‘ UM1718
” life.augmented User manual

STM32CubeMX for STM32 configuration
and initialization C code generation

July 2017

Introduction

STM32CubeMX is a graphical tool for 32-bit ARM® Cortex® STM32 microcontrollers. It is
part of STMCube™ initiative (see Section 1) and is available either as a standalone
application or as an Eclipse plug-in for integration in Integrated Development Environments
(IDEs).

STM32CubeMX has the following key features:
e Easy microcontroller selection covering whole STM32 portfolio
e Board selection from a list of STMicroelectronics boards

e Easy microcontroller configuration (pins, clock tree, peripherals, middleware) and
generation of the corresponding initialization C code

e Easy switching to another microcontroller by importing a previously-saved
configuration to a new MCU project

e Easy exporting of current configuration to a compatible MCU
e Generation of configuration reports

e Generation of embedded C projects for a selection of integrated development
environment tool chains. STM32CubeMX projects include the generated initialization C
code, MISRA 2004 compliant STM32 HAL drivers, the middleware stacks required for the
user configuration, and all the relevant files for opening and building the project in the
selected IDE.

e Power consumption calculation for a user-defined application sequence
o Self-updates allowing the user to keep the STM32CubeMX up-to-date

¢ Download and update of STM32Cube embedded software required for user application
development (see Appendix E: STM32Cube embedded software packages for details on
STM32Cube embedded software offer)

Although STM32CubeMX offers a user interface and generates a C code compliant with
STM32 MCU design and firmware solutions, it is recommended to refer to the product
technical documentation for details on actual implementation of microcontroller peripherals
and firmware.

The following documents are available from http.//www.st.com:
e STM32 microcontroller reference manuals and datasheets
STM32Cube HAL driver user manuals for STM32F0 (UM1785), STM32F1 (UM1850),

STM32F2 (UM1940), STM32F3 (UM1786), STM32F4 (UM1725), STM32F7 (UM1905),
STM32L0 (UM1749), STM32L1 (UM1816), STM32L4 (UM1884) and STM32H7 (UM2217)..

)

DoclD025776 Rev 21 1/276

www.st.com

http://www.st.com

Contents UM1718

Contents
1 STM32Cube overviewttt i 14
2 Getting started with STM32CubeMXot 15
21 Principles 15
2.2 Keyfeatures 17
23 Rules and limitations 18
3 Installing and running STM32CubeMX 19
3.1 Systemrequirements 19
3.1.1 Supported operating systems and architectures 19
3.1.2 Memory prerequisites 19
3.1.3 Software requirements 19
3.2 Installing/uninstalling STM32CubeMX standalone version 19
3.2.1 Installing STM32CubeMX standalone version 19
3.2.2 Installing STM32CubeMX from command line 20
3.2.3 Uninstalling STM32CubeMX standalone version 23
3.3 Installing STM32CubeMX plug-in version 24
3.3.1 Downloading STM32CubeMX plug-in installation package 24
3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in 24
3.3.3 Uninstalling STM32CubeMX as Eclipse IDE plug-in 25
3.4 Launching STM32CubeMX et 27
3.41 Running STM32CubeMX as standalone application 27
3.4.2 Running STM32CubeMX in command-linemode 27
3.4.3 Running STM32CubeMX plug-in from Eclipse IDE 30
3.5 Getting STM32Cube updates 31
3.5.1 Updater configuration 33
3.5.2 Downloading new libraries 36
3.5.3 Downloading new library patches 38
3.54 Removing libraries 38
3.5.5 Checkingforupdates 40
4 STM32CubeMX UserInterfacec.cciiiiiiinnn.n. 41
4.1 Welcome Pageo e 41

2/276 DoclD025776 Rev 21 ‘Yl

UM1718

Contents

3

4.2
4.3
4.4

4.5

4.6
4.7
4.8

4.9
4.10
4.1

412

4.13

New project window 43
Main WindoW 48
Toolbarand menus 51
441 Filemenu 51
442 Projectmenu 52
443 Pinoutmenu 52
444 Window menu e 55
445 Helpmenu 55
4.4.6 Social lINKSo 55
Outputwindows 56
451 MCUs selectionpane e 56
452 Output pane 56
Import Project window 57
Set unused / Reset used GPIOs windows 63
Project Settingswindow 65
4.8.1 Projecttab e 67
4.8.2 Code Generatortab 70
4.8.3 Advanced Settingstab 73
Update Manager windows, 74
About window 75
Pinoutview 75
4111 Peripheral and Middleware treepane 77
4112 ChipVIEW .o 78
4113 Chipviewadvanced actions 81
4114 Keep Current Signals Placement 83
411.5 Pinning and labeling signalsonpins 84
411.6 Setting HAL timebase source 85
Configurationview 91
4.12.1 Peripherals and Middleware Configuration window 93
4.12.2 User Constants configurationwindow 96
4.12.3 GPIO Configurationwindow oo, 101
4124 DMA Configurationwindow 104
4.12.5 NVIC Configurationwindow 107
4.12.6 FreeRTOS middleware configurationview 115
Clock tree configurationview 122
4.13.1 Clock tree configuration functions 122

DoclD025776 Rev 21 3/276

Contents UM1718

4.13.2 Recommendations 127

4.13.3 STM32F43x/42x power-over drive feature 128

413.4 Clocktreeglossary 130

4.14 Power Consumption Calculatorview 130

4.14.1 Building a power consumption sequence 131

4.14.2 Configuring a step in the power sequence 138

4.14.3 Managing user-defined power sequence and reviewing results 142

4.14.4 Power sequence step parametersglossary 145

4145 Battery glossary 148

4146 SMPSfeature 148

5 STM32CubeMX C Code generation overview 153
51 STM32Cube code generation using only HAL drivers

(defaultmode) 153

5.2 STM32Cube code generation using Low Layerdrivers 155

5.3 Customcode generation 161

5.3.1 STM32CubeMX data model for FreeMarker user templates 161

5.3.2 Saving and selectingusertemplates 161

5.3.3 Customcode generation 162

5.4 Additional settings for C project generation 165
6 Tutorial 1: From pinout to project C code generation

usingan STM32F4 MCUt 169

6.1 Creating a new STM32CubeMX Project 169

6.2 Configuringthe MCU pinout 172

6.3 Savingtheproject. 173

6.4 Generatingthereport 174

6.5 Configuring the MCU Clocktree 174

6.6 Configuring the MCU initialization parameters 177

6.6.1 Initial conditions 177

6.6.2 Configuring the peripherals 178

6.6.3 Configuringthe GPIOs i 181

6.6.4 Configuringthe DMAS i 182

6.6.5 Configuring the middleware 183

6.7 Generating a complete Cproject 186

6.7.1 Setting projectoptions 186

4/276 DoclD025776 Rev 21 m

UM1718 Contents
6.7.2 Downloading firmware package and generating the C code 188
6.8 Building and updating the C code project 193
6.9 Switching to another MCU 198
7 Tutorial 2 - Example of FatFs on an SD card using
STM324291-EVAL evaluationboard 200
8 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption and more 207
8.1 Tutorial overview e 207
8.2 Application example description 208
8.3 Using the Power Consumption Calculator 208
8.3.1 Creating a power SeqUENCEottt 208
8.3.2 Optimizing application power consumption 211
9 Tutorial 4 - Example of UART communications with
a STM32L053xx Nucleoboardciiin... 219
9.1 Tutorial overview e 219
9.2 Creating a new STM32CubeMX project and
selectingthe Nucleoboard 219
9.3 Selecting the features from the Pinoutview 221
9.4 Configuring the MCU clock tree from the Clock Configuration view 223
9.5 Configuring the peripheral parameters from the Configuration view ... 224
9.6 Configuring the project settings and generating the project 227
9.7 Updating the project with the user applicationcode 228
9.8 Compiling and running the project 229
9.9 Configuring Tera Term software as serial communication
clientonthe PC 229
10 Tutorial 5: exporting current project configuration to
acompatible MCU i ittt ieannnnns 231
1" FAQ .. et e e 235
11.1 On the Pinout configuration pane, why does STM32CubeMX
move some functions when | add a new peripheral mode? 235
11.2 How can | manually force a function remapping? 235
‘W DoclD025776 Rev 21 5/276

Contents UM1718
11.3 Why are some pins highlighted in yellow or in light green in
the Chip view? Why cannot | change the function of some
pins (when | click some pins, nothing happens)? 235
11.4 Why do | get the error “Java 7 update 45’ when installing
‘Java 7 update 45’ or a more recent version of the JRE? 235
11.5 Why does the RTC multiplexer remain inactive on the Clock tree view? 236
11.6 How can | select LSE and HSE as clock source and
change the frequency? 237
11.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as anoutput? 237
Appendix A STM32CubeMX pin assignmentrules 238
A1 Block consistency 238
A.2 Blockinter-dependency. 242
A.3 One block = one peripheralmode. 245
A.4 Block remapping (STM32F10xonly). 245
A.5 Functionremapping. 246
A.6 Block shifting (only for STM32F 10x and when
“‘Keep Current Signals placement” is unchecked). 247
A.7 Setting and clearing a peripheralmode., 248
A.8 Mapping a function individually 248
A9 GPIOsignals mappingc.oii it 248
Appendix B STM32CubeMX C code generation design
choices and limitationso .. 249
B.1 STM32CubeMX generated C code and user sections 249
B.2 STM32CubeMX design choices for peripheral initialization 249
B.3 STM32CubeMX design choices and limitations for
middleware initialization 250
B.3.1 OVeIVIEW. . . L e 250
B.3.2 USB HOSt . ..o 251
B.3.3 USBDevViCe 251
B.3.4 FatFs. . . 251
B.3.5 FreeRTOS. 252
B.3.6 LWIP 253
B.3.7 Libjpeg . .o 255

6/276

DoclD025776 Rev 21 ‘Yl

UM1718 Contents

Appendix C STM32 microcontrollers naming conventions 257
Appendix D STM32 microcontrollers power consumption parameters 259
D.1 Power modes i 259

D.1.1 STMB32L1 Series. . .. 259

D.1.2 STMB32F4 Series. . . .o 260

D.1.3 STM32L0 SerieS. . . vttt 261

D.2 Powerconsumptionranges. 262

D.21 STM32L1 Series feature 3VCOREranges 262

D.2.2 STM32F4 Series feature several VCORE scales. 263

D.2.3 STM32L0 Series feature 3VCOREranges 263

Appendix E STM32Cube embedded software packages 264
12 Revision history i e 265

3

DoclD025776 Rev 21 7/276

List of tables UM1718

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.

8/276

Command liNe SUMMaAry. e e e e 28
Welcome page shortcuts 42
File menu functions. 51
Project menuU. 52
PiNoUt MeNU e 53
WINdOW MeNUo e 55
Help MenuU e 55
Peripheral and Middleware tree pane - icons and colorscheme 77
STM32CubeMX Chip view - Icons and color scheme. 79
Peripheral and middleware configuration buttons. 92
Peripheral and Middleware Configuration window buttons and tooltips 94
Clock tree view widget 126
Voltage scaling versus power over-drive and HCLK frequency 129
Relations between power over-drive and HCLK frequency 129
GlOSSaNY . .o 130
LL versus HAL code generation: drivers included in STM32CubeMX projects 156
LL versus HAL code generation: STM32CubeMX generated header files. 156
LL versus HAL: STM32CubeMX generated sourcefiles 157
LL versus HAL: STM32CubeMX generated functions and functioncalls............. 157
Documentrevision history 265

3

DoclD025776 Rev 21

UM1718

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Figure 27.

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

S74

Overview of STM32CubeMX C code generationflow. 16
Example of STM32CubeMX installation in interactive mode 21
STM32Cube Installation Wizard e 22
Auto-install command line. 23
Adding STM32CubeMX plug-inarchive 24
Installing STM32CubeMX plug-in e e 25
Closing STM32CubeMX perspective e 25
Uninstalling STM32CubeMX plug-in. e 26
Opening Eclipse plug-in 30
STM32CUbeMX perspective. e 31
Displaying Windows default proxy settings. 32
Updater Settings window 33
Connection Parameterstab-Noproxy i, 34
Connection Parameters tab - Use System proxy parameters. 35
Connection Parameters tab - Manual Configuration of Proxy Server. 36
New library Manager Window e 37
Removing libraries 39
Removing library confirmation message. i 39
Library deletion progress window 40
STM32CubeMX Welcome pageottt e e 42
New Project window - MCU selector. i 44
New Project window - MCU list with close MCUs function. 45
New Project window - MCU list showingclose MCUs 46
New Project window -board selector 47
STM32CubeMX Main window upon MCU selection. 48
STM32CubeMX Main window upon board selection
(Peripheral default optionunchecked) 49
STM32CubeMX Main window upon board selection
(Peripheral default option checked) 50
Pinout menus (Pinouttab selected) 52
Pinout menus (Pinouttab notselected) 53
Linkto social platforms 55
MCU selection MeNU e e 56
OUtpUL PaNE . . . 56
Automatic project import. e 58
Manual project Import L 59
Import Project menu - Try importwitherrors 61
Import Project menu - Successful import after adjustments, 62
Setunused pins WINAOW 63
Resetused pins WiNdOW 63
Set unused GPIO pins with Keep Current Signals Placementchecked. 64
Set unused GPIO pins with Keep Current Signals Placement unchecked. 65
Project Settings wWindow 66
Project folder. e 67
Selecting a different firmware location 68
Firmware location selection errormessage 69
Recommended new firmware repository structure 69
Project Settings Code Generator e 71
DoclD025776 Rev 21 9/276

List of figures UM1718

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

Figure 72.
Figure 73.

Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.

10/276

Template Settings Window 72
Generated projecttemplate 73
Advanced Settings Window. 74
AbOUt WINAOW 75
STM32CubeMX Pinout View. 76
Chip VIeW . . L 78
Red highlights and tooltip example: no mode configuration available 81
Orange highlight and tooltip example: some configurations unavailable 81
Tooltip example: all configurations unavailable 81
Modifying pin assignments from the Chip view. 82
Example of remapping in case of block of pins consistency. 83
Pins/Signals Options Window. e 85
Selecting a HAL timebase source (STM32F407 example). 86
TIM2 selected as HAL timebase source. i 86
NVIC settings when using SysTick as HAL timebase, no FreeRTOS 87
NVIC settings when using FreeRTOS and SysTick as HAL timebase 88
NVIC settings when using FreeRTOS and TIM2 as HAL timebase 90
STM32CubeMX Configuration view 91
Configuration window tabs for GPIO, DMA and NVIC settings (STM32F4 Series) 92
Peripheral Configuration window (STM32F4 Series) 93
User Constants wWindow e 96
Extract of the generated main.hfile 97
Using constants for peripheral parameter settings, 97
Specifying user constantvalueandname 98
Deleting user constant not allowed when

constant already used for another constant definition 99
Deleting a user constant used for parameter configuration-

Confirmation request e 99
Deleting a user constant used for peripheral configuration -

Consequence on peripheral configuration 100
Searching foranameinauserconstantlist. 100
Searching for a value in auser constantlist. 101
GPIO Configuration window - GPIO selection 102
GPIO Configuration window - displaying GPIO settings. 103
GPIO configuration grouped by peripheral 103
Multiple Pins Configuration. 104
Addinganew DMA request e 105
DMA Configuration 106
DMA MemToMem configuration. 107
NVIC Configuration tab - FreeRTOS disabled 108
NVIC Configuration tab - FreeRTOS enabled 109
[2C NVIC Configuration wWindowo e 109
NVIC Code generation — All interrupts enabled 111
NVIC Code generation — Interrupt initialization sequence configuration. 113
NVIC Code generation — IRQ Handler generation 114
FreeRTOS configuration view. 115
FreeRTOS: configuring tasksand queues 116
FreeRTOS: creatinganewtask i 117
FreeRTOS - Configuring timers, mutexes and semaphores. 119
FreeRTOS Heap USageottt e e e e 121
STM32F429xx Clock Tree configurationview 125
Clock Tree configuration view with errors. 125

DoclD025776 Rev 21 ‘Yl

UM1718 List of figures
Figure 96. Clock tree configuration: enabling RTC, RCC Clock source

and outputs from Pinout view L 127
Figure 97. Clock tree configuration: RCC Peripheral Advanced parameters. 128
Figure 98. Power Consumption Calculator defaultview 131
Figure 99. Battery selection 132
Figure 100. Building a power consumption sequence i 133
Figure 101. Step managementfunctions. 133
Figure 102. Power consumption sequence: new step defaultview 134
Figure 103. Edit Step Window 135
Figure 104. Enabling the transition checker option on an already configured sequence -

all transitions valid 136
Figure 105. Enabling the transition checker option on an already configured sequence -

atleast one transitioninvalid 137
Figure 106. Transition checker option-show log. i 137
Figure 107. Interpolated Power Consumption 139
Figure 108. ADC selected in Pinout view. 140
Figure 109. Power Consumption Calculator Step configuration window:

ADC enabled using import pinout. 141
Figure 110. Power Consumption Calculator view after sequence building 142
Figure 111. Sequence table managementfunctions 143
Figure 112. Power Consumption: Peripherals ConsumptionChart. 144
Figure 113. Description ofthe Resultsarea. i 145
Figure 114. Peripheral power consumption tooltip. 147
Figure 115. Selecting SMPS for the current project. 149
Figure 116. SMPS database - addingnew SMPSmodels 149
Figure 117. SMPS database - selecting a different SMPSmodel 150
Figure 118. Current project configuration updated with new SMPS model 150
Figure 119. SMPS database management window with new model selected. 150
Figure 120. SMPS transition checker and state diagram helper window. 151
Figure 121. Configuring the SMPS mode foreachstep 152
Figure 122. Labels for pins generating define statements. 154
Figure 123. User constant generating define statements 154
Figure 124. Duplicate labels 154
Figure 125. HAL-based peripheral initialization: usart.c code snippet. 159
Figure 126. LL-based peripheral initialization: usart.ccode snippet 160
Figure 127. HAL versus LL : main.ccode snippet. i 160
Figure 128. extra_templates folder —defaultcontent. L 162
Figure 129. extra_templates folder with usertemplates 163
Figure 130. Project root folder with corresponding custom generated files. 163
Figure 131. User custom folder fortemplates 164
Figure 132. Custom folder with corresponding custom generatedfiles........................ 164
Figure 133. Update of the project .ewp file (EWARM IDE)

for preprocessor define statements 166
Figure 134. Update of stm32f4xx_hal_conf.h file to enable selected modules 167
Figure 135. New groups and new files added to groups in EWARMIDE 167
Figure 136. Preprocessor define statementsinEWARMIDE 168
Figure 137. MCU selection e 169
Figure 138. Pinout view with MCUs selection 170
Figure 139. Pinout view without MCUs selectionwindow 171
Figure 140. GPIO pin configuration 172
Figure 141. Timer configuration. 172
Figure 142. Simple pinout configuration 173
IS73 DoclD025776 Rev 21 11/276

List of figures UM1718

Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.

