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A Neural Network

is a (Functional) Program
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net [θ0, . . . , θ7] [w0, . . . ,w7] x0
4
=

let x1 = layer0 θ0 w0 x0
x2 = layer1 θ1 w1 x1
x3 = layer2 θ2 w2 x2
x4 = layer3 θ3 w3 x3
x5 = layer4 θ4 w4 x4
x6 = layer5 θ5 w5 x5
x7 = layer6 θ6 w6 x6
x8 = layer7 θ7 w7 x7

in x8
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A (Functional) Program

is a (Neural) Network

f [w0,w1] [x0, x1]
4
=

let t0 = w0 × x0
t1 = w1 × x1
y = t0 + t1

in y
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+
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Evaluating a Network
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The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f

at the term c + ε to get a power series,

I extract the coefficient of ε,

and

I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:

I evaluate f

at the term c + ε to get a power series,

I extract the coefficient of ε,

and

I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f

at the term c + ε to get a power series,
I extract the coefficient of ε,

and

I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε

to get a power series,
I extract the coefficient of ε,

and

I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,

I extract the coefficient of ε,

and

I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε,

and
I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε,

and
I multiply by 1!

(noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1!

(noop).
Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.

The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.

Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.

Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.

(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).

These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.

(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



The Essence of Forward-Mode AD

Taylor expansion:

f (c + ε) =
f (c)
0!

+
f ′(c)
1!

ε+
f ′′(c)

2!
ε2 + · · ·+ f (i)(c)

i!
εi + · · ·

To compute D f c:
I evaluate f at the term c + ε to get a power series,
I extract the coefficient of ε, and
I multiply by 1! (noop).

Key idea: Only need output to be a finite truncated power series a + bε.
The input c + ε is also a truncated power series.
Can do a nonstandard interpretation of f over truncated power series.
Preserves control flow: Augments original values with derivatives.
(D f ) is O(1) relative to f (both space and time).
These a + bε are called dual numbers and can be represented as 〈a, b〉.
(Analogous to complex numbers a + bi represented as 〈a, b〉.)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 5 / 8



Complex Numbers

i2 = −1

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = ac + (ad + bc)i + bdi2 = (ac− bd) + (ad + bc)i
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Dual Numbers

ε2 = 0, but ε 6= 0

(a + bε) + (c + dε) = (a + c) + (b + d)ε

(a + bε)(c + dε) = ac + (ad + bc)ε+ bdε2 = ac + (ad + bc)ε
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Arithmetic on Truncated Power Series (i.e. Dual Numbers)

(x0 + x1ε+O(ε2)) + (y0 + y1ε+O(ε2)) = (x0 + y0) + (x1 + y1)ε+O(ε2)

(x0 + x1ε+O(ε2))× (y0 + y1ε+O(ε2))

= (x0 × y0) + (x0 × y1 + x1 × y0)ε+O(ε2)

u (x0 + x1ε+O(ε2)) = (u x0) + (x1 × (u′ x0))ε+O(ε2)

b ((x0 + x1ε+O(ε2)), (y0 + y1ε+O(ε2)))

= (b (x0, y0)) + (x1 × (b(1,0) (x0, y0)) + y1 × (b(0,1) (x0, y0)))ε+O(ε2)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 8 / 8



Arithmetic on Truncated Power Series (i.e. Dual Numbers)

(x0 + x1ε+O(ε2)) + (y0 + y1ε+O(ε2)) = (x0 + y0) + (x1 + y1)ε+O(ε2)

(x0 + x1ε+O(ε2))× (y0 + y1ε+O(ε2))

= (x0 × y0) + (x0 × y1 + x1 × y0)ε+O(ε2)

u (x0 + x1ε+O(ε2)) = (u x0) + (x1 × (u′ x0))ε+O(ε2)

b ((x0 + x1ε+O(ε2)), (y0 + y1ε+O(ε2)))

= (b (x0, y0)) + (x1 × (b(1,0) (x0, y0)) + y1 × (b(0,1) (x0, y0)))ε+O(ε2)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 8 / 8



Arithmetic on Truncated Power Series (i.e. Dual Numbers)

(x0 + x1ε+O(ε2)) + (y0 + y1ε+O(ε2)) = (x0 + y0) + (x1 + y1)ε+O(ε2)

(x0 + x1ε+O(ε2))× (y0 + y1ε+O(ε2))

= (x0 × y0) + (x0 × y1 + x1 × y0)ε+O(ε2)

u (x0 + x1ε+O(ε2)) = (u x0) + (x1 × (u′ x0))ε+O(ε2)

b ((x0 + x1ε+O(ε2)), (y0 + y1ε+O(ε2)))

= (b (x0, y0)) + (x1 × (b(1,0) (x0, y0)) + y1 × (b(0,1) (x0, y0)))ε+O(ε2)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 8 / 8



Arithmetic on Truncated Power Series (i.e. Dual Numbers)

(x0 + x1ε+O(ε2)) + (y0 + y1ε+O(ε2)) = (x0 + y0) + (x1 + y1)ε+O(ε2)

(x0 + x1ε+O(ε2))× (y0 + y1ε+O(ε2))

= (x0 × y0) + (x0 × y1 + x1 × y0)ε+O(ε2)

u (x0 + x1ε+O(ε2)) = (u x0) + (x1 × (u′ x0))ε+O(ε2)

b ((x0 + x1ε+O(ε2)), (y0 + y1ε+O(ε2)))

= (b (x0, y0)) + (x1 × (b(1,0) (x0, y0)) + y1 × (b(0,1) (x0, y0)))ε+O(ε2)

Siskind (Purdue ECE) ECE59500CV Lecture 3 Fall 2020 8 / 8


