

ECE 477 Digital Systems Senior Design Project

Module 10

Now What??? (Systematic Debugging)

Outline

- "Avoid Really Stupid Tricks (RST) when debugging"
- "My power supply doesn't work. What do I do now???"
- "My microcontroller doesn't work. What do I do now???"
- "My microcontroller kinda works, but 'strange things' are happening. What do I do now???

- Do NOT solder parts, attach wires, connect probes, etc. while your board is powered up
 - Temporary short circuits can totally fry numerous components on your board
 - Remember that the soldering iron tip is GROUNDED, and that random points tied to ground on your board while it is in operation could be a very bad thing!

- Do NOT attempt to "probe" the pads of surface mount parts
 - Few have been known to do this successfully
 - Shorts between/among microcontroller pins, regardless of how temporary, can be disastrous
 - This is why you put headers on your board!

- Do NOT connect port pins directly to power supply rails to obtain a "1" or "0" when debugging (or, in general)
 - Pin might be programmed as an output, at which point its pad driver will be instant toast
 - If pin programmed as an input, might be overbiased and destroy buffer
 - ALWAYS use a resistor (10K is a good value) as a pull-up or pull-down – ALWAYS
 - To test ADC (analog) inputs, ALWAYS use a potentiometer (10K is a good value) – ALWAYS

- Do NOT attempt to power different parts of your circuit with different (external) power supplies
 - Think about what will happen to your board/parts if two essentially infinite current sources are trying to drive (even slightly) different voltages on the same net/trace...
 - > Then, look for "burn marks" on ECE 362 students who tried this on their Mini-Project

"My power supply doesn't work" - 1

- Quantify symptoms
 - no voltage output whatsoever
 - voltages over/under specifications
 - voltage drops significantly when connected to the rest of your circuit
 - excessive heat generated by components
 - excessive ripple/noise on regulated output

"My power supply doesn't work" - 2

- Consider possible causes of each symptom
 - no voltage output whatsoever check input voltage; if that's OK, check output impedance; if that's OK, replace regulator IC
 - voltages over/under specifications check to make sure regulator GND pin is hooked up (also look for cold solder joint); otherwise, replace regulator IC
 - voltage drops significantly when connected to the rest of your circuit – may be bad regulator, but also could be load impedance too low (partial short/malfunction)
 - excessive heat generated by components unregulated input voltage may be too high, load may be partially shorted, or insufficient heat sink used
 - excessive ripple/noise on regulated output check size of filter caps and/or amount of input ripple

"My microcontroller doesn't work" - 1

- Perform basic checks
 - what's the first basic thing you should check? look at power/ground pins under microscope
 - what's the second basic thing you should check?
 oscillator circuit (but be careful, since connecting scope probes to oscillator circuit pins can detune it enough to disable it)
 - what's the third basic thing you should check? reset circuit – is reset being held low "long enough" (and not <u>stuck</u> low)?
 - what's the fourth basic thing you should check?
 silicon errata sheet for your microcontroller

"My microcontroller doesn't work" - 2

- More advanced checks
 - "heartbeat" program just toggle a port pin and look at on scope (make sure heartbeat works on your Eval Board)
 - utility routines to exercise ports and on-chip peripherals
 - Digital I/O distinctive pattern (Johnson counter)
 - ADC connect potentiometer to inputs / vary
 - PWM increment duty cycle in loop
 - Timers generate periodic interrupts
 - SPI transmit/receive distinctive patterns
 - SCI transmit/receive distinctive patterns

Possible "random" behaviors

- digital input values read from a port are "random" check pull-up (internal/external), most likely inputs are floating (also check for cold solder joints)
- digital input values read from a port have a consistent (wrong) pattern – check programming of port pins – make sure they are configured as inputs – input may be damaged due to ESD/over-voltage
- the same value is read from adjacent port pins check for solder bridges, cold solder joints, or floating adjacent pins

- Possible "random" behaviors...
 - digital values sent to an output port don't appear on the pins (port pins are not driven) – check to make sure port pins are programmed to be outputs, and that the "drive" register (if present) is set correctly (some pins can be configured to be open-drain)
 - some output pins are always driven high or always driven low – this is most likely due to a "stuck at" fault resulting from a failure in the pad driver circuit (if there are spare port pins available, fly wire around the problem: otherwise, it's time to replace the microcontroller)
 - the same value is output on adjacent port pins check for solder bridges (and possible damage to μC)

- Possible "random" behaviors...
 - analog input values read from the ADC are always zero (or, always the same value) – check reference voltage, ADC programming/device driver (make sure you are waiting for the "conversion complete" flag to be set)
 - analog input values read from the ADC are "random" (or, are inconsistent) – check ADC reference voltages and input pin solder joints (cold joint can act like a capacitor); also, check driver routine to make sure it is handshaking on the "conversion complete" flag
 - the lower two bits (or so) of values read from the ADC are "random" – this is "normal" (typically all the lower two bits are good for is rounding the result!)

- Possible "random" behaviors...
 - the SCI/SPI is not receiving or transmitting data most likely a configuration/driver problem (look at Tx line on logic analyzer; when Tx works, loop back to Rx line and check to make sure the same characters your driver is transmitting are being received)
 - the SCI is "alive" (can see waveforms on oscilloscope), but board will not communicate with a PC "com" port or a serial LCD – check baud rate and character frame format of sending/receiving end; check to make sure RS232 level translators generating correct polarity and voltage swing (nominally ± 9 V); check to make sure side "A" Tx connected to side "B" Rx, and vice-versa

- Possible "random" behaviors...
 - processor "crashes" when board is moved or "flexed"
 bad ("cold") solder joint somewhere (retouch all power/ground solder joints)
 - processor runs for a few milliseconds and resets...processor runs for a few milliseconds and resets... – make sure WDT (watchdog timer) is disabled; also, check reset circuit

- Possible "random" behaviors...
 - applications run on the processor for a few seconds, and then "crash" – may have random interrupts that are not implemented or handled correctly, stack may be overflowing ("creep" due to software error)
 - microcontroller gets too warm for comfort pins programmed as outputs are "fighting", input signals not at supply rail potential (weak 1's), or may be drawing too much current from port pin (source/sink)