ECE59500CV Lecture 1: Course Overview

Jeffrey Mark Siskind

Elmore Family School of Electrical and Computer Engineering
Fall 2021

Elmore Family School of Electrical and Computer Engineering
(c) 2021 Jeffrey Mark Siskind. All rights reserved.

Course Overview-I

In the event of a major campus emergency, course requirements, deadlines and grading percentages are subject to changes that may be necessitated by a revised semester calendar or other circumstances beyond the instructor's control. Relevant changes to this course will be posted onto the course website or can be obtained by contacting the instructors or TAs via email or phone. You are expected to read your @purdue . edu email on a frequent basis.

Course Overview-II

- What course this is.
- When and where it meets.
- The course staff.
- Who am I.
- My office hours, office, email, phone.
- This is a new course; this is the second time it is being taught.

Course Overview-III

- deep learning
- segmentation
- object classification and localization
- activity classification and localization
- semantic segmentation
- depth reconstruction
- 3D reconstruction
- generative adversarial networks
- image and video captioning
- image and video retrieval

Course Overview-IV

- Course texts
- http://engineering.purdue.edu/ece595cv
- Attend every lecture
- Prerequisites
- Computer accounts
- Course software
- Problem sets
- Grading
- Collaboration

Course Overview—V

Communication

- Class
(O) http://engineering.purdue.edu/ece 595 cv
© Email
- ece59500cv-staff-list@ecn.purdue.edu,
- ece59500cv-students-list@ecn.purdue.edu
- Office hours
(3) Phone
© Openness Policy

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.
- You have a model $l=f(x ; w)$ that maps a sample x to a label l.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.
- You have a model $l=f(x ; w)$ that maps a sample x to a label l.
- The model has a parameter vector w, sometimes called weights.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.
- You have a model $l=f(x ; w)$ that maps a sample x to a label l.
- The model has a parameter vector w, sometimes called weights.
\Rightarrow You train by finding $w=\arg \min _{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.
- You have a model $l=f(x ; w)$ that maps a sample x to a label l.
- The model has a parameter vector w, sometimes called weights.
- You train by finding $w=\arg \min _{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- L is called the loss (function).

Much of Machine Learning is Function Optimization-I

- You have a dataset that pairs samples x_{i} with labels l_{i}.
- Each sample is vector of reals.
- The label is a real.
- You have a model $l=f(x ; w)$ that maps a sample x to a label l.
- The model has a parameter vector w, sometimes called weights.
- You train by finding $w=\arg \min _{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- L is called the loss (function).
- You then use the trained weights for new data x by computing $f(x ; w)$.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
- Start with w_{0}.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
\Rightarrow Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
\Rightarrow Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
\Rightarrow Start with w_{0}.
- Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.
$\nabla \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)=\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
- Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.
$\Rightarrow \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)=\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Slow. $O(n)$ to compute $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
- Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.
$\Rightarrow \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)=\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Slow. $O(n)$ to compute $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Instead use stochastic gradient descent (SGD).

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
- Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.
$\nabla \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)=\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Slow. $O(n)$ to compute $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Instead use stochastic gradient descent (SGD).
- Each iteration computes $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$ over only a portion of the dataset, called a batch or minibatch.

Much of Machine Learning is Function Optimization-II

- One way to train is by doing naive gradient descent.
- Start with w_{0}.
\Rightarrow Iterate with $w_{i+1}=w_{i}-\eta \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- η is called the learning rate.
$\Rightarrow \nabla_{w} \sum_{i} L\left(l_{i}, f\left(x_{i} ; w\right)\right)=\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Slow. $O(n)$ to compute $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$.
- Instead use stochastic gradient descent (SGD).
- Each iteration computes $\sum_{i} \nabla_{w} L\left(l_{i}, f\left(x_{i} ; w\right)\right)$ over only a portion of the dataset, called a batch or minibatch.
\Rightarrow Requires computing ∇.

Issues

- Not all machine learning is function optimization.

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
$\Rightarrow f=f_{k} \circ \cdots \circ f_{1}$

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.
- What is a good loss (function)?

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.
- What is a good loss (function)?
- There are better optimization procedures than SGD.

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.
- What is a good loss (function)?
- There are better optimization procedures than SGD.
- What is a good learning rate?

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.
- What is a good loss (function)?
- There are better optimization procedures than SGD.
- What is a good learning rate?
- What is a good way to select (the size of) batches?

Issues

- Not all machine learning is function optimization.
- Sometimes the samples aren't vectors (of reals).
- Sometimes the labels aren't reals.
- What is a good model?
- $f=f_{k} \circ \cdots \circ f_{1}$
- What are the good components f_{j} ?
- The weights might not be a vector.
- What is a good loss (function)?
- There are better optimization procedures than SGD.
- What is a good learning rate?
- What is a good way to select (the size of) batches?
\Rightarrow What is a good way to compute ∇ ?

Derivatives

- In Calculus 101 you learned how to differentiate functions.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.
- Polynomial rule.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.
- Polynomial rule.
- Rules for $\sqrt{\cdot}, \exp , \log , \sin , \tan ^{-1}, \ldots$

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.
- Polynomial rule.
- Rules for $\sqrt{\cdot}, \exp , \log , \sin , \tan ^{-1}, \ldots$
- Chain rule.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.
- Polynomial rule.
- Rules for $\sqrt{\cdot}, \exp , \log , \sin , \tan ^{-1}, \ldots$
- Chain rule.
- That worked for expressions you wrote by hand.

Derivatives

- In Calculus 101 you learned how to differentiate functions.
- Sum rule.
- Product rule.
- Quotient rule.
- Polynomial rule.
- Rules for $\sqrt{\cdot}, \exp , \log , \sin , \tan ^{-1}, \ldots$
- Chain rule.
- That worked for expressions you wrote by hand.
- But not for computer programs.

