
ECE49595NL/ECE59500NL Lecture 34
Automatic Differentiation—III

Jeffrey Mark Siskind

Elmore Family School of Electrical and Computer Engineering

Spring 2026

© 2026 Jeffrey Mark Siskind. All rights reserved.

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 1 / 25

A Neural Network

is a (Functional) Program

layer0 θ0 w0

layer1 θ1 w1

layer2 θ2 w2

layer3 θ3 w3

layer4 θ4 w4

layer5 θ5 w5

layer6 θ6 w6

layer7 θ7 w7

x0

x1

x3

x4

x5

x2

x6

x7

x8

∂x8
∂x0

∂x8
∂x1

∂x8
∂x2

∂x8
∂x3

∂x8
∂x4

∂x8
∂x5

∂x8
∂x6

∂x8
∂x7

∂x8
∂x8

net [θ0, . . . , θ7] [w0, . . . ,w7] x0
△
=

let x1 = layer0 θ0 w0 x0
x2 = layer1 θ1 w1 x1
x3 = layer2 θ2 w2 x2
x4 = layer3 θ3 w3 x3
x5 = layer4 θ4 w4 x4
x6 = layer5 θ5 w5 x5
x7 = layer6 θ6 w6 x6
x8 = layer7 θ7 w7 x7

in x8

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 2 / 25

A Neural Network is a (Functional) Program

layer0 θ0 w0

layer1 θ1 w1

layer2 θ2 w2

layer3 θ3 w3

layer4 θ4 w4

layer5 θ5 w5

layer6 θ6 w6

layer7 θ7 w7

x0

x1

x3

x4

x5

x2

x6

x7

x8

∂x8
∂x0

∂x8
∂x1

∂x8
∂x2

∂x8
∂x3

∂x8
∂x4

∂x8
∂x5

∂x8
∂x6

∂x8
∂x7

∂x8
∂x8

net [θ0, . . . , θ7] [w0, . . . ,w7] x0
△
=

let x1 = layer0 θ0 w0 x0
x2 = layer1 θ1 w1 x1
x3 = layer2 θ2 w2 x2
x4 = layer3 θ3 w3 x3
x5 = layer4 θ4 w4 x4
x6 = layer5 θ5 w5 x5
x7 = layer6 θ6 w6 x6
x8 = layer7 θ7 w7 x7

in x8

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 2 / 25

A (Functional) Program

is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0 x0 w1 x1

t0 t1

y

× ×

+

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

A (Functional) Program is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0 x0 w1 x1

t0 t1

y

× ×

+

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

A (Functional) Program is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w1 x1

×

t1

y

+

w0 x0

×

t0

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

A (Functional) Program is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0

t0

×

x0 w1 x1

×

t1

y

+

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

A (Functional) Program is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0 x1

×

w1x0

×

y

+

t1t0

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

A (Functional) Program is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0 x1

y

t0 t1

×

w1x0

+

×

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 3 / 25

Evaluating a Network

y

t1

×

+

×

w0 x0

t0

w1 x1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

y

×

+

×

t0 t1

x0w0 w1 x1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

w0

y

t1

×

x0

+

×

t0

w1 x1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

w0

y

×

x0

+

×

w1 x1

t0 t1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

w0 x1

y

×

w1x0

+

×

t0 t1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

w0 x1

×

w1x0

+

×

t0 t1

y

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Evaluating a Network

w0 x1

×

w1x0

+

×

y

t0 t1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 4 / 25

Matrix multiplication and transposition

(X1 × X2)
⊤= X⊤

2 × X⊤
1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 5 / 25

Programs as function composition

f = f1 ◦ · · · ◦ fn

x1 = f1 x0

...

xn = fn xn−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 6 / 25

The chain rule applied to programs

J f x0 = (J fn xn−1)× · · · × (J f1 x0)

(J f x0)
⊤= (J f1 x0)

⊤× · · · × (J fn xn−1)
⊤

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 7 / 25

Computing the Jacobian

−⇁
X1 = (J f1 x0)
−⇁
X2 = (J f2 x1)×

−⇁
X1

...
−⇁
Xn = (J fn xn−1)×

−−⇁
Xn−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 8 / 25

Computing the transpose of the Jacobian

↽−−−
Xn−1 = (J fn xn−1)

⊤

↽−−−
Xn−2 = (J fn−1 xn−2)

⊤×↽−−−
Xn−1

...
↽−
X0 = (J f1 x0)

⊤×↽−
X1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 9 / 25

Unary machine-state transition functions

x[Li] := ui x[Ri]

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 10 / 25

Binary machine-state transition functions

x[Li] := b (x[Ri], x[Si])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 11 / 25

What a unary machine-state transition function does

xi−1 = (xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

|| ��

· · · xi−1[m]

��

)

xi = fi xi−1 = (xi−1[1] · · · ui xi−1[Ri] · · · xi−1[Ri] · · · xi−1[m])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 12 / 25

What a binary machine-state transition function does

xi−1 = (xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

xx ��

· · · xi−1[Si]

uu ��

· · · xi−1[m]

��

)

xi = fi xi−1 = (xi−1[1] · · · bi (xi−1[Ri], xi−1[Si]) · · · xi−1[Ri] · · · xi−1[Si] · · · xi−1[m])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 13 / 25

Computing a Jacobian-vector product

−⇁
xn = (J f x0)×

−⇁
x0

−⇁
x1 = (J f1 x0)×

−⇁
x0

...
−⇁
xn = (J fn xn−1)×

−−⇁
xn−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 14 / 25

Computing a vector-Jacobian product

↽−
x0 = (J f x0)

⊤×↽−
xn

↽−−−
xn−1 = (J fn xn−1)

⊤×↽−
xn

...
↽−
x0 = (J f1 x0)

⊤×↽−
x1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 15 / 25

Jacobian of a unary primitive

Li Ri

↓ ↓
1

. . .
1

Li → 0 u′

1
. . .

Ri → 1
. . .

1

u′ = D ui xi−1[Ri]

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 16 / 25

Jacobian of a binary primitive

Li Ri Si

↓ ↓ ↓
1

. . .
1

Li → 0 b′1 b′2
1

. . .
Ri → 1

. . .
Si → 1

. . .
1

b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 17 / 25

Unary single-step Jacobian-vector product



−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
u′ ×−−⇁

xi−1[Ri]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[m]



=



1
. . .

1
0 u′

1
. . .

1
. . .

1





−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[m]


u′ = D ui xi−1[Ri]

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 18 / 25

Binary single-step Jacobian-vector product



−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
b′1 ×

−−⇁
xi−1[Ri] + b′2 ×

−−⇁
xi−1[Si]−−⇁

xi−1[Li + 1]
...

−−⇁
xi−1[Ri]

...
−−⇁
xi−1[Si]

...
−−⇁
xi−1[m]



=



1
. . .

1
0 b′1 b′2

1
. . .

1
. . .

1
. . .

1





−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[Si]

...
−−⇁
xi−1[m]


b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 19 / 25

Unary single-step vector-Jacobian product



↽−
xi[1]

...
↽−
xi[Li − 1]

0
↽−
xi[Li + 1]

...
u′ ×↽−

xi[Li] +
↽−
xi[Ri]

...
↽−
xi[m]


=



1
. . .

1
0

1
. . .

u′ 1
. . .

1





↽−
xi[1]

...
↽−
xi[Li − 1]
↽−
xi[Li]
↽−
xi[Li + 1]

...
↽−
xi[Ri]

...
↽−
xi[m]


u′ = D ui xi−1[Ri]

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 20 / 25

Binary single-step vector-Jacobian product



↽−
xi[1]

...
↽−
xi[Li − 1]

0
↽−
xi[Li + 1]

...
b′1 ×

↽−
xi[Li] +

↽−
xi[Ri]

...
b′2 ×

↽−
xi[Li] +

↽−
xi[Si]

...
↽−
xi[m]



=



1
. . .

1
0

1
. . .

b′1 1
. . .

b′2 1
. . .

1





↽−
xi[1]

...
↽−
xi[Li − 1]
↽−
xi[Li]
↽−
xi[Li + 1]

...
↽−
xi[Ri]

...
↽−
xi[Si]

...
↽−
xi[m]


b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 21 / 25

Forward Mode

f = f1 ◦ · · · ◦ fn

J (f)(x0) = J (fn)(xn−1)× · · · × J (f1)(x0)

x́n = J (f)(x0)× x́0

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 22 / 25

Forward Mode

f = f1 ◦ · · · ◦ fn
J (f)(x0) = J (fn)(xn−1)× · · · × J (f1)(x0)

x́n = J (f)(x0)× x́0

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 22 / 25

Forward Mode

f = f1 ◦ · · · ◦ fn
J (f)(x0) = J (fn)(xn−1)× · · · × J (f1)(x0)

x́n = J (f)(x0)× x́0

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 22 / 25

Forward Mode

f = f1 ◦ · · · ◦ fn
J (f)(x0) = J (fn)(xn−1)× · · · × J (f1)(x0)

x́n = J (f)(x0)× x́0

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 22 / 25

Reverse Mode

f = f1 ◦ · · · ◦ fn

J (f)(x0)
⊤= J (f1)(x0)

⊤× · · · × J (fn)(xn−1)
⊤

x̀0 = J (f)(x0)
⊤× x̀n

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 23 / 25

Reverse Mode

f = f1 ◦ · · · ◦ fn

J (f)(x0)
⊤= J (f1)(x0)

⊤× · · · × J (fn)(xn−1)
⊤

x̀0 = J (f)(x0)
⊤× x̀n

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 23 / 25

Reverse Mode

f = f1 ◦ · · · ◦ fn

J (f)(x0)
⊤= J (f1)(x0)

⊤× · · · × J (fn)(xn−1)
⊤

x̀0 = J (f)(x0)
⊤× x̀n

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 23 / 25

Reverse Mode

f = f1 ◦ · · · ◦ fn

J (f)(x0)
⊤= J (f1)(x0)

⊤× · · · × J (fn)(xn−1)
⊤

x̀0 = J (f)(x0)
⊤× x̀n

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 23 / 25

Forward Mode by Overloading

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

xi = fi(xi−1)

⟨xi, x́i⟩ = ⟨fi(xi−1),J (fi)(xi−1)× x́i−1⟩
−⇀xi =

−⇀
fi (−⇀xi−1)

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 24 / 25

Forward Mode by Overloading

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

xi = fi(xi−1)

⟨xi, x́i⟩ = ⟨fi(xi−1),J (fi)(xi−1)× x́i−1⟩
−⇀xi =

−⇀
fi (−⇀xi−1)

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 24 / 25

Forward Mode by Overloading

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

xi = fi(xi−1)

⟨xi, x́i⟩ = ⟨fi(xi−1),J (fi)(xi−1)× x́i−1⟩

−⇀xi =
−⇀
fi (−⇀xi−1)

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 24 / 25

Forward Mode by Overloading

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

xi = fi(xi−1)

⟨xi, x́i⟩ = ⟨fi(xi−1),J (fi)(xi−1)× x́i−1⟩
−⇀xi =

−⇀
fi (−⇀xi−1)

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 24 / 25

Reverse Mode

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 25 / 25

