138.4 <mark>*</mark>
Jan-Mar	5.38 <mark>*</mark>	88.6*	1.98	812.4 <mark>*</mark>	1.49	22.1
Apr-Jun	1.81	33.7	2.09	215.4	1.39	104.3 <mark>*</mark>
p-value	< 0.05	< 0.04		< 0.0001	< 0.0001	< 0.02

- * Higher values
- PSI: No significant variation between upstream and downstream sediments.

Concluding Remarks

- No particular trend in nutrient concentrations along the study reaches or based on various flow regimes.
- Retention of NH3-N > P > NO3-N.
- Tile drains acted as a point source for nutrients, especially for NO3-N.
- Sediments in the three ditches acted as a sink or a source of P, or were in equilibrium with the ditch water column P concentration.
- Mean EPCo, Ex-P, PSI, and Ex-N varied spatially and seasonally.
- Sediments were not sensitive to inputs from tile drains.
- Uptake lengths were long indicating that these ditches were rich in nutrients and may influence downstream waters.

