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A Neural Network

is a (Functional) Program
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net [θ0, . . . , θ7] [w0, . . . ,w7] x0
△
=

let x1 = layer0 θ0 w0 x0
x2 = layer1 θ1 w1 x1
x3 = layer2 θ2 w2 x2
x4 = layer3 θ3 w3 x3
x5 = layer4 θ4 w4 x4
x6 = layer5 θ5 w5 x5
x7 = layer6 θ6 w6 x6
x8 = layer7 θ7 w7 x7

in x8
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A (Functional) Program

is a (Neural) Network

f [w0,w1] [x0, x1]
△
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y

w0 x0 w1 x1

t0 t1

y

× ×

+
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Evaluating a Network
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Evaluating a Network
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Matrix multiplication and transposition

(X1 × X2)
⊤= X⊤

2 × X⊤
1
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Programs as function composition

f = f1 ◦ · · · ◦ fn

x1 = f1 x0

...

xn = fn xn−1
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The chain rule applied to programs

J f x0 = (J fn xn−1)× · · · × (J f1 x0)

(J f x0)
⊤= (J f1 x0)

⊤× · · · × (J fn xn−1)
⊤
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Computing the Jacobian

−⇁
X1 = (J f1 x0)
−⇁
X2 = (J f2 x1)×

−⇁
X1

...
−⇁
Xn = (J fn xn−1)×

−−⇁
Xn−1
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Computing the transpose of the Jacobian

↽−−−
Xn−1 = (J fn xn−1)

⊤

↽−−−
Xn−2 = (J fn−1 xn−2)

⊤×↽−−−
Xn−1

...
↽−
X0 = (J f1 x0)

⊤×↽−
X1
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Unary machine-state transition functions

x[Li] := ui x[Ri]
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Binary machine-state transition functions

x[Li] := b (x[Ri], x[Si])
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What a unary machine-state transition function does

xi−1 = ( xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

|| ��

· · · xi−1[m]

��

)

xi = fi xi−1 = ( xi−1[1] · · · ui xi−1[Ri] · · · xi−1[Ri] · · · xi−1[m] )
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What a binary machine-state transition function does

xi−1 = ( xi−1[1]

��

· · · xi−1[Li] · · · xi−1[Ri]

xx ��

· · · xi−1[Si]

uu ��

· · · xi−1[m]

��

)

xi = fi xi−1 = ( xi−1[1] · · · bi (xi−1[Ri], xi−1[Si]) · · · xi−1[Ri] · · · xi−1[Si] · · · xi−1[m] )
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Computing a Jacobian-vector product

−⇁
xn = (J f x0)×

−⇁
x0

−⇁
x1 = (J f1 x0)×

−⇁
x0

...
−⇁
xn = (J fn xn−1)×

−−⇁
xn−1
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Computing a vector-Jacobian product

↽−
x0 = (J f x0)

⊤×↽−
xn

↽−−−
xn−1 = (J fn xn−1)

⊤×↽−
xn

...
↽−
x0 = (J f1 x0)

⊤×↽−
x1
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Jacobian of a unary primitive

Li Ri

↓ ↓
1

. . .
1

Li → 0 u′

1
. . .

Ri → 1
. . .

1

u′ = D ui xi−1[Ri]
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Jacobian of a binary primitive

Li Ri Si

↓ ↓ ↓
1

. . .
1

Li → 0 b′1 b′2
1

. . .
Ri → 1

. . .
Si → 1

. . .
1

b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])
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Unary single-step Jacobian-vector product



−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
u′ ×−−⇁

xi−1[Ri]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[m]



=



1
. . .

1
0 u′

1
. . .

1
. . .

1
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

−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[m]


u′ = D ui xi−1[Ri]
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Binary single-step Jacobian-vector product



−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
b′1 ×

−−⇁
xi−1[Ri] + b′2 ×

−−⇁
xi−1[Si]−−⇁

xi−1[Li + 1]
...

−−⇁
xi−1[Ri]

...
−−⇁
xi−1[Si]

...
−−⇁
xi−1[m]



=



1
. . .

1
0 b′1 b′2

1
. . .

1
. . .

1
. . .

1





−−⇁
xi−1[1]

...
−−⇁
xi−1[Li − 1]
−−⇁
xi−1[Li]−−⇁
xi−1[Li + 1]

...
−−⇁
xi−1[Ri]

...
−−⇁
xi−1[Si]

...
−−⇁
xi−1[m]


b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])
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Unary single-step vector-Jacobian product



↽−
xi[1]

...
↽−
xi[Li − 1]

0
↽−
xi[Li + 1]

...
u′ ×↽−

xi[Li] +
↽−
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↽−
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↽−
xi[1]

...
↽−
xi[Li − 1]
↽−
xi[Li]
↽−
xi[Li + 1]

...
↽−
xi[Ri]

...
↽−
xi[m]


u′ = D ui xi−1[Ri]
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Binary single-step vector-Jacobian product



↽−
xi[1]

...
↽−
xi[Li − 1]

0
↽−
xi[Li + 1]

...
b′1 ×

↽−
xi[Li] +

↽−
xi[Ri]

...
b′2 ×

↽−
xi[Li] +

↽−
xi[Si]

...
↽−
xi[m]



=



1
. . .

1
0

1
. . .

b′1 1
. . .

b′2 1
. . .

1





↽−
xi[1]

...
↽−
xi[Li − 1]
↽−
xi[Li]
↽−
xi[Li + 1]

...
↽−
xi[Ri]

...
↽−
xi[Si]

...
↽−
xi[m]


b′1 = D1 bi (xi−1[Ri], xi−1[Si])
b′2 = D2 bi (xi−1[Ri], xi−1[Si])

Siskind (Purdue Elmore Family ECE) ECE49595NL/ECE59500NL Lecture 34 Spring 2026 21 / 25



Forward Mode

f = f1 ◦ · · · ◦ fn

J (f )(x0) = J (fn)(xn−1)× · · · × J (f1)(x0)

x́n = J (f )(x0)× x́0

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1
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Reverse Mode

f = f1 ◦ · · · ◦ fn

J (f )(x0)
⊤= J (f1)(x0)

⊤× · · · × J (fn)(xn−1)
⊤

x̀0 = J (f )(x0)
⊤× x̀n

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1
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Forward Mode by Overloading

x1 = f1(x0)

x́1 = J (f1)(x0)× x́0

...

xn = fn(xn−1)

x́n = J (fn)(xn−1)× x́n−1

xi = fi(xi−1)

⟨xi, x́i⟩ = ⟨fi(xi−1),J (fi)(xi−1)× x́i−1⟩
−⇀xi =

−⇀
fi (−⇀xi−1)
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Forward Mode by Overloading
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Reverse Mode

x1 = f1(x0)

...

xn = fn(xn−1)

x̀n−1 = J (fn)(xn−1)× x̀n

...

x̀0 = J (f1)(x0)× x̀1
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