Week 3

Nicolo Michelusi

I. CONVEX OPTIMIZATION PROBLEMS

• Standard form:

• Domain of the problem:

• Feasible point/set

•	Optimal value
•	Optimal point (or set of)
•	More general form:
	\mathbf{Q} : why must h_i be affine?

II. BASIC PROPERTIES OF CONVEX PROBLEMS

	_		
•	Local	/global	optimum

• what if we try to maximize convex function on a convex set?

• what if we try to minimize convex function on a non-convex set? (local minimum at the boundary might not be global minimum)

III. STANDARD FORM

- We will use the standard from, where f_i are convex and h_i are linear. Many problems, even if they don't appear convex or in standard form at first glance, can be converted into convex problems in standard form with some tricks.
- Change of variables

• Example: $\min_{x,y>0,z>0} x^2 + y$ s.t. $\ln(y+z) \le x, y^2 + z^2 \le 1$ (use $y = e^t, z = e^w$)

• Example: $\min_{x,y} \sqrt{x} - \sqrt{y}$ s.t. $x + y \le 1$ (use $\sqrt{x} = z, \sqrt{y} = w$) (use $y = e^t, z = e^w$)

- Transformation of functions
- Example: $\frac{x_1}{1+x_2^2} \le 1$

•	Example:	\min_{λ}	$/x_1$	+	x_2

- Converting equality constraints into inequality constraints (if you know additional structure of the problem)
- Example: $\min x_1 + x_2$ s.t. $x_1^2 + x_2^2 = 1$

- Implicit constraints can be made explicit
- Example: $\min f(x)$ with $f(x) = x^T x$ for Ax = b and $f(x) = +\infty$ otherwise

- Simplify objective/constraint functions by introducing additional constraints
- Example: $\min f_0(A_0x + b_0)$ s.t. $f_i(A_ix + b_i) \le 0$

• Sometimes we can do so with non-linear mappings, e.g. $\min f_0(g(x))$ • Conversely, equality constraints can be absorbed into the function • Example: $\min f_0(x)$ s.t. $f_i(x) \leq 0, Ax = b$

• Epigraph form

• Slack variables to convert inequality constraints into equality ones

•	All of	these	techniques	may	help	to	transform	an	otherwise	non-convex	problem	into	a
	convex	one.											

IV. CONDITIONS FOR OPTIMALITY

• When is a point x optimal? Roughly speaking, when the function is non-decreasing in any direction pointing towards the interior of the feasible set:

• Directional derivative f'(x, d)

- If $f'(x,d) = a^T d$ for all directions d, then the function is said to be differentiable at x, with gradient $\nabla f(x) = a$
- Existence of directional derivatives for convex function (possibly, $=\pm\infty$):

• May not exist for arbitrary functions, e.g. $x \sin(1/x)$ (does not exist in 0)

V. NECESSARY CONDITIONS FOR OPTIMALITY

- Necessary condition for optimality: let \bar{x} be a local minimizer of f(x) in \mathcal{C} convex; then, $f'(\bar{x}, x \bar{x}) \geq 0, \ \forall x \in \mathcal{C}$ (holds for any local minimum)
- What if the problem is convex? (local min is also global)
- \bullet Necessary condition for f differentiable

• To further understand these conditions, define the normal cone $N_C(\bar{x})$ to a convex set C at point \bar{x} :

$$N_C(\bar{x}) = \{d : d^T(x - \bar{x}) \le 0, \forall x \in C\}$$

• With this definition, necessary condition of optimality for f differentiable becomes

$$-\nabla f(\bar{x}) \in N_C(\bar{x})$$

VI. SUFFICIENT CONDITIONS FOR OPTIMALITY

- First order sufficient condition: let f convex and C convex; let $\bar{x} \in C$. Then, if $f'(\bar{x}; x \bar{x}) \ge 0$ for all $x \in C$, then \bar{x} is a global minimizer of f in C.
- If in addition f is differentiable, then the sufficient condition becomes $-\nabla f(\bar{x}) \in N_C(\bar{x})$
- (in general, this statement does not hold for non-convex functions!)
- Proof: