Power supply

Design considerations
Outline

• DC-DC conversion and voltage regulation
 • Buck: Regulating wall-wart/battery output to desired voltage
 • Boost: Size constrained systems (Run off single AAA, for example)

• Sources
 • Plugged-in
 • AC-DC conversion
 • Short answer: use third party supplies
 • DC-DC conversion
 • Battery-based
 • High current draw vs. Low current draw
 • Rechargeable vs. non-rechargeable
Voltage regulation – Why?

• Variable voltage drop based on current draw
 • Internal resistance, wire resistance
• Spurious resets on current spikes
• Signals are typically in supply range
 • Rail-to-rail ➔ Ground to VCC
 • Narrower range is common
 • Supply noise ➔ Noisy signals
Imaginary perfect regulator

- Efficiency = 100%
 - Input power = output power
- $V_{in} \times I_{in} = V_{out} \times I_{load}$
 - Vout is constant; no ripple

- What do we have to give up in practice?
 - Efficiency, High quality (low ripple), low cost/footprint
 - Pick any two.
Linear regulators (including LDOs)

- Two major categories
 - Linear regulators (including LDOs)
 - Switching regulators (aka switchers)
- Linear regulators
 - Wasteful (thermal waste of energy)
 - Power dissipation = $V_{in} \times I_{load}$
 - Useful work = $V_{out} \times I_{load}$
- Small voltage buck and/or low load current
 - $5V \rightarrow 3.3V$,

Diagram:
- Efficiency
- Low ripple/quality of regulation
- Cost/footprint

Linear regulators

Efficiency
Low ripple/quality of regulation
Cost/footprint
Switching regulators

• High efficiency
 • 85%-96%

• Noisy
 • Average voltage is well-regulated
 • A/C noise component
Tips

• For fixed voltage with very low dropout, look for custom regulator
 • E.g. MCP 1700 with < 180mV dropout, up to 250mA
 • Can get 3.3V regulation on LiPo batteries (3.7V)
• Good old 78xx (fixed and variable regulators in family)
 • 2V dropout
• Switching regulators
 • Pre-packaged drop-in regulator (e.g., OKR-T/3-W12-C)
 • 7805 drop-in replacement (e.g., Murata 78xxSR)
• Using discrete regulator ICs
 • Delicate designs. Use passives and layout recommended in datasheet
Heat Sink

• Pay attention to heat thermal issues
 • More important in Linear regulators
 • Follow datasheet recommendations
 • Will need understanding of current demands of your project
Boost DC/DC conversion

• Common case: Buck (step-down) regulation

• Extreme low power:
 • Operate on 1 AA battery or button cell
 • Boost to more reasonable supply.

• Typically low-current draw
 • Maybe a sensor or low-duty cycle application
 • Lots of boost converter ICs
 • Attiny43U (Microcontroller with built-in boost converter)
 • Operates down to 0.7V
Battery power: Terminology

• “Cell” single chamber of electrochemical reaction
• Battery: array of cells
 • Array size possibly 1
• Primary: irreversible chemical reaction
 • Chemical energy \Rightarrow electrical energy
 • Non rechargeable
• Secondary: chemical energy \Leftrightarrow electrical energy \Leftrightarrow chemical energy
 • Rechargeable
Characteristics of interest

• Form factor: AA, AAA, 18500, 2032 etc
• Voltage
• Current draw

• Capacity
 • Not simple; depends on current draw

• Leakage/Self-discharge
 • Energy loss on the shelf

• Energy density, power density
Chemistry

• Primary
• Alkaline
 • Cell voltage 1.5V
• Button cell
 • 1.35-1.55V (Silver/Zinc/Mercury)
• Lithium – Family of chemistries
 • 1.5-3.7V

• Secondary
• Lithium-ion (totally different from Lithium) 3.6-3.7V
• NiCad 1.2V
• NiMH 1.2V
• Lithium-ion polymer (LiPo) 4.2-2.7V (Nom: 3.7V)
• LiFePO4 3.2-3.3 V
Capacity

• 500 mAH @ 3.7V
 • 50 mA for 10 hours
 • 25 mA for 20 hours
 • 500 mA for 1 hour
 • 5A for 6 minutes
 • No!