12/276

Save Project AS WINAOWot e 173
Generate Project Report - New projectcreation. 174
Generate Project Report - Project successfullycreated 174
Clock tree VIeW 175
HSIclock enabled. 176
HSE clock source disabled 176
HSE clock source enabled 176
External PLL clock source enabled 176
Configuration VIEW e 178
Case of Peripheral and Middleware without configuration parameters. 178
Timer 3 configuration Window 179
Timer 3 configuration 180
Enabling Timer 3interrupt 181
GPIO configuration color scheme andtooltip. 181
GPIO mode configuration e 182
DMA Parameters configuration window 183
FatFs disabled 183
USB Host configuration 184
FatFsoverUSB modeenabled 184
Configuration view with FatFsand USBenabled 184
FatFs peripheralinstances e 185
FatFs define statements L 185
Project Settings and toolchainchoice. 186
Project Settings menu - Code Generatortab 187
Missing firmware package warning messagettt 188
Errorduringdownload 188
Updater settings fordownload 189
Updater settings with connection 190
Downloading the firmware package 190
Unzipping the firmware package 191
C code generation completion message i 191
C code generation outputfolder 192
C code generation output: Projectsfolder 193
C code generation for EWARM 194
STM32CubeMX generated projectopenin IARIDE 195
AR OptiONS 196
SWD CONNECHION 196
Project building 10g oo 197
User SECtioN 2 197
User SeCtioN 4 197
Import Project menu e 199
Project Import status. 199
Board selection. 200
SDIO peripheral configuration e 201
FatFs mode configuration. 201
RCC peripheral configuration 201
Clock tree VIeW 202
Project Settings menu - Code Generatortab 202
C code generation completionmessage 203
IDE WOrKSPACE oot e 203
Power Consumption Calculation example 209
VDD and battery selectionmenu 210

DoclD025776 Rev 21 ‘Yl

UM1718

List of figures

Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.
Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.

Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.

S74

Sequencetable. 210
sequence results before optimization. 211
Step 1 optimization 212
Step Soptimization L 213
Step 6 optimization L 214
Step 7 optimization 215
Step 8 optimization L 216
Step 10 optimization 217
Power sequence results after optimizations L. 218
Selecting NUCLEO_LOS3R8 board 220
Selecting debug piNs e 221
Selecting TIM2 clock sOUrCe. 221
Selecting asynchronous mode for USART2 222
Checking pin assignment e 222
Configuring the MCU clock tree. 223
Configuring USART2 parameters. e 224
Configuring TIM2 parameters. e 225
Enabling TIM2 interrupt e 226
Project Settings menu. e 227
Generatingthe code e 228
Checking the communication port 229
Setting Tera Term port parameters e 230
Setting Tera Term port parameters e 230
Existing or new project pinout. 231
List of pinout compatible MCUs - partial match
with hardware compatibility. 232
List of Pinout compatible MCUs - exactand partialmatch 232
Selecting a compatible MCU and importing the configuration 233
Configuration imported to the selected compatible MCU 233
Java Control Panel 236
Pinout view - Enablingthe RTC 236
Pinout view - Enabling LSE and HSE clocks 237
Pinout view - Setting LSE/HSE clock frequency. 237
Block Mappingo 239
Block remappingo 240
Block remapping -example 1. 241
Block remapping -example 2. 242
Block inter-dependency - SPI signals assignedto PB3/4/5 243
Block inter-dependency - SPI1_MISO function assignedto PAG6 244
One block = one peripheral mode - 12C1_SMBA function assignedto PB5. 245
Block remapping -example 2. 246
Function remapping example 246
Block shifting not applied. 247
Block shifting applied e 248
FreeRTOS HOOK functions to be completed byuser 252
LwiP 1.4.1 configuration 253
LwiP 1.5 configuration e 254
Libjpeg configuration window 256
STM32 microcontroller part numbering scheme 258
STM32Cube Embedded Software package i 264
DoclD025776 Rev 21 13/276

STM32Cube overview UM1718

14/276

STM32Cube overview

STMCube™ is an STMicroelectronics original initiative to make developers’ lives easier by
reducing development effort, time and cost. STM32Cube covers the whole STM32 portfolio.
STM32Cube includes:

e STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization C code using graphical wizards.

e A comprehensive embedded software platform, delivered per Series (such as
STM32CubeF2 for STM32F2 Series and STM32CubeF4 for STM32F4 Series)

— The STM32Cube HAL, STM32 abstraction layer embedded software ensuring
maximized portability across the STM32 portfolio

— A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics
— All embedded software utilities, delivered with a full set of examples.

3

DoclD025776 Rev 21

UM1718

Getting started with STM32CubeMX

2

2.1

3

Getting started with STM32CubeMX

Principles

Customers need to quickly identify the MCU that best meets their requirements (core
architecture, features, memory size, performance...). While board designers main concerns
are to optimize the microcontroller pin configuration for their board layout and to fulfill the
application requirements (choice of peripherals operating modes), embedded system
developers are more interested in developing new applications for a specific target device,
and migrating existing designs to different microcontrollers.

The time taken to migrate to new platforms and update the C code to new firmware drivers
adds unnecessary delays to the project. STM32CubeMX was developed within STM32Cube
initiative which purpose is to meet customer key requirements to maximize software reuse

and minimize the time to create the target system:

e Software reuse and application design portability are achieved through STM32Cube

firmware solution proposing a common Hardware Abstraction Layer APl across STM32
portfolio.

e Optimized migration time is achieved thanks to STM32CubeMX built-in knowledge of
STM32 microcontrollers, peripherals and middleware (LwIP and USB communication
protocol stacks, FatFs file system for small embedded systems, FreeRTOS).

STM32CubeMX graphical interface performs the following functions:

e Fast and easy configuration of the MCU pins, clock tree and operating modes for the
selected peripherals and middleware

e Generation of pin configuration report for board designers

e Generation of a complete project with all the necessary libraries and initialization C
code to set up the device in the user defined operating mode. The project can be
directly open in the selected application development environment (for a selection of
supported IDEs) to proceed with application development (see Figure 1).

During the configuration process, STM32CubeMX detects conflicts and invalid settings and
highlights them through meaningful icons and useful tool tips.

DoclD025776 Rev 21 15/276

Getting started with STM32CubeMX UM1718

Figure 1. Overview of STM32CubeMX C code generation flow

STM32CubeF4 Firmware Package

S$TM32 MCU Reference Manual & Datasheet Code Exampl

Documentation, Utilities

Middleware Libraries
(freeRTOS, USB, TCP/IP, FatF§,

Graphics)

Drivers

including
e T i the common APl Hardware
:T..T :mf“ym'mﬁnns“m. ¥ 494 Abstraction Layer Firmware Library

e Gk Gt ot Pome onarngion oot
Comstion -

STM32CubeMX generated C code project

Copy of] [IDE Specific project files]

S§TM32CubeF4 Libraries (Generated)
4 | Drivers
). Projects
> b CMSIS
i EWARM
b k. STM32F4xx_HAL_Driver
MDK-ARM

RIDE

> ST
TrueSTUDIO

> b Third_Party

)

. [

4 | Middlewares)
|

Configuration and Initialization Files
(Generated C Code)

STM32 MCU Configuration using STM32CubeMX

ethernetif.h

(<]
E‘ﬂamp}. ethemetif.c

Iwip.h
A £] Iwip.c
Iwipopts.h
B 5] main.c
Ilwippools.h
5] stm32fdxx_hal_msp.c
stm32fdxx_hal_conf.h
E] usb_host.c

usb_hosth

E] usbh_conf.c
usbh_conf.h

3

16/276 DoclD025776 Rev 21

UM1718

Getting started with STM32CubeMX

2.2

3

Key features

STM32CubeMX comes with the following features:
Project management
STM32CubeMX allows creating, saving and loading previously saved projects:

When STM32CubeMX is launched, the user can choose to create a new project or
to load a previously saved project.
Saving the project saves user settings and configuration performed within the

project in an .ioc file that will be used the next time the project will be loaded in
STM32CubeMX.

STM32CubeMX also allows importing previously saved projects in new projects.
STM32CubeMX projects come in two flavors:

MCU configuration only: .ioc file are saved anywhere, next to other .ioc files.

MCU configuration with C code generation: in this case .ioc files are saved in a
dedicated project folder along with the generated source C code. There can be
only one .ioc file per project.

Easy MCU and STMicroelectronics board selection

When starting a new project, a dedicated window opens to select either a
microcontroller or an STMicroelectronics board from STM32 portfolio. Different filtering
options are available to ease the MCU and board selection.

Easy pinout configuration

From the Pinout view, the user can select the peripherals from a list and configure
the peripheral modes required for the application. STM32CubeMX assigns and
configures the pins accordingly.

For more advanced users, it is also possible to directly map a peripheral function
to a physical pin using the Chip view. The signals can be locked on pins to prevent
STM32CubeMX conflict solver from moving the signal to another pin.

Pinout configuration can be exported as a .csv file.

Complete project generation

The project generation includes pinout, firmware and middleware initialization C code
for a set of IDEs. It is based on STM32Cube embedded software libraries. The
following actions can be performed:

Starting from the previously defined pinout, the user can proceed with the
configuration of middleware, clock tree, services (RNG, CRC, etc...) and
peripheral parameters. STM32CubeMX generates the corresponding initialization
C code. The result is a project directory including generated main.c file and C
header files for configuration and initialization, plus a copy of the necessary HAL
and middleware libraries as well as specific files for the selected IDE.

The user can modify the generated source files by adding user-defined C code in
user dedicated sections. STM32CubeMX ensures that the user C code is
preserved upon next C code generation (the user C code is commented if it is no
longer relevant for the current configuration).

STM32CubeMX can generate user files by using user-defined freemarker _ftl
template files.

From the Project settings menu, the user can select the development tool chain
(IDE) for which the C code has to be generated. STM32CubeMX ensures that the
IDE relevant project files are added to the project folder so that the project can be

DoclD025776 Rev 21 17/276

Getting started with STM32CubeMX UM1718

2.3

18/276

directly imported as a new project within third party IDE (IAR™ EWARM, Keil ™
MDK-ARM, Atollic® TrueSTUDIO and AC6 System Workbench for STM32).

Power consumption calculation

Starting with the selection of a microcontroller part number and a battery type, the user
can define a sequence of steps representing the application life cycle and parameters
(choice of frequencies, enabled peripherals, step duration). STM32CubeMX Power
Consumption Calculator returns the corresponding power consumption and battery life
estimates.

Clock tree configuration

STM32CubeMX offers a graphical representation of the clock tree as it can be found in
the device reference manual. The user can change the default settings (clock sources,
prescaler and frequency values). The clock tree is then updated accordingly. Invalid
settings and limitations are highlighted and documented with tool tips. Clock tree
configuration conflicts can be solved by using the solver feature. When no exact match
is found for a given user configuration, STM32CubeMX proposes the closest solution.

