Week 7-8

Nicolo Michelusi

I. OPTIMIZATION ALGORITHMS

- Sometimes we can explicitly solve for the optimal solution in closed form, by solving KKT conditions directly, or solving the Lagrangian and dual problems (see previous examples)
- However, often a closed-form solution is not possible, and we need to resort to numerical algorithms
 - A numerical algorithm starts from some initial estimate x_0 , and iteratively generate new estimates by

$$x_{k+1} = T(x_k)$$

Hopefully, as $k \to \infty$, $x_k \to x^*$, the optimal solution

- When does such a sequence converges to the optimal solution?
- If so, how long does it take to converge to a certain accuracy? (sample complexity)
- Example: compute $\sqrt{2}$ using only $+, -, \times, /$.

$$x = \sqrt{2} \Leftrightarrow (x-1)(x+1) = 1 \Leftrightarrow x = \frac{1}{x+1} + 1$$

This suggests the update

$$T(x_k) = \frac{1}{x_k + 1} + 1$$

which is such that $T(\sqrt{2}) = \sqrt{2}$ (i.e., $\sqrt{2}$ is a fixed point of x = T(x))

To prove convergence, let $x, y \ge 1$, and consider |T(x) - T(y)|:

$$|T(x) - T(y)| = \frac{|y - x|}{(x+1)(y+1)} \le \frac{1}{4}|y - x|$$

Therefore, choosing $y = \sqrt{2}$ we get

$$|x_{k+1} - \sqrt{2}| = |T(x_k) - \sqrt{2}| \le \frac{1}{4}|x_k - \sqrt{2}| \le \dots \le \frac{1}{4^{k+1}}|x_0 - \sqrt{2}|$$

and therefore x_k converges linearly to $\sqrt{2}$, by initializing it with $x_0 \ge 1$.

However, not all algorithms converge:

$$x = \sqrt{2} \Leftrightarrow (x-1)(x+1) = 1 \Leftrightarrow x = \frac{1}{x-1} - 1$$

but the algorithm $x_{k+1} = \frac{1}{x_k - 1} - 1$ does not converge

II. ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION

• Solve $\min f(x)$, f convex Optimality condition is

$$f'(x^*; x - x^*) \ge 0, \ \forall x$$

When f is differentiable, the optimality condition becomes

$$\nabla f(x^*) = 0$$

• Assume f differentiable; consider the iteration of the type

$$x_{k+1} = T(x_k) = x_k - \alpha \nabla f(x_k)$$

Note that x^* is a fixed point of the mapping T(x): if $x_k = x^*$, then $T(x_k) = x^*$.

• Example: $f(x) = \frac{1}{2}x^2$

- Note: the algorithm does not converge when α is too large; it converges slowly if α is too small..
- Proof of convergence (for $\alpha > 0$ sufficiently small). Need to show that
 - 1) $f(x_k)$ decreases across iterations
- 2) $||x_k x^*||_2$ decreases sufficiently fast across iterations

Typically, we need stronger structural properties of the function, in addition to convexity

• First approach

Lemma 1. Assume f is continuously differentiable and $\exists L > 0$ such that

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \ \forall x, y, \in \mathbb{R}^n$$

(gradient is Lipschitz continuous with parameter L) Then,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||x - y||_2^2, \ \forall x, y, \in \mathbb{R}^n$$

Theorem 2. Assume the same conditions as before hold; f is bounded below by f^* ; and $0 < \alpha < 2/L$. Then $\nabla f(x_k) \to 0$ for $k \to \infty$.

• Norm approach:

Lemma 3. If f is convex, then

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0, \ \forall x, y, \in \mathbb{R}^n$$

(this holds also if ∇ is a sub-gradient)

A mapping that satisfies this condition is called "monotone mapping"

Lemma 4. If f is convex, differentiable, and its gradient is Lipschitz continuous with parameter L, i.e.

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \ \forall x, y, \in \mathbb{R}^n$$

then

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2, \ \forall x, y, \in \mathbb{R}^n$$

Theorem 5. Assume that

$$(\nabla f(x) - \nabla f(y))^T(x - y) \ge \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2, \ \forall x, y, \in \mathbb{R}^n;$$

 $0 < \alpha < 2/L$ and $\exists x^*$ with $\nabla f(x^*) = 0$. Then, the sequence of points generated by

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

converges, and the limit x_{∞} satisfies $\nabla f(x_{\infty}) = 0$.

