ECE59500CV Lecture 2: Automatic Differentiation-I

Jeffrey Mark Siskind

Elmore Family School of Electrical and Computer Engineering
Fall 2021

Elmore Family School of Electrical and Computer Engineering
(c) 2021 Jeffrey Mark Siskind. All rights reserved.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε,

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
- extract the coefficient of ε,

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 !

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$. The input $c+\varepsilon$ is also a truncated power series.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
\rightarrow extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
($\mathcal{D} f$) is $\mathcal{O}(1)$ relative to f (both space and time).

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
$>$ extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
($\mathcal{D} f$) is $\mathcal{O}(1)$ relative to f (both space and time).
These $a+b \varepsilon$ are called dual numbers and can be represented as $\langle a, b\rangle$.

The Essence of Forward-Mode AD

Taylor expansion:

$$
f(c+\varepsilon)=\frac{f(c)}{0!}+\frac{f^{\prime}(c)}{1!} \varepsilon+\frac{f^{\prime \prime}(c)}{2!} \varepsilon^{2}+\cdots+\frac{f^{(i)}(c)}{i!} \varepsilon^{i}+\cdots
$$

To compute $\mathcal{D} f c$:

- evaluate f at the term $c+\varepsilon$ to get a power series,
\rightarrow extract the coefficient of ε, and
- multiply by 1 ! (noop).

Key idea: Only need output to be a finite truncated power series $a+b \varepsilon$.
The input $c+\varepsilon$ is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
($\mathcal{D} f$) is $\mathcal{O}(1)$ relative to f (both space and time).
These $a+b \varepsilon$ are called dual numbers and can be represented as $\langle a, b\rangle$.
(Analogous to complex numbers $a+b \mathrm{i}$ represented as $\langle a, b\rangle$.)

Complex Numbers

$$
\mathrm{i}^{2}=-1
$$

$$
\begin{aligned}
(a+b \mathrm{i})+(c+d \mathrm{i}) & =(a+c)+(b+d) \mathrm{i} \\
(a+b \mathrm{i})(c+d \mathrm{i}) & =a c+(a d+b c) \mathrm{i}+b d \mathrm{i}^{2}=(a c-b d)+(a d+b c) \mathrm{i}
\end{aligned}
$$

Dual Numbers

$$
\varepsilon^{2}=0, \text { but } \varepsilon \neq 0
$$

$$
\begin{aligned}
(a+b \varepsilon)+(c+d \varepsilon) & =(a+c)+(b+d) \varepsilon \\
(a+b \varepsilon)(c+d \varepsilon) & =a c+(a d+b c) \varepsilon+b d \varepsilon^{2}=a c+(a d+b c) \varepsilon
\end{aligned}
$$

Arithmetic on Truncated Power Series (i.e. Dual Numbers)

$$
\left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)+\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
$$

Arithmetic on Truncated Power Series (i.e. Dual Numbers)

$$
\begin{aligned}
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)+\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \times\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \\
& \quad=\left(x_{0} \times y_{0}\right)+\left(x_{0} \times y_{1}+x_{1} \times y_{0}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

Arithmetic on Truncated Power Series (i.e. Dual Numbers)

$$
\begin{aligned}
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)+\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \times\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \\
& \quad=\left(x_{0} \times y_{0}\right)+\left(x_{0} \times y_{1}+x_{1} \times y_{0}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& u\left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(u x_{0}\right)+\left(x_{1} \times\left(u^{\prime} x_{0}\right)\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

Arithmetic on Truncated Power Series (i.e. Dual Numbers)

$$
\begin{aligned}
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)+\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& \left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \times\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right) \\
& \quad=\left(x_{0} \times y_{0}\right)+\left(x_{0} \times y_{1}+x_{1} \times y_{0}\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& u\left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)=\left(u x_{0}\right)+\left(x_{1} \times\left(u^{\prime} x_{0}\right)\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
& b\left(\left(x_{0}+x_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right),\left(y_{0}+y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)\right)\right) \\
& \quad=\left(b\left(x_{0}, y_{0}\right)\right)+\left(x_{1} \times\left(b^{(1,0)}\left(x_{0}, y_{0}\right)\right)+y_{1} \times\left(b^{(0,1)}\left(x_{0}, y_{0}\right)\right)\right) \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