Automatic updates of STM32CubeMX and STM32Cube firmware packages

STM32CubeMX comes with an updater mechanism that can be configured for
automatic or on-demand check for updates. It supports STM32CubeMX self-updates
as well as STM32Cube firmware library package updates. The updater mechanism
also allows deleting previously installed packages.

Report generation

.pdf and .csv reports can be generated to document user configuration work.

Rules and limitations

C code generation covers only peripheral and middleware initialization. It is based on
STM32Cube HAL firmware libraries.

STM32CubeMX C code generation covers only initialization code for peripherals and
middlewares that use the drivers included in STM32Cube embedded software
packages. The code generation of some peripherals and middlewares, such as
cryptographic peripherals and StemWin graphic library, is not yet supported.

Refer to Appendix A for a description of pin assignment rules.

Refer to Appendix B for a description of STM32CubeMX C code generation design
choices and limitations.

3

DoclD025776 Rev 21

UM1718

Installing and running STM32CubeMX

3

3.1

3.1.1

3.1.2

3.1.3

3.2

3.2.1

3

Installing and running STM32CubeMX

System requirements

Supported operating systems and architectures

Windows® 7: 32-bit (x86), 64-bit (x64)

Windows® 8: 32-bit (x86), 64-bit (x64)

Windows® 10: 32-bit (x86), 64-bit (x64)

Linux®: 32-bit (x86) and 64-bit (x64) (tested on RedHat, Ubuntu and Fedora)

Since STM32CubeMX is a 32-bit application, some versions of Linux 64-bit
distributions require to install 32-bit compliant packages such as ia32-libs.

MacOS: 64-bit (x64) (tested on OS X Yosemite)

Memory prerequisites

Recommended minimum RAM: 2 Gbytes.

Software requirements

The following software must be installed:

For Windows and Linux, install Java Run Time Environment for 1.7.0_45 or later

If Java is not installed on your computer or if you have an old version, STM32CubeMX
installer will open the Java download web page and stop.

For MacOS, install Java Development Kit 1.7.0_45 or later
For Eclipse plug-in installation, install one of the following IDE:
— Eclipse IDE Juno (4.2)

— Eclipse Luna (4.4)

— Eclipse Kepler (4.3)

— Eclipse Mars (4.5)

Installing/uninstalling STM32CubeMX standalone version

Installing STM32CubeMX standalone version

To install STM32CubeMX, follow the steps below:

1.
2.
3.

Download STM32CubeMX installation package from www.st.com/stm32cubemx.
Extract (unzip) stm32cubemx.zip whole package into the same directory.

Check your access rights and launch the installation wizard:

On windows:

a) Make sure you have administrators rights.

b) Double-click the SetupSTM32CubeMX-VERSION.exe file to launch the
installation wizard.

DoclD025776 Rev 21 19/276

Installing and running STM32CubeMX UM1718

On Linux:

a) Make sure you have access rights to the target installation directory. You can run
the installation as root (or sudo) to install STM32CubeMX in shared directories.

b) Double-click (or launch from the console window) on the SetupSTM32CubeMX-
VERSION.linux file.

On MacOS:
a) Make sure you have administrators rights.

b) Double- click SetupSTM32CubeMX-VERSION application file to launch the
installation wizard.

4. Upon successful installation of STM32CubeMX on Windows, STM32CubeMX icon is
displayed on your desktop and STM32CubeMX application is available from the
Program menu. STM32CubeMX .ioc files are displayed with a cube icon. Double-click
them to open up them using STM32CubeMX.

5. Delete the content of the zip from your disk.

Note: If the proper version of the Java Runtime Environment (version 1.7_45 or newer) is not
installed, the wizard will propose to download it and stop. Restart STM32CubeMX
installation once Java installation is complete. Refer to Section 11: FAQ for issues when
installing the JRE.

When working on Windows, only the latest installation of STM32CubeMX will be enabled in
the program menu. Previous versions can be kept on your PC (not recommended) when
different installation folders have been specified. Otherwise, the new installation overwrites
the previous ones.

3.2.2 Installing STM32CubeMX from command line

There are 2 ways to launch an installation from a console window: either in console
interactive mode or via a script.

Interactive mode

To perform interactive installation, type the following command:
java —-jar SetupSTM32CubeMX-4.14.0.exe —-console

At each installation step, an answer is requested (see Figure 2 below).

3

20/276 DoclD025776 Rev 21

UM1718

Installing and running STM32CubeMX

3

Figure 2. Example of STM32CubeMX installation in interactive mode

BN Administrator: C\Windows\system32hemd.exe

fress 1 to accept. 2 to reject. 3 to redisplay
Gelect target path [C:“Program Files“5TMicroelectronics~53TM32Cube~STMI2CubeM®]

C:“Program Files“M:&
set wninstallName=8TM32CubeMH{3>

Press 1 to continue, 2 to guit. 3 to redisplay
1

Create shortcuts in the Start—Menu

Enter ¥ for Yes. N for MNo:

n

Create additional szhortcuts on the dezktop
Enter ¥ for Yes. N for Mo:

n

create shortcut for: all users

Enter ¥ for Yes. N for MNo:

n

[Starting to wunpack 1

[Processing package: Core (1-3) 1

[Processing package: 0ld DataBases (2.3 1
[Proceszing package: Help ¢3-3) 1

[Unpacking finizshed 1

Generate an automatic installation script
Enter ¥ for Yes, N for No:

n
Installation was successful

application installed on C:“Program Files-Mid
[Writing the uninstaller data ...

[Console installation done 1

C:Uzeprs™ >

[l [|

DoclD025776 Rev 21

21/276

Installing and running STM32CubeMX UM1718

Auto-install mode
At end of an installation, performed either using STM32CubeMX graphical wizard or console

mode, it is possible to generate an auto-installation script containing user installation
preferences (see Figure 3 below):

Figure 3. STM32Cube Installation Wizard

-

-
Ly 5TM32CubeMX Installation Wizard =01
R — .

Installation Finished Y

Installation has completed successfully.

An uninstaller program has been created in:

C:'Program Files\STMicroelectronics\STM32Cube\STM32CubeMy_4_8_ASYninstaller

@‘ Generate an automatic installation script |

STMicroelectronics

You can then launch the installation just by typing the following command:
java —jar SetupSTM32CubeMX-4.14.0.exe auto-install.xml

22/276 DoclD025776 Rev 21

3

UM1718 Installing and running STM32CubeMX

Figure 4. Auto-install command line

-

~
Administrator: C:\Windows\system32\cmd.exe {ilgli-j

he STM32CubeM® installer you are attempting to run seems to have a copy already
running.

his could bhe from a previous failed installation attempt o» you may have accide
Intally launched
the installer twice. The recommended action is to select ’No’ and wait for the ol
ther copy of
the installer to start. If you are sure there is no other copy of the installer
running, click
the ’‘Yes’ button to allow this installer to run.

Are you sure you want to continue with this installation?
Enter ¥ for Yes, N for No:

Y
[Starting automated installation 1]
set uninstallName=8TM32CubeMX{2>

Starting to unpack 1]

Processing package: Core <1/3> 1
Processing package: 0ld DataBases (2/3> 1
Processing package: Help <(3/3>

Unpacking finished 1

Writing the uninstaller data ... 1
Automated installation done]

3.23 Uninstalling STM32CubeMX standalone version
Uninstalling STM32CubeMX on MacOS

To uninstall STM32CubeMX on MacOS, use the following command line:

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

Uninstalling STM32CubeMX on Linux

There are three means to uninstall STM32CubeMX on Linux:
e By using the following command line
java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.
e Through a Windows Explorer window:
a) Use afile explorer.
b) Go to the Uninstaller directory of STM32CubeMX installation.
c) Double-click the start uninstall desktop shortcut.

Uninstalling STM32CubeMX on Windows

There are three means to uninstall STM32CubeMX on Windows:
e By using the following command line
java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

e Through a Windows Explorer window:

a) Use afile explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.
e Through the Windows Control Panel:

a) Select Programs and Features from the Windows Control Panel to display the list
of programs installed on your computer.

b) Right-click STM32CubeMX and select uninstall.

3

DoclD025776 Rev 21 23/276

Installing and running STM32CubeMX UM1718

3.3 Installing STM32CubeMX plug-in version

STM32CubeMX plug-in can be installed within Eclipse IDE development tool chain.
Installation related procedures are described in this section.

3.31 Downloading STM32CubeMX plug-in installation package

To download STM32CubeMX plug-in, follow the sequence below:

1.
2.

Go to http://www.st.com/stm32cubemx.
Download STM32CubeMX- Eclipse-plug-in .zip file to your local disk.

3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in
To install STM32CubeMX as an Eclipse IDE plug-in, follow the sequence below:

1.

Launch the Eclipse environment.

2. Select Help > Install New Software from the main menu bar. The Available Software
window appears.
3. Click Add. The Add Repository window opens.
4. Click Archive. The Repository archive browser opens.
5. Select the STM32CubeMX- Eclipse-plug-in .zip file that you downloaded and click
Open (see Figure 5).
6. Click OK in the Add Repository dialog box,
7. Check STM32CubeMX_Eclipse_plug-in and click Next (see Figure 6).
8. Click Next in the Install Details dialog box.
9. Click "l accept the terms of the license agreement” in the Review Licenses dialog box
and then click Finish.
10. Click OK in the Security Warning menu.
11. Click OK when requested to restart Eclipse IDE (see Section 3.4.2: Running
STM32CubeMX in command-line mode).
Figure 5. Adding STM32CubeMX plug-in archive
= Add Repository tﬁj

MName: Local...

Location: jarfile;/C;/Users/JohnDoe/Temp/STM32CubeMX _eclipseplugi Archive...