• Depends on discharge profile
Non-rechargeable

- Alkaline: Good old stuff
 - AA, AAA, C, D: 1.5V
- Lithium: Typically sold as ultra long-life

- Do not ignore

- Useful when:
 - Relatively long useful life
 - Relatively low current draw OR Relatively rare unplugged operation
Other advanced issues:

- **Wireless charging:**
 - Inductive coupling
 - Qi – broadly used in mobile industry
 - Solar charging

- **In-circuit recharging**
 - Careful - charging profiles
 - Serious safety issue (High energy density in personal devices)

- **Microcontroller-driven power management**

- **Battery monitoring issues**

- **Thermoelectric**
Backup battery

• Very common use-case
 • Normal use and battery recharge when plugged in
 • Battery operation when not plugged in
 • Seamless transition

• Two assumptions
 • Rechargeable battery
 • Safe charging

• What if non-rechargeable? (E.g., smoke alarms)
• What if trickle charging is inadequate?
Simple backup battery
Power Management ICs

• E.g. TI BQ24072 (For Li+)
• Charging + Dynamic power-path for battery backup
• Other similar ICs for other Chemistry

• Note: Thermistor input
Inductive coupling

• Air core coupling
 • High losses
 • Fairly widespread standard: Qi
 • Not available in small quantities
 • Some hobby parts available

• Magnetic material core
 • Equivalent to transformer, but with separable coils
 • Secondary coil in toothbrush; Primary coil and core in charging base
Solar charging

• Always use to drive battery charger
 • Use battery to provide stable power supply

• Size capacity to ensure statistical guarantees of availability
 • Assume panel sized to fully-charge battery in 4 hours
 • Probability of 4 hours of direct sunlight each day = 0.7 (say)
 • Probability of 4 hours of direct sunlight in two days = 0.91 = 1 - (1-0.7) (1-0.7)
 • Probability 3 days > 0.97
 • If battery sized for three days of operation, 97% probability of never running out.

• Similar process for more sophisticated weather/climate models
Power management

• Sleep/low-power states
 • Important for battery-powered systems

• Selective
 • Some peripherals/sub-blocks in low-power states when not used

• Whole chip

• Questions to ask?
 • Programmed wakeup? Via interrupts? Need physical wakeup?
 • Is duty cycle low enough?
Voltage Regulator (Selected data)

- LM 117
 - Adjustable voltage regulator
 - $V_{out}^{Adj} = 1.25V$ (Invariant)
 - Negligible current through Adj
 - Everything else follows
 - Reason about voltage V_{out}
Other Linear regulators

• 7805 : Very similar
 • Simpler for fixed output
 • Vout-Adj voltage = 5V

• Very similar reasoning
 • Can be used to design adjustable regulators
 • Can be used as current regulators
 • Constant current source (LED drivers)
Drop-in Replacement Switching regulator (DC-DC)

• Pin compatible

• Examples
 • ReCom R-78Cxx-1.0
 • Equivalent parts from Murata
Step-Down Switching Converter: LM 2675

- (fixed) 3.3, 5, 12 VDC and (adjustable) 1.21 – 37 V versions
- Up to 1 amp
- Up to 96% efficient
- Five external components
Battery monitoring

• Simple voltage-based approach
• Plateaus in discharge curve
• Possibly depends on chemistry
• Fuel gauge ICs

Source: Energizer.com
Heat sink

- Idea of THERMAL RESISTANCE
 - Measured in °C/W (temperature rise per watt dissipated)
 - Lower thermal resistance is better

- Thermal resistance is ~ inversely proportional to price

- 1W dissipation

- Design goal: heat sink/junction temperature not to exceed 10º C above ambient temperature

- Need a thermal resistance of approx. 10º C/ 1 W ≈ 10

- Airflow reduces thermal resistance