Week 2

Nicolo Michelusi

I. CONVEX FUNCTIONS

• Definition:

• Geometric interpretation:

• Counter-example

		C	. •
•	Concave	tun	ctions

• Strictly convex (concave) functions

• Jensen's inequality: if f convex, then $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$, $\forall \theta \in [0,1], \ \forall x,y,\in \mathrm{dom}(f)$

can be extended to infinite sums, integrals, expectations:

II. RELATIONSHIP BETWEEN CONVEX FUNCTIONS AND CONVEX SETS

- Epigraph of function, $\mathrm{epi}(f)$

• f convex iff epi(f) convex

• sub-level set C_{α}

• f convex $\Rightarrow C_{\alpha}$ convex for all α

Q: is the converse true?

III. RESTRICTION TO A LINE

Not surprising since, to check convexity, we only need to check straight lines.

• Useful because we can reduce the problem of checking convexity of any function to a one-dimensional problem

• Example: is $f(x) = x_1x_2$ convex?

IV. CONDITIONS FOR CONVEXITY

- Often, not easy to check convexity. The following will be useful conditions:
 - First order conditions, ∇f
 - Second order conditions, $\nabla^2 f$ (Hessian)
 - Compositions that preserve convexity
- First order condition (f differentiable):

$$f$$
 convex iff $dom(f)$ is convex and $f(y) \ge f(x) + \nabla f(x)^T (y-x)$, $\forall x,y$

In other words, the rest of the function must be above the *supporting hyperplane* $Proof\ of \Rightarrow$

.

 $\underline{\textit{Proof of} \Leftarrow}$

 \bullet Second order condition (f twice differentiable):

f convex iff dom(f) is convex and $\nabla^2 f(x) \succeq 0, \forall x$ (strictly if $\succ 0$)

Special case, $f: \mathbb{R} \to \mathbb{R}$

More in general, $f: \mathbb{R}^n \mapsto \mathbb{R}$

$\textit{Proof of} \Rightarrow$

.

 $\underline{\textit{Proof of} \Leftarrow}$

V. OPERATIONS THAT PRESERVE CONVEXITY

• non-negative weighted sums (also, infinite sums and integrals):

Q: what if some weights are negative?

• affine mapping of the argument: f convex, g(x) = f(Ax + b)

• Example: $\log(\sum_i e^{x_i})$

• Example: x^2

- **Q:** if f(x) convex, is f(-x) convex? Is -f(x) convex?
- Using the above two properties, whenever we check for convexity, we can ignore the affine change of variables and non-negative weights, and focus on the simplest function form.

VI. EXAMPLES OF CONVEX FUNCTIONS

- To use convex optimization, it is very important to be able to quickly identify/convert to convex functions. For some problems, the key to success is to find/identify convex functions. Here is a list of commonly used convex functions with applications.
- Exponent $e^{\alpha x}$

• negative $\log - \ln(x)$

• Example: Shannon capacity: $C = W \log_2(1 + P/N)$

Capacity increment due to increased power diminishes as P increases; Principle of diminishing returns, often assumed for utility functions

• Example: Power-rate: $P = N(2^{C/W} - 1)$

To get the same increment in capacity, the required increase in power grows exponentially; in power systems, the cost of generation is often assumed to be convex.

• Powers, x^{α}

• Power of absolute values, $|x|^p, \ p \ge 1$

• Norms
$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}, \ p \ge 1$$

• Ellipsoid
$$(x-x_0)^T P(x-x_0), P \succeq 0$$

• Example: mean squared errors, regression; given (x_i, y_i) , i = 1, ..., N, find a, b such that y = ax + b has the smallest error, defined as

$$\sum_{i} |y_i - (ax_i + b)|^p, \ p \ge 1$$

• Example: detection and likelihood functions: estimate x from $y=x+w,\ w\sim\mathcal{CN}(0,\sigma^2)$ via maximum likelihood

• Example: entropy $x \log_2 x$, x > 0; if a source generates symbols S according to distribution $p_i = \mathbb{P}(S = s_i), \ i = 1, \dots, N$, then entropy is

$$H(p) = -\sum_{i} p_i \log_2(p_i)$$

Entropy measures the uncertainty of the source, i.e. the amount of information generated by the source.

• Max: $\max_i x_i$ (non-differentiable!) (proof with epigraph)

• log-sum-exp: $\ln(\sum_i e^{x_i})$ (restrict to a line and use 2nd order condition)

• Example: log-moment generating function: $f(s) = \ln \mathbb{E}[e^{sX}]$ (restrict to a line and use 2nd order condition)

• Example: high-SNR approximation of Shannon capacity

$$C_i = W \log_2 \left(1 + \frac{P_i}{\sum_{j \neq i} P_j + N} \right) \ge W \log_2 \left(\frac{P_i}{\sum_{j \neq i} P_j + N} \right)$$

(not convex nor concave; use change of variables $P_i=e^{x_i}$)

• Low-SNR approximation,

$$C_i = W \log_2 \left(1 + \frac{P_i}{\sum_{j \neq i} P_j + N} \right) \le \frac{W}{\ln(2)} \frac{P_i}{\sum_{j \neq i} P_j + N}$$

(not convex nor concave; take $y_i = \ln(C_i)$ and change of variables $P_i = e^{x_i}$)

- Geometric mean: $(\prod_i x_i)^{1/N}$ is concave (see Boyd page 74)
- Quadratic over linear: $x^2/y, \ y>0$ (check 2nd order condition)

VII. MORE OPERATIONS THAT PRESERVE CONVEXITY

- In addition to non-negative weighted sums and affine mappings of arguments
- Pointwise maximum and supremum of convex functions: $\max_i f_i(x)$ or $\sup_y f(x,y)$ (use epigraph)

- Pointwise minimum and infimum of concave functions: $\min_i f_i(x)$ or $\inf_y f(x,y)$
- Examples:

$$\begin{aligned} \max_i x_i \\ \max_i a_i^T x_i + b_i \\ \min_i x_i \\ \min_i a_i^T x_i + b_i \end{aligned}$$

• Sum of the largest r components of $x \in \mathbb{R}^n$

• Distance to the farthest point: let $x \in \mathbb{R}^n$, $C \subseteq \mathbb{R}^n$, $f(x) = \sup_{y \in C} \|x - y\|_2$

• What about the infimum of convex functions? $f(x) = \inf_{y \in \mathcal{C}} g(x, y)$?

- Example: distance to a set, $\mathrm{dist}(x,\mathcal{C}) = \inf_{y \in \mathcal{C}} \|x - y\|_2$

• Perspective of a function g(x,t)=tf(x/t)

• Example: find channel capacity one a user is served a portion t < 1 of the time; is it convex?

• Example: $g(x) = (c^T x + d) f\left(\frac{Ax + b}{c^T x + d}\right)$

• Compositions: f(x) = h(g(x))

• Examples:

```
g convex, what about e^{g(x)}? g convex, what about g(x)^2? g convex and non-negative, what about g(x)^2? g concave, what about \ln g(x)? g concave, what about 1/g(x)?
```

• Vector composition: f(x) = h(g(x)) with $h : \mathbb{R}^k \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}^k$, what are the conditions? (assume differentiable)