OK] | Cancel ‘

24/276

3

DoclD025776 Rev 21

UM1

718 Installing and running STM32CubeMX

Figure 6. Installing STM32CubeMX plug-in

= Install - she ™ a |] |-
Available Software |
- |
Check the items that you wish to install. \J.-

Work with: STM32CubeMX_update_site - jarfile;/C:/Users/frg08031/Documents/Temp/STM32CubelMX_eclipseplugin- Add..

type filter text

Name

Find more software by working with the "Available Software Sites” preferences.

Yersion
4 |/ |000 STM32CubeM¥_Eclipse_Plugin
/| @ All items are installed
SelectAll | [Deselect Al
Details
¥ Show only the |atest versions of available software v |Hide items that are already installed
Y| Group items by category What is already installed?

@

£ < Back Mext > Einish Cancel

Show only software applicable to target environment

Contact all update sites during install to find required software

3.3.3

3

Uninstalling STM32CubeMX as Eclipse IDE plug-in

To uninstall STM32CubeMX plug-in in Eclipse IDE, follow sequence below:

1. In Eclipse, right-click STM32CubeMX perspective Icon (see Figure 7) and select Close.
2. From Eclipse Help menu, select Install New Software.

3. Click Installed Software tab, then select STM32CubeMX and click Uninstall.

4. Click Finish in Uninstall Details menu (see Figure 8).

Figure 7. Closing STM32CubeMX perspective

I

Quick Access Ej’| Bg C/C++ [STMBECubeMXl

= 0

DoclD025776 Rev 21 25/276

Installing and running STM32CubeMX UM1718

Figure 8. Uninstalling STM32CubeMX plug-in

= Uninstall l =) &J
Uninstall Details &]
Review and confirm the items to be uninstalled. _J).l—'
MName Version Id
§* STM32CubeMX 4,0.0.201402121115 com.st.mi¢
< | 11 | 3
Details
STM32CubeMX is a graphical tool enabling users to configure =
More...
@j Next = Finish l l Cancel

3

26/276 DoclD025776 Rev 21

UM1718 Installing and running STM32CubeMX
3.4 Launching STM32CubeMX
3.41 Running STM32CubeMX as standalone application
To run STM32CubeMX as a standalone application on Windows:
e select STM32CubeMX from Program Files > ST Microelectronics > STM32CubeMX.
e or double-click STM32CubeMX icon on your desktop.
To run STM32CubeMX as a standalone application on Linux, launch the STM32CubeMX
executable from STM32CubeMX installation directory.
3.4.2 Running STM32CubeMX in command-line mode

3

To facilitate its integration with other tools, STM32CubeMX provides a command-line mode.
Using a set of commands, you can:

e Load an MCU

e Load an existing configuration

e Save a current configuration

e Set project parameters and generate corresponding code

e Generate user code from templates.

Three command-line modes are available:
e Torun STM32CubeMX in interactive command-line mode, use the following command
line:
— On Windows:
java -jar STM32CubeMX.exe -1
— On Linux and MacOS:
java -jar STM32CubeMX -1

The “MX>" prompt is then displayed to indicate that the application is ready to accept
commands.

e Torun STM32CubeMX in command-line mode getting commands from a script, use
the following command line:

— On Windows:

java -jar STM32CubeMX.exe -s <script filename>
— On Linux and MacOS:

java -jar STM32CubeMX -s <script filename>

All the commands to be executed must be listed in the script file. An example of script
file content is shown below:

load STM32F417VETx

project name MyFirstMXGeneratedProject

project toolchain "MDK-ARM v4"

project path C:\STM32CubeProjects\STM32F417VETx
project generate

exit

DoclD025776 Rev 21 271276

Installing and running STM32CubeMX

UM1718

e Torun STM32CubeMX in command-line mode getting commands from a scripts and
without Ul, use the following command line:

— On Windows:
java -jar STM32CubeMX.exe —-qg <script filename>

— On Linux and MacOS:
java -jar STM32CubeMX -g <script filename>

Here again, the user can enter commands when the MX prompt is displayed.

See Table 1 for available commands.

Table 1. Command line summary

Command line Purpose Example
help Th|5_ command displays the list of help
available commands
This command loads the selected load STM32F101RCTx
load <mcu>

MCU

load STM32F101Z(F-G)Tx

config load <filename>

This command loads a previously
saved configuration

config load C:\Cube\ccmram\ccmram.ioc

config save <filename>

This command saves the current
configuration

config save
C:\Cube\ccmram\ccmram.ioc

config saveext <filename>

This command saves the current
configuration with all parameters,
including those for which values have
been kept to defaults (unchanged by
the user).

config saveext
C:\Cube\ccmram\ccmram.ioc

config saveas <filename>

This command saves the current
project under a new name

config saveas
C:\Cube\ccmram2\ccmram2.ioc

csv pinout <filename>

This command exports the current
pin configuration as a csv file. This
file could later be imported into a
board layout tool.

Csv pinout mypinout.csv

script <filename>

This command runs all commands in
the script file. There must be one
command per line.

script myscript.txt

project couplefilesbyip <0|1>

This code generation option allows
choosing between 0 for generating
the peripheral initializations in the
main or 1 for generating each
peripheral initialization in dedicated
.cl.h files.

project couplefilesbyip 1

28/276

DoclD025776 Rev 21

3

UM1718

Installing and running STM32CubeMX

Table 1. Command line summary (continued)

Command line

Purpose

Example

setDriver <Peripheral Name>

<HAL | LL>

For supported Series,
STM32CubeMX can generate
peripheral initialization code based
on LL drivers or on HAL drivers.

This command line allows choosing,
for each peripheral, between HAL-
based and LL-based code
generation.

By default code generation is based
on HAL drivers.

setDriver ADC LL
setDriver 12C HAL

generate code <path>

This command generates only
“STM32CubeMX generated” code
and not a complete project that would
include STM32Cube firmware
libraries and Toolchains project files.
To generate a project, use “project
generate”.

generate code C:\mypath

set tpl_path <path>

This command sets the path to the
source folder containing the .ftl user
template files.

All the template files stored in this
folder will be used for code
generation.

set tpl_path C:\myTemplates\

set dest_path <path>

This command sets the path to the
destination folder that will hold the
code generated according to user
templates.

set dest_path C:\myMXProject\inc\

get tpl_path

This command retrieves the path
name of the user template source
folder

get tpl_path

get dest_path

This command retrieves the path
name of the user template
destination folder.

get dest_path

project toolchain <toolchain>

This command specifies the tool
chain to be used for the project.
Then, use the “project generate”
command to generate the project for
that tool chain.

project toolchain EWARM
project toolchain “MDK-ARM V4~
project toolchain “MDK-ARM V5”
project toolchain TrueSTUDIO
project toolchain SW4STM32

project name <name>

This command specifies the project
name

project name ccmram

project path <path>

This command specifies the path
where to generate the project

project path C:\Cube\ccmram

project generate

Generate the full project

project generate

exit

End STM32CubeMX process

exit

3

DoclD025776 Rev 21

29/276

Installing and running STM32CubeMX UM1718

343 Running STM32CubeMX plug-in from Eclipse IDE

To run STM32CubeMX plug-in from Eclipse:

1. Launch Eclipse environment.

2. Once Eclipse IDE is open, click open new perspective: ﬁ

3. Select STM32CubeMX to open STM32CubeMX as a perspective (see Figure 9).
4

STM32CubeMX perspective opens (see Figure 10). Enter STM32CubeMX user
interface via the Welcome menus.

To run STM32CubeMX as a standalone application on MacOS, double-click the
STM32CubeMX icon on your desktop.

Figure 9. Opening Eclipse plug-in
I = Open Perspective u@ﬂ—hj

TEIC/C++ (default)

[2CVS Repository Exploring
##Debug

#8GDB Trace

[Git Repository Exploring
B | TTng Kernel

U Planning

EBRemote System Explorer
[t3Resource

&°Team Synchronizing
BT Tracing

OK l l Cancel

3

30/276 DoclD025776 Rev 21

UM1718 Installing and running STM32CubeMX

Figure 10. STM32CubeMX perspective

= STM32CubeMX - Eclipse T
Eile Edit Mavigate Search Project Run Window Help

Cix DN Sh=07 8 SRR SR A ERER A 4 e Quick Access B | Bic/Ce+ [STM32CUbeMX

° STM32CubeMX - B

File Project Window Help
Rona: b8 2P

New Project
Il | Load Project

Help

3.5 Getting STM32Cube updates

STM32CubeMX implements a mechanism to access the internet and to:

e perform self-updates of STM32CubeMX and of the STM32Cube firmware packages
installed on the user computer

e download new firmware packages and patches

o refresh MCU data and documentation.

Installation and update related sub-menus are available under the Help menu.

Off-line updates can also be performed on computers without internet access (see
Figure 16). This is done by browsing the filesystem and selecting available STM32Cube
firmware zip packages.

If the PC on which STM32CubeMX runs is connected to a computer network using a proxy
server, STM32CubeMX needs to connect to that server to access the internet, get self-
updates and download firmware packages. Refer to Section 3.5.1: Updater configuration for
a description of this connection configuration.

To view Windows default proxy settings, select Internet options from the Control panel and
select LAN settings from the Connections tab (see Figure 11).

3

DoclD025776 Rev 21 31/276

Installing and running STM32CubeMX UM1718

Figure 11. Displaying Windows default proxy settings
& Internet Properties | Tt]

| General] Securityl Privacy | Content | Connections | Programs | Advanced

—9 To set up an Internet connection, click Setup

Setup.

Dial-up and Virtual Private Network settings

Add.. |

‘ AddVEN... |

‘ Choose Settings if you need to configure a proxy Setting
server for a connection.

‘ Local Area Network (LAN) settings

LAN Settings do not apply to dial-up

connections. Choose Settings above for dial-up
settings.

Several proxy types exist and different computer network configurations are possible:

e Without proxy: the application directly accesses the web (Windows default
configuration).

e Proxy without login/password

e Proxy with login/password: when using an internet browser, a dialog box opens and
prompts the user to enter his login/password.

e Web proxies with login/password: when using an internet browser, a web page opens
and prompts the user to enter his login/password.

| 0K ‘ Cancel |

L

If necessary, contact your IT administrator for proxy information (proxy type, http address,
port).