• These results prove convergence to (one) optimal point x^* . However, they do not provide guarantees on how much time it takes to converge. To this end, we need stronger conditions (e.g., strong convexity)

Theorem 6. If f is strongly convex with Lipschitz continuous gradient with parameter L,

$$L||x - y||_2^2 \ge [\nabla f(x) - \nabla f(y)]^T (x - y) \ge \rho ||x - y||_2^2, \ \forall x, y \in \mathbb{R}^n$$

for some $\rho > 0$ (note that we must have $\rho \leq L$), and $0 < \alpha < \frac{2\rho}{L^2}$, then x_k converges to x^* with linear rate. In particular,

$$||x_k - x^*|| \le \xi^k ||x_0 - x^*||$$

where
$$\xi = \sqrt{1 + \alpha^2 L^2 - 2\alpha \rho} \in (0, 1)$$
.

• Scaled gradient descent algorithm:

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

converges if the gradient of f is Lipschitz continuous with parameter L and $\alpha < 2/L$.

The algorithm can be made faster by properly scaling the gradient by a positive definite matrix P > 0:

$$x_{k+1} = x_k - \alpha P \nabla f(x_k)$$

This algorithm converges if the gradient of f is Lipschitz continuous and $\alpha < \frac{2}{L\lambda_{\max}}$, where λ_{\max} is the maximum eigenvalue of f.

To see this, note that the this is equivalent to a change of variables:

• Example

$$\min_{x_1, x_2} \frac{1}{2} (x_1^2 + \rho x_2^2)$$

where $\rho \gg 1$

• These algorithms can be generalized as follows:

$$x_{k+1} = x_k + d_k$$

where d_k is a descent direction:

$$\nabla f(x_k)^T d_k \le -\epsilon \|\nabla f(x_k)\|_2^2, \ \epsilon > 0$$

Further, assume that

$$||d_k||_2 \leq M||\nabla f(x_k)||_2$$

Then, we can prove the following:

Theorem 7. Assume d_k is a descent direction and $\epsilon > \frac{LM^2}{2}$. Assume f is bounded below. Then, if $\epsilon > \frac{LM^2}{2}$, $\nabla f(x_k) \to 0$ for $k \to \infty$.

To see this,

$$f(x_{k+1}) = f(x_k + d_k) \le f(x_k) + \nabla f(x_k)^T d_k + \frac{L}{2} \|d_k\|_2^2 \le f(x_k) - \left(\epsilon - \frac{LM^2}{2}\right) \|\nabla f(x_k)\|_2^2$$

hence

$$f^* \le f(x_{n+1}) \le f(x_0) - \left(\epsilon - \frac{LM^2}{2}\right) \sum_{k=0}^n \|\nabla f(x_k)\|_2^2$$

hence we must have $\|\nabla f(x_k)\|_2 \to 0$ for $k \to \infty$.

Examples of descent directions:

-
$$d_k = -\alpha \nabla f(x_k)$$
 (standard gradient descent algorithm)

-
$$d_k = -\alpha P \nabla f(x_k), \ P \succ 0$$
 (scaled gradient descent algorithm)

- Assume a strongly convex function $H(x) \succ \rho I$, $\forall x$, such that $H(x) \prec \lambda_{\max} I$. $d_k = -\alpha H(x)^{-1} \nabla f(x_k)$ (Newton algorithm)

Note: Newton direction is the one that minimizes a second order Taylor approximation of the objective function

$$f(y) \simeq f(x_k) + \nabla f(x_k)^T (y - x_k) + \frac{1}{2} (y - x_k)^T H(x_k) (y - x_k)$$

minimized at

$$y^* - x_k = -H(x_k)^{-1} \nabla f(x_k)$$

• These proofs require the function to be smooth (Lipschitz continuous gradient)

What if this condition is not satisfied? We need to use sub-gradients. In this case, the standard gradient descent does not converge to the optimal point, but may keep oscillating: **Theorem 8.** Assume f is convex and its subgradients are bounded, $\|\nabla f(x)\|_2 \leq M$. Consider the subgradient descent algorithm

$$x_{k+1} = x_k - \alpha \nabla f(x_k),$$

where $\nabla f(x)$ is a subgradient of f at x. Then, for any $\epsilon > 0$ and $\alpha < \epsilon/M^2$, $\forall k \geq 0$ there exists $n \geq k$ such that

$$f(x_n) < f(x^*) + \epsilon,$$

(i.e. x_n is an ϵ -suboptimal point)

To guarantee convergence to the optimal point, we need to use a diminishing step-size.

