ECE49595CV: Undergraduate Introduction to Computer Vision
ECES9500CV: Graduate Introduction to Computer Vision
Fall 2025
Homework 1
Due 5:00pm ET Friday 26 September 2025

A fully-connected (FC) linear layer is:
linear(x;W,b) = Wx+b

where W is a weight matrix and b is a bias vector.
The sigmoid function is:

1
e +1

A sigmoid layer applies this elementwise to a vector.

A single layer perceptron (SLP) is:
slp(x; W,b) = sigmoid(linear(x; W, b))
A multilayer perceptron (MLP) is:
mlp(x; Wi, ..., W,,by,...,b,) =slp(...slp(x;Wi,by)...; Wy, by,)

We say that n is the number of layers and n — 1 is the number of hidden layers. The number of columns of W] is the
input dimension, the number of rows of W, is the output dimension, and the number of rows of each of W1, ..., W,,_
is the number of hidden units in each hidden layer. The number of layers and the number of hidden units in each hidden
layer are called the hyperparameters.

The L2 (Euclidean) distance (loss) between two vectors u and v is:
loss(u,v)=(u—v) - (u—v)
Naive gradient descent finds a minimum of a function f(x) by starting with an initial guess x(and iterating:
Xi+1 = X; — NV f(x;)

where 7 is called the learning rate.

Given a training set of input vectors X1, . . . , X,,,, €ach paired with output vectors y1, . . . , ¥, One can train a multilayer
perceptron with naive gradient descent to minimize

Z loss(y;, mlp(x;, Wi,..., Wy, b1,...,by))
i=1

For this homework, I would like you to implement a mechanism to train multilayer perceptrons. You can implement
this in any programming language you wish, and develop this on any computer you wish, so long as the course staff
can run it on RCAC Scholar as described in the syllabus.

This homework assignment should be submitted as a single ZIP file whose name is your Purdue Career account userid
and whose extension is . zip that the course staff can run on RCAC Scholar. You should create a directory whose
name is your Purdue Career account name, then put everything you wish to submit in that directory, and then package
that as a ZIP file. That directory should have at least a single file named run that is an executable bash script that
runs your homework. In my case, my Purdue Career account name is gobi. So I would do something like this:

gobi@sapiencia>cd /tmp/

qobi@sapiencia>mkdir gobi

qobi@sapiencia>cd gobi

gobi@sapiencia>chmod a+x run

gobil@sapiencia>pwd

/tmp/gobi

qobi@sapiencia>ls -1

total 4

—rwxr—-xr-x 1 gobi gobi 31 Aug 19 12:55 runx

gobi@sapiencia>cat run

#!/bin/bash

echo my submission

gobi@sapiencia>./run

my submission

gobi@sapiencia>cd

gobi@sapiencia>zip -r gobi gobi
adding: gobi/ (stored 0%)
adding: gobi/run (stored 0%)

qobi@sapiencia>

Obviously, there will be more files and the run script will be different for a real homework submission. Homeworks
will be submitted through Brightspace. What the course staff will do to grade your homework is something like this:

gobi@sapiencia>ls -1 gobi.zip

—rW——————— 1 gobi gobi 335 Aug 19 12:56 gobi.zip
gobi@sapiencia>unzip gobi.zip
Archive: qgobi.zip

creating: gobi/
extracting: gobi/run
qobi@sapiencia>cd gobi
gobi@sapiencia>./run
my submission
gobi@sapiencia>

one at a time for each submission. This should run in less than five minutes on RCAC Scholar.

You are free to prepare your homework on any machine that you wish. But the course staff must be able to run it in
less that five minutes RCAC Scholar.

I have requested that the university provide accounts for all enrolled students on RCAC Scholar. However, I do not
know anything about RCAC Scholar and am unable to provide any support.

I don’t want you to use GPUs for this homework. Your code should run on just CPUs. You don’t have to parallelize it.
Speed is not important.

I don’t want you to use any preexisting libraries or tools. No deep learning frameworks like PYTORCH or TEN-
SORFLOW. No automatic differentiation (AD) tools like JAX. Your code should be written in straight C, C++, JAVA,
PYTHON, or whatever, with nothing other than the most basic standard library included in each particular language.

Your code should allow you to control the number of layers n, the input and output dimensions, the number of hidden
units in each layer, and the learning rate. You can use whatever method you wish to randomly initialize naive gradient
descent and select how many iterations to run.

I wish you to create two datasets. One will be for the xor function that has 2 inputs and 1 output. The other will be for
a two-bit binary adder that has five inputs (ag, bg, cg, a1, and by) and three output (sg, s1, and cz). For each function,
I wish you to partition the dataset into a variety of training and test sets (splits), train a multilayer perceptron of a
variety of hyperparameters and learning rates on each, and evaluate the loss on the test set for each. You get to choose

and explore the splits, the hyperparameters, the learning rates, and the numbers of iterations. Your run script should
demonstrate the range of splits, hyperparameters, learning rates, and numbers of iterations you tried. Your run script
can output whatever you wish. The only stipulation is that the output should be easily human readable and should
quickly convince both you and the course staff that your code works.

You can implement this with either forward mode or reverse mode automatic differentiation (AD) as taught in class.
But you do not need to make an AD package that can apply to arbitrary code. You only need to implement a sufficient
portion to support training multilayer perceptrons. That can be hard-coded for that purpose.

Good luck and have fun!