STM32CubeMX does not support web proxies. In this case, the user will not be able to
benefit from the update mechanism and will need to manually copy the STM32 firmware
packages from http://www.st.com/stm32cube to the repository. To do it, follow the sequence
below:

1. Go to http://www.st.com/stm32cube and download the relevant STM32Cube firmware
package from the Associated Software section.

2. Unzip the zip package to your STM32Cube repository. Find out the default repository
folder location in the Updater settings tab as shown in Figure 12 (you might need to
update it to use a different location or name).

3

32/276 DoclD025776 Rev 21

UM1718 Installing and running STM32CubeMX

3.5.1 Updater configuration
To perform STM32Cube new library package installation or updates, the tool must be
configured as follows:
1. Select Help > Updater Settings to open the Updater Settings window.
2. From the Updater Settings tab (see Figure 12)
a) Specify the repository destination folder where the downloaded packages will be
stored.
b) Enable/Disable the automatic check for updates.

Figure 12. Updater Settings window

Updater Settings &J

Updater Settings | Connection Parameters

Firmware Repository

Repository Folder

C:/Users/frq0a031/STM32Cube/Repository/

Check and Update Settings

(") Manual Check

(@) Automatic Check Interval between two Checks (days) |5

Data Auto-Refresh
(") Mo Auto-Refresh at Application start

(@) Auto-Refresh Data-only at Application start
(") Auto-Refresh Data and Docs at Application start

Interval between two data-refreshs (days) |3

oK l| Cancel |

3. Inthe Connection Parameters tab, specify the proxy server settings appropriate for
your network configuration by selecting a proxy type among the following possibilities:

— No Proxy (see Figure 13)
— Use System Proxy Parameters (see Figure 14)
On Windows, proxy parameters will be retrieved from the PC system settings.

Uncheck “Require Authentication” if a proxy server without login/password
configuration is used.

3

DoclD025776 Rev 21 33/276

Installing and running STM32CubeMX UM1718

— Manual Configuration of Proxy Server (see Figure 15)

Enter the Proxy server http address and port number. Enter login/password
information or uncheck “Require Authentication” if a proxy server without
login/password configuration is used.

4. Uncheck Remember my credentials to prevent STM32CubeMX to save encrypted
login/password information in a file. This implies reentering login/password information
each time STM32CubeMX is launched.

5. Click the Check Connection button to verify if the connection works. A green check
mark appears to confirm that the connection operates
correctly [«/ Check Connection]Z

Figure 13. Connection Parameters tab - No proxy

-
Updater Settings Iéj
Updater Settings | Connection Parameters |

Proxy Server Type

() Use System Proxy Parameters

() Manual Configuration of Proxy Server

Manual Configuration of Proxy Server

Proxy HTTP |myproxy.mycompany.com Port |B080
Authentication
Require Authentication Remember my Credentials

User Login |JohnDoe

Password SRR RRRREER

[({?Ched:.[:onnecﬁon]

[oK H Cancel]

3

34/276 DoclD025776 Rev 21

UM1718

Installing and running STM32CubeMX

3

Figure 14. Connection Parameters tab - Use System proxy parameters

& Updater Settings

=)

Updater Settings | Connection Parameters |

Proxy Server Type
(71 Mo Proxy

(71 Use System Proxy Parameters

(@ Manual Configuration of Proxy Server

Manual Configuration of Proxy Server

Proxy HTTP |\myproxy.mycompany.com

Authentication

Require Authentication Femember my Credentialg

User Login | JohnDoe

PESEI"\'Drd SRS ERBEERREEREEE

Port |3080

[& Check Connection]

[oK H Cancel]

DoclD025776 Rev 21

35/276

Installing and running STM32CubeMX UM1718

Figure 15. Connection Parameters tab - Manual Configuration of Proxy Server

i |
Updater Settings [é]
Updater Settings | Connection Parameters

Proxy Server Type

~) Mo Proxy
"1 Use System Proxy Parameters

@ Manual Configuration of Proxy Server

Manual Configuration of Proxy Server

Proxy HTTP |\myproxy.mycompany.com Port 3030

Authentication

Require Authentication Remember my Credentials

User Login |JohnDoe

Password [IX XA}

l Q’?Che&Connecﬁon I

[QK H Cancel I

6. Select Help > Install New Libraries sub-menu to select among a list of possible
packages to install.

7. Ifthe tool is configured for manual checks, select Help > Check for Updates to find out
about new tool versions or firmware library patches available to install.

3.5.2 Downloading new libraries

To download new libraries, follow the steps below:
1. Select Help > Install New Libraries to open the New Libraries Manager window.

If the installation was performed using STM32CubeMX, all the packages available for
download are displayed along with their version including the version currently installed
on the user PC (if any), and the latest version available from http.//www.st.com.

If no Internet access is available at that time, choose “Local File”. Then, browse to
select the zip file of the desired STM32Cube firmware package that has been
previously downloaded from st.com. An integrity check is performed on the file to
ensure that it is fully supported by STM32CubeMX.

The package is marked in green when the version installed matches the latest version
available from http.//www.st.com.

2. Click the checkbox to select a package then “Install Now” to start the download.

See Figure 16 for an example.

36/276 DoclD025776 Rev 21 ‘Yl

UM1718 Installing and running STM32CubeMX

Figure 16. New library Manager window

[@ Mew Libraries Manager - - - - : - ﬁ1
| All softwares and Firmwares Releases
% Releases Information was last checked 4 days ago.
Sel. Description Installed Version Available version
STM32CubeMX Releases 3
[[] Software to configure and manage STM32 MCUs 4.11.0- 4.12.0

m

STM32CubeF7 Releases

. Firmware Package for Family STM32F7 1.1.0 110
B Firmware Package for Family STM32F7 1.0.0 1.0.0
[t
STM32CubeF4 Releases
1l . Firmware Package for Family STM32F4 1.8.0 1.8.0
B Firmware Package for Family STM32F4 1.7.0 1.7.0
. Firmware Package for Family STM32F4 1.6.0 1.6.0
. Firmware Package for Family STM32F4 1.5.0 1.5.0
B Firmware Package for Family STM32F4 1.4.0 1.4.0
[T] Firmware Package for Family STM32F4 (Size : 149.93 ME) 1.3.0 i

Technical Description

3

DoclD025776 Rev 21 37/1276

Installing and running STM32CubeMX UM1718

3.5.3

3.54

38/276

Downloading new library patches

To download new library patches, the procedure described in Section 3.5.2 applies.

A library patch, such as STM32Cube FW_F7_1.4.1, can be easily identified by its version
number which third digit is non-null (e.g. ‘1’ for the 1.4.1 version).

The patch is not a complete library package but only the set of library files that need to be
updated. The patched files go on top of the original package (e.g.
STM32Cube FW_F7_1.4.1 complements STM32Cube FW_F7_1.4.0 package).

Prior to 4.17 version, STM32CubeMX copies the patches within the original baseline
directory (e.g. STM32Cube FW_F7_V1.4.1 patched files are copied within the directory
called STM32Cube_FW_F7_V1.4.0).

Starting with STM32CubeMX 4.17, downloading a patch leads to the creation of a dedicated
directory. As an example, downloading STM32Cube FW_F7_V1.4.1 patch creates the
STM32Cube FW_F7_V1.4.1 directory that contains the original

STM32Cube FW_F7_V1.4.0 baseline plus the patched files contained in

STM32Cube FW_F7_V1.4.1 package.

Users can then choose to go on using the original package (without patches) for some
projects and upgrade to a patched version for others projects.

Removing libraries

Proceed as follows to clean up the repository from old library versions thus saving disk

space:

1. Select Help > Install New Libraries to open the New Libraries Manager window.

2. Click a green checkbox to select a package available in stm32cube repository.

3. Click the Remove Now button and confirm. A progress window then opens to show the
deletion status.

Refer to Figure 17 to Figure 19 for an example.

3

DoclD025776 Rev 21

UM1718 Installing and running STM32CubeMX

Figure 17. Removing libraries

- Bl
@ Mew Libraries Manager - - - - - - lﬂ

| I_ All Softwares and Firmwares Releases

-

i L
E 7 Releases Information was last checked 4 days ago.

Sel. Description Installed Version Available Version
o~
STM32CubeMX Releases T
[7] Software to configure and manage STM32 MCUs 4.11.0 4.12.0

m

STM32CubeF7 Releases

. Firmware Package for Family STM32F7 1.1.0 1.1.0

B Firmware Package for Family STM32F7 1.0.0 1.0.0
- STM32CubeF4 Releases -
] . Firmware Package for Family STM32F4 1.8.0 1.8.0

B Firmware Package for Family STM32F4 L7.0 1.7.0

. Firmware Package for Family STM32F4 1.6.0 1.6.0

. Firmware Package for Family STM32F4 1.5.0 1.5.0

B Firmware Package for Family STM32F4 1.4.0 1.4.0

[] Firmware Package for Family STM32F4 (Size : 149.93 ME) 1.3.0

Technical Description

Main Changes

& Add support of System Workbench for STM32 (SW4STM32) toolchain
& Maintenance release to fix known defects, in HAL and Projects

=

F—
¥

Figure 18. Removing library confirmation message

r N
New Library Manager R — @

‘6 You are about to remove the following firmware pack(s) :
: Please note: Once Firmware pack will be removed, You will not anymore be able to generate projects that were based on this pack.

- FW.F4.1.6.0 (C:\Users\frq09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.6.0)

Please confirm firmware pack(s) deletion

3

DoclD025776 Rev 21 39/276

Installing and running STM32CubeMX UM1718

3.5.5

40/276

Figure 19. Library deletion progress window

r 1
Remove selected Firmware [é]

Deleting 22962 items..
|

Deleting Firmware STM32Cube_FW_F4_V1.6.0

Checking for updates

When the updater is configured for automatic checks, it regularly verifies if updates are
available. In this case, a green arrow icon ¥ appears on the tool bar.