Theorem 9. Assume f is convex and its subgradients are bounded, $\|\nabla f(x)\|_2 \leq M$. Consider the subgradient descent algorithm

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k),$$

where $\nabla f(x)$ is a subgradient of f at x. Then, if

$$\sum_{k} \alpha_k = \infty, \ \sum_{k} \alpha_k^2 < \infty,$$

then $x_k \to x^*$, where x^* has a sub-gradient $\nabla f(x^*) = 0$

III. CONSTRAINED OPTIMIZATION ALGORITHMS

• Solve $\min f(x)$, s.t. $x \in \mathcal{F}$, f convex, \mathcal{F} is convex Optimality condition is

$$f'(x^*; x - x^*) \ge 0, \ \forall x \in \mathcal{F}$$

where $x^* \in \mathcal{F}$

When f is differentiable, the optimality condition becomes

$$\nabla f(x^*)^T (x - x^*) = 0, \ \forall x \in \mathcal{F}$$

- However, the normal gradient descent algorithm does not work any more because the new x_{k+1} might fall outside of \mathcal{F}
- Three solutions to this problem:
 - 1) Associate a penalty to constraint violation: choose convex g(x) such that

$$q(x) = 0, x \in \mathcal{F}$$

$$g(x) > 0, \ x \notin \mathcal{F}$$

and solve the unconstrained problem

$$\min f(x) + \beta g(x)$$

The solution will approach the original constrained problem as $\beta \to \infty$

2) Interior point method: choose g(x) such that $g(x) \to \infty$ as x approaches the boundary of \mathcal{F} from inside; then, minimize

$$\min f(x) + \beta g(x)$$

as before; due to the barrier, the optimal solution is in the interior of \mathcal{F} ; as $\beta \to 0$, the optimal solution tends to the solution of the unconstrained problem

3) Projection method: after each update, project x_{k+1} back to its feasible set:

$$[x_{k+1}]^+ = \arg\min_{x \in \mathcal{F}} ||x - x_{k+1}||_2$$

In the first two cases, the problem is converted to an unconstrained problem; we can then use gradient based algorithms; however, it may be difficult to ensure the Lipschitz continuity of the gradient.

IV. PROJECTION AND GRADIENT PROJECTION ALGORITHM

• Define the projection

$$[x]^+ = \arg\min_{y \in \mathcal{F}} ||y - x||_2$$

Example: $\mathcal{F} \equiv \otimes_i [a_i,b_i]$ (projection onto a box)

• Projection theorem (Bertsekas&Tsitsiklis,P.211)

Theorem 10.

- 1) $\forall x, \exists a \text{ unique } z \in \mathcal{F} \text{ that minimizes } ||y x||_2 \text{ over all } y \in \mathcal{F}; \text{ hence, } [x]^+ \text{ is uniquely defined.}$
- 2) $z = [x]^+$ if and only if $(y z)^T (x z) \le 0$, $\forall y \in \mathcal{F}$
- 3) The mapping $p(x) = [x]^+$ is continuous and non-expansive, i.e.

$$||p(x) - p(y)||_2 \le ||x - y||_2, \ \forall x, y \in \mathbb{R}^n$$

• Gradient projection algorithm

$$x_{k+1} = [x_k - \alpha \nabla f(x_k)]^+$$

Lemma 11. Assume f is convex and differentiable. Then $x^* = \arg\min_{x \in \mathcal{F}} f(x)$ if and only if

$$x^* = [x^* - \alpha \nabla f(x^*)]^+,$$

i.e. x^* is a fixed point of the gradient projection algorithm.

Theorem 12. If f is convex, with Lipschitz continuous gradient with parameter L, there exists some x^* such that $x^* = [x^* - \alpha \nabla f(x^*)]^+$, and $0 < \alpha < 2/L$, then x_k converges and its limit minimizes f(x) over \mathcal{F} .