When automatic checks have been disabled in the updater settings window, the user can
manually check if updates are available:

1. Click the icon to open the Update Manager window or Select Help > Check for
Updates. All the updates available for the user current installation are listed.

2. Click the check box to select a package, and then Install Now to download the update.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

4

4.1

3

STM32CubeMX User Interface

STM32CubeMX user interface consists of a main window, a menu bar, a toolbar, four views
(Pinout, Configuration, Clock Configuration, Power Consumption Calculator) and a set of
help windows (MCUs selection, Update manager, About). All these menus are described in
the following sections.

For C code generation, although the user can switch back and forth between the different
configuration views, it is recommended to follow the sequence below:

1. Select the relevant features (peripherals, middlewares) and their operating modes from
the Pinout view.

2. Configure the clock tree from the clock configuration view.

In the Pinout view, configure the RCC peripheral by enabling the external clocks,
master output clocks, audio input clocks (when relevant for your application). This
automatically displays more options on the Clock tree view (see Figure 25).

3. Configure the parameters required to initialize the peripherals and middleware
operating modes from the configuration view.

4. Generate the initialization C code.

Welcome page

The Welcome page is the first window that opens up when launching STM32CubeMX
program. It remains open as long as the application is running. Closing it closes down the
application. Refer to Figure 20 and to Table 2 for a description of the Welcome page.

DoclD025776 Rev 21 41/276

STM32CubeMX User Interface UM1718
Figure 20. STM32CubeMX Welcome page
¢ STM32CubeMX Untitied Lo 0 e

File Project Window Help

Hoae: &8 2p

New Project
Load Project

Help

Table 2. Welcome page shortcuts

Name

Description

New Project

This shortcut launches STM32CubeMX new project creation by opening
the New project window (select an MCU from the MCU selector tab or a
board configuration from the Board selector tab).

Load Project

This shortcut opens a browser window to select a previously saved
configuration (.ioc file) and loads it.

When loading a project created with an older STM32CubeMX version, the
user can either select migrate to migrate it to the latest STM32CubeMX
available database and STM32Cube firmware version or continue.

Caution: Prior to STM32CubeMX 4.17, clicking continue still upgrades
to the latest database "compatible" with the SMT32Cube
firmware version used by the project.

Starting from STM32CubeMX 4.17, clicking continue keeps the
database used to create the project untouched. If the required
database version is not available on the computer, it will be
automatically downloaded.

Caution: When upgrading to a new version of STM32CubeMX, make
sure to always backup your projects before loading the
new project (especially when the project includes user
code).

Help

This shortcut opens the user manual.

42/276

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

4.2

Note:

3

New project window

This window shows two tabs to choose from:
e The MCU selector tab offering a list of target processors
e A Board selector tab showing a list of STMicroelectronics boards.

The MCU selector allows filtering on various criteria: Series, lines, packages, peripherals
and additional MCU characteristics such as memory size or number of 1/Os (see Figure 21).

When the number of MCUs found is lower than 50, the selector offers to list the close MCUs
(see Figure 22). Clicking the Display close button displays these MCUs (see Figure 23): by
default, MCUs are sorted first by matching ratio, then by part number. For close MCUs, that
are MCUs with a matching ratio less than 100%, rows are shown in gray and non matching
cells are highlighted in dark gray.

A matching percentage is computed for each user selected criteria, for example:

- When requesting four instances of the CAN peripheral, the MCUs with only three instances
will reach a 75% match on the CAN criteria.

- If the maximum price criteria is selected, the matching ratio for a given MCU will be the
maximum requested price divided by the actual MCU price. In the case of a minimum price
criteria, the matching ratio will be the MCU price divided by the minimum requested price.
Finally, all criteria ratios are averaged to give the Match column percentage value.

The Board selector allows filtering on STM32 board types, Series and peripherals (see
Figure 24). Only the default board configuration is proposed. Alternative board
configurations obtained by reconfiguring jumpers or by using solder bridges are not
supported.

When a board is selected, the Pinout view is initialized with the relevant MCU part number
along with the pin assignments for the LCD, buttons, communication interfaces, LEDs,
etc...(see Figure 26). Optionally, the user can choose to initialize it with the default
peripheral modes (see Figure 27).

When a board configuration is selected, the signals change to 'pinned', i.e. they cannot be
moved automatically by STM32CubeMX constraint solver (user action on the peripheral
tree, such as the selection of a peripheral mode, will not move the signals). This ensures
that the user configuration remains compatible with the board.

DoclD025776 Rev 21 43/276

STM32CubeMX User Interface

UM1718

Figure 21. New Project window - MCU selector

% New Project

MCU Selector | Board Selector

MCU Filters

Part Number Search

Package

Advanced Choice

Price From 0.0 to 14.85

o

Flash From 8 to 2048 (kBytes)
8

Ram From 2 to 1024 (kBytes)
2

Freq. From 0 to 400 (MHz)

o

> o
0.0 14.85
I0 From 11 to 168

[4 ®
11 168

Eeprom From 0 to 16384 (Bytes)
0

16384

2048

1024

1

New STM32L4 ultra-low-power MCUs
advanced audio and energy efficiency

= 256 to 512KB Flash
« Up to 160KB RAM

Ly

Features ” Block Diagram ” Datasheet ” Docs & Ressources ” Buy H Start Project

MCUs List: 1071 items -4 Display close ...

Part Mo Reference Marketing ... Unit Price for 10kU ... Packa.. Flash RAM 10 Freq CR.. FDC.. HA. JP.. MDI
STM32F03... STM32F030... |Active 0.59 LQFP48 (32 kBytes 4 kBytes 39 48 MHz 0 o 0 0 o -
STM32F03... [STM32F031 0.72 LQFP48 |64 kBytes |8 kBytes 39 48 MHz 0 o 0 0 o [—
STM32F03... [STM32F030... |Active 11 LQFP48 256 kBy...[32 kBytes 37 48 MHz |0 o 0 0 o
STM32F03... [STM32F030... |Active 0.42 [TSSOP20[16 kBytes 4 kBytes |15 48 MHz |0 o 0 o o
STM32F03... [STM32F030... |Active 0.51 LQFP32 32 kBytes (4 kBytes 25 48 MHz [0 o 0 o o
STM32F03... [STM32F030... |Active 0.75 LQFP64 |64 kBytes [8 kBytes |55 48 MHz [0 o o o o
STM32F03... [STM32F03! 1.21 LQFP64 256 kBy...[32 kBytes 51 ©8 MHz 0 o o o o
STM32F03... [STM32F031... |Active 0.97 LQFP48 (16 kBytes (4 kBytes |39 48 MHz 0 o o o o
STM32F03... [STM32F031... |Active 1.01 LQFP48 (32 kBytes (4 kBytes |39 48 MHz [0 o o o o o
Y N = PETT T R Pywra e P NI P T Pr YT Y = = ™ ~

2

44/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

Figure 22. New Project window - MCU list with close MCUs function

% New Project

MCU Selector | Board Selector

Peripheral Choice

Peripherals

A

DC 16-bit

CAN

COMP

CRYP

DAC 12-bit

DCMI

DFSDM

Ethernet

FDCAM

FMC

HASH

HDMI CEC

HRTIM

New STM32L4 ultra-low-power MCUs

advanced audio and energy efficiency

+ 256 10 512KB Flash
+ Up to 160KB RAM

7]

2C

25

IRTIM

JPEG

LFTIM

LPUART

MDIOS

OPAMP

QUADSPT

RTC

SAL

m

Block Diagram ”

Datasheet ”

Docs & Ressources H

Start Project

Feature\'\ H

MCUs List: 20 items +{9 close items

4

b Display close

Part Mo

Reference

Marketing

Unit Price for 10kU T

Packa

Flash

RAM

10

Freq

CR.

]
=
=

ISTM32F37...

TM32F373...

iActive

2.72

UFBGA...

64 kBytes

16 kBytes

72 MHz

STM32F37...

iActive

2.72

LQFP100

64 kBytes

16 kBytes

72 MHz

SDIO

SDMMC

SFDIFRX

SFI

=[O=0=0"=1="=|=

SWPMI

STM32F37...

TM32F373...

iActive

2.88

UFBGA...

128 kBy...

24 kBytes

72 MHz

STM32F37...

iActive

2.88

LQFP100

128 kBy...

24 kBytes

72 MHz

STM32F37...

STM32F37...

STM32F373...

iActive

3.22

UFBGA...

256 kBy...

32 kBytes

72 MHz

iActive

3.22

LQFP100

256 kBy...

32 kBytes

B[R R EEE

72 MHz

STM32F37...

ISTM32F378...

IActive

3.22

LQFP100

256 kBy...

32 kBytes

72 MHz

TFT LCD

STM32H74...

STM32H743...

Preview

13.73

LQFF208

2048 kB...

1024 kB...

168

@00 ...

Timer 16-bit

Timer 32-bit

Touch Sensing

STM32H7431]]

0.0

UFBGA...

2048 kB...

1024 kB...

140

@00 ...

TM32H743...

Jojojolea oo oo

MM ee e e o oo

IEEIECIEEEEE

e eeaa o oo

T ee e e o ao

3

DoclD025776 Rev 21

45/276

STM32CubeMX User Interface

UM1718

Figure 23. New Project window - MCU list showing close MCUs

-

% New Project

MCU Selector | Board Selector,

Peripheral Choice

Peripherals

@/AD -h
[JADC 16-bit

CAM

COMP

CRYP

DAC 12-bit

DCMI

DFSDM

Ethernet

FDCAN

e[OOe[De[Te|ofl

FMC

HASH

HDMI CEC

»|QUADSPI

RTC

SAL

SDIO

New STM32L4 ultra-low-power MCUs
advanced audio and energy efficiency

+ 256 to 512KB Flash

+ Up to 160KB RAM

Block

Diagram ”

Datasheet H

Docs & Ressources ”

Start Project

Featb\es ”

L]

MCUs List: 20 itemsG— 9 close \tems)

= Hide close ite...|

Match
LU0 %

Part No
51 M3243

Reference
S1M32F3/3V.