If further f is strongly convex, we have the following linear convergence result

Theorem 13. If f is strongly convex with Lipschitz continuous gradient with parameter L,

$$L||x - y||_2^2 \ge [\nabla f(x) - \nabla f(y)]^T (x - y) \ge \rho ||x - y||_2^2, \ \forall x, y \in \mathbb{R}^n$$

for some $\rho > 0$ (note that we must have $\rho \leq L$), $x^* = \arg\min_{x \in \mathcal{F}} f(x)$ (unique since f is strongly convex), and $0 < \alpha < \frac{2\rho}{L^2}$, then x_k converges to x^* with linear rate. In particular,

$$||x_k - x^*|| \le \xi^k ||x_0 - x^*||$$

where
$$\xi = \sqrt{1 + \alpha^2 L^2 - 2\alpha\rho} \in (0, 1)$$
.

• <u>Scaled gradient projection algorithm</u>: similar to the unconstrained case, we can define the scaled version of the algorithm

$$x_{k+1} = [x_k - \alpha P \nabla f(x_k)]^+$$

However, in this case, we need to take special case at the projection operation. To see this, treat the scaled algorithm as a change of variables:

• Projection in the dual

- In general, the projection operation can be difficult to carry out if the constraints set is in a complex form.
- However, projection is easy in the dual domain, since the constraint set is always a quadrant. In addition, the subgradient has a simple form.

• Primal problem:

$$\min f_0(x)$$
s.t. $f_i(x) \le 0, \ \forall i$

$$Ax = b$$

Lagrangian:

$$L(x,\lambda,\nu) = f_0(x) + \sum_i \lambda_i f_i(x) + \nu^T (Ax - b), \ \lambda \ge 0$$

Dual function

$$g(\lambda,\nu) = \min_x L(x,\lambda,\nu)$$

the minimization of the Lagrangian is unconstrained, hence it can be accomplished using a standard unconstrained gradient descent algorithm.

Dual problem

$$\max g(\lambda, \nu)$$

s.t.
$$\lambda \ge 0$$

This can be solved using the gradient projection algorithm.

The subgradient of g at $(\lambda^{(k)}, \nu^{(k)})$ is given by

$$\nabla g(\lambda^{(k)}, \nu^{(k)}) = [f_1(x^{(k)}), \dots, f_m(x^{(k)}), Ax - b]$$

where

$$x^{(k)} = \arg\min_{x} L(x, \lambda^{(k)}, \nu^{(k)})$$

To show that this is indeed a subgradient, need to show that

$$g(\lambda, \nu) \le g(\lambda^{(k)}, \nu^{(k)}) + \nabla g(\lambda^{(k)}, \nu^{(k)})^T ([\lambda; \nu] - [\lambda^{(k)}; \nu^{(k)}]), \ \forall \lambda \ge 0, \forall \nu$$

(note that g is concave)

In fact we have

$$\begin{split} g(\lambda^{(k)}, \nu^{(k)}) + \nabla g(\lambda^{(k)}, \nu^{(k)})^T ([\lambda; \nu] - [\lambda^{(k)}; \nu^{(k)}]) \\ &= L(x^{(k)}, \lambda^{(k)}, \nu^{(k)}) + \sum_i f_i(x^{(k)}) (\lambda_i - \lambda_i^{(k)}) + (\nu - \nu^{(k)})^T (Ax^{(k)} - b) \\ &= L(x^{(k)}, \lambda, \nu) \geq \min_x L(x, \lambda, \nu) = g(\lambda, \nu). \end{split}$$

As a result, the gradient projection algorithm for the dual is of the following simple form:

$$\lambda_i^{(k+1)} = [\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})]^+$$
$$\nu^{(k+1)} = \nu^{(k)} + \alpha_k (Ax^{(k)} - b)$$

(possibly, diminishing step-size if not differentiable)

• Example: waterfilling in fading channels

$$\begin{split} \max_{p} \sum_{g} \mathbb{P}(g) \ln(1 + g p(g)) \\ \text{s.t. } 0 &\leq p \leq P_{\text{max}} \\ \sum_{g} \mathbb{P}(g) p(g) &\leq \bar{P} \end{split}$$

• Example: utility maximization of a single resource

$$\max_{x} \sum_{i} U_i(x_i)$$

s.t.
$$x \ge 0$$

$$\sum_{i} x_{i} \le R$$

• Example: distributed optimization over a network

$$\min_{x} \sum_{i} f_i(x)$$