Markefi Unit Price for 10k fro...
Active

Package Flash RAM
LQFFIUU 256 KBYTes 32 kbytes

10 Freq
84 |72 MHZ

ADC 16-bit

SDMMC

SPDIFRX

S i e o

[TFT LCD

Timer 16-bit

Timer 32-bit

Touch Sensing

UART

USART

alal oo

USB Device

USB OTG_F5

USB OTG_HS

1

100 %

STMZ2F3...

STM32F378V..

IActive

TOFPLN0_[256 kBytes 32 kBytes

83 [72 MHz|

100 %
73 %
73 %
73 %

?‘432}47...
#TM32F3...
STM32F3...
STM32F3...
STM32F3...
STM32F3...
STM32F3...
STM32F3...
STM32F3...
STM32F3...

STM32H753X...
STM32F373C...

STM32F373C..
STM32F373C..

STM32F373R...

STM32F373R..
STM32F373R..
STM32F378C..

STM32F378R...

STM32F378R..

Preview
Active
- Active
.. Active
Active

2.69
2.34
.. Active 25

.. Active
.. Active
Active
- Active

2.85
2.69
2.85
2.85

FQFPNO [2048 KBy:=1024 kB... [168 [400 M.
LQFP48 64 kBytes 16 kBytes . iz

LQFP48
LQFP48
LQFP&4
LQFF64
LQFPB4

128 kBytes 24 kBytes
256 kBytes 32 kBytes
64 kBytes 16 kBytes
128 kBytes 24 kBytes
256 kBytes 32 kBytes
LQFP48 256 kBytes 32 kBytes
LQFPE4 256 kBytes 32 kBytes
WLCSP66 256 kBytes 32 kBytes

37 72 MHz
37 72 MHz
52 72 MHz
52 72MHz
52 72 MHz
36 72 MHz
51 72MHz

51 72 MHz

NN N o e oo

n

46/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

Figure 24. New Project window - board selector

MCU Selector | Board Selector

Board Filter

endor

:5TMiCr0E|EdI0ﬂiCS

Peripheral Selection

-

Type of Board :

:Nudeo

[Initialize all IP with their default Mode

MCL Series :

Al

Boards List: 12 Items

i Peripherals Mb Max Type Reference MU
o | =] a | [Nudeo NUCLEO-F030R8 STM32F030RE8
o | [Nudeo NUCLEQ-FO070RE STM32F070RE
o (=] Nudeo NUCLEQ-FO072RE STM32F072RE
o (=] Nudeo NUCLEQ-F091RC STM32F091RC
@ |Button 1] Nudeo NUCLEO-F103RE STM32F 103REB
o Nudeo NUCLEO-F302R8 STM32F302R8
o (=] Nudeo NUCLEQ-F303RE STM32F303RE
o (=] Nudeo NUCLEO-F339R8 STM32F339R8
@ |Digital I/0 1] Nudeo NUCLEO-F401RE STM32F401RE
o (=] Nudeo NUCLEO-F411RE STM32F411RE
o (=] Nudeo NUCLEQ-L053R8 STM32L053R8
o Nudeo NUCLEQ-L152RE STM32L152RE
2 O 3
2 [
2 [
2 [
2 O
@|Led 0
2]
2]
o
2]
2]
o L
2]
o
2] -

Board Description

Keys Features :

& On-board ST-LINK/V2-1

USB VBUS, ext. VIN, ext. 5V, ext +3.3V

STMicroelectronics Morpho connector : (2 x 38)

@ STMicroelectronics Arduino connector - 10 + (2x 8) + 6
@ Push-buttons: User and Reset

LEDs: COM, Power, User LEDs

Load User Manual Link to ST WebSite

3

DoclD025776 Rev 21

471276

STM32CubeMX User Interface UM1718

4.3 Main window

Once an STM32 part number or a board has been selected or a previously saved project
has been loaded, the main window displays all STM32CubeMX components and menus
(see Figure 25). Refer to Section 4.3 for a detailed description of the toolbar and menus.

Figure 25. STM32CubeMX Main window upon MCU selection

File Project Pinout Window Help
\Eh_r 5 W8 d O : []Keep Current Signals Placement » = (— @ < Find v|e & & [/]showusertabel QGHEE: 2 P : § 'k

Pinaut | Clack Configuration | Configuration | Power Col tion Calculator|

nfiguration

H & FREERTOS
H-® LIBIPEG
H- %

0w

i e
E‘-Per'lpherak;
H-® ADC1
H- % ADC2
H- & ADC3
H-® CAN1
H- % CAN2
H-® CRC
H-® CRYP
H- % DAC

5

[

[

5

[

[

5

[

[H- @& DCMI
- % DMA2D STM32F438VITx
[

[

5

[

[

5

[

[

5

% ETH LQFP100
H- & FMC

H-® HASH
H- & 12C1
H-® 122
Ho® 1203
H- & 1282
H- o 1283
H-® TWDG

MCUs Selection | gutput]

Series Lines Mcu Package Required Peripherals

|5TM32F4 |STM32F429/439 |STM32F429AGHX |UFBGA169 | Hone
|sTM32F4 |STM32F429/439 |STM32F429ATHX |UFBGA169
M32F4 M32F420/43Q F420RET A

3

48/276 DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Selecting a board while keeping the peripheral default modes option unchecked,
automatically sets the pinout for this board. However, only the pins set as GPIOs are
marked as configured, i.e. highlighted in green, while no peripheral mode is set. The user
can then manually select from the peripheral tree the peripheral modes required for his
application (see Figure 26).

Figure 26. STM32CubeMX Main window upon board selection
(Peripheral default option unchecked)

r N
© STM32CubeMX Untitled*: STM32F4207ITx STM32F4291-DISCO (o
File Project Pinout Window Help

B B HE @& O ke curentsSignalsPlacement 9 o 0] = @ 4 Flndl v [#, Oy = [¥]ShowuserLabel : 17 - ¢ &
Finout | Clock Configuration | Configuration I Power Consumption Calculator
Configuration o g3 é ki é £
C MiddleWares r 28 @ 2 32 z
. o FATES Y L 9 £8 Zy
: ENE 5. a g r r o' =
- & FREERTOS = S . g . £
= e wn =
. elellelali el g1l [1 e Lo ol ol e[l €[
-
e
* Peripherals
= Perip SWDIO
- ADCL
-\ aDCz2
A ADC3
€3 can1 PC1405C32_IN
0 e L PC15.05C32_0UT 1203 _SCL[ACPIRF_SCL]
cAN A0 12C3_SDA [ACPIRF_SDA]
& CRC AL 3
1, DAC Az 1 P 6
@ paur A3 HSYHE
% DMAZD A
A5
&3 ETH SDCLK
-ﬂ FMC DOTCLK [LCT-RGB_DOTCLK]
[xjrisl P 7
" 1302 SPI5_SCK [L36D20_SCLISPC] ! P BAL
9 SPIS_MISO [136D20_500] P BAD
-® 1203 SPIS_MOSI [L3GD20_SDA/SDISDO]
€ 1252 ENABLE [LCD-RGE_ENABLE]
3 1283 T PHO-GSC_IM
PHLOSC_OUT [PHL.
- IWDG
& 1TDC — STM32F429Z1ITx
-1 RCC (CS_MEMS _SPI [L3GD20_CS_12C/5PI]) WRX_DCX [LCD-RGE_WRX_DCX|
& RNG s [LeD-RaGE_csx] [T LQFP144 RO [LDC-RGB_RDX]
aTC TE [LCO-RGB_TE]
B D15
-4y SATL = D14
-1\ sDIO RE.. P D13
A\ sPr p OTG_F5_DP
" sp12 B1 [Blue PushButton] | P OTG_F5_DM
9 MEMS_INT1 [L3GD20_IMT1] | P WBUS _FS
<@ SPI3 MEMS_INT2 [L3GD20_INT2] [pe1zY OTG FS 1D
o £ e E R E T el
w =S I ==
- & SPIS
Q@ seie % § BB33E2RFBR ZEBZZERR
4 [95
4 svs - o B3R =R
=

3

DoclD025776 Rev 21 49/276

STM32CubeMX User Interface

UM1718

Selecting a board with the peripheral default modes option checked, automatically sets both
the pinout and the default modes for the peripherals available on the board. This means that
STM32CubeMX will generate the C initialization code for all the peripherals available on the

board and not only for those relevant to the user application (see Figure 27).

Figure 27. STM32CubeMX Main window upon board selection
(Peripheral default option checked)

» STM32CubeMX Untitled: STM32F42971Tx -“- S

File Project Pinout Window Help

8 | & & O [V]Keep Corent Signals Placement 9 ¢ O — @ <4 Find|

w |, oy = [V] Show user Label

npi g

Pinout | Clock Configuration | Configuration | Power Consumption Cal[ulamrl

Configuration -
= Middlewares i
* FATFS

“ FREERTOS

4 ADC1
&\ ADC2
&\ ADC3
€3 CANL
) CAN2
% CRC
d\ DAC
€9 DCMI
% DMAZD
€9 ETH

& e
1201
© 1202

® 1203 L
1252

£ 1253

o IWDG

% LTDC

A\ RCC

% RNG

d\ RTC

Ay sAIL

4\ SDIO

A\ sP11

€9 sp12

+ SPI3

+ SPI4

@ SPIS

9 SPI6 -

1

z
H

STM32F429ZITx
LQFP144

203501 (ACRE S0
120350k [ACP/RF_S0A)

50/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

44

441

3

Toolbar and menus

The following menus are available from STM32CubeMX menu bar:

e File menu

e Project menu

e Pinout menu (displayed only when the Pinout view has been selected)
e Window menu

e Help menu

STM32CubeMX menus and toolbars are described in the sections below.

File menu

Refer to Table 3 for a description of the File menu and icons.

Table 3. File menu functions

Icon Name Description
[:\ New Proiect Opens a new project window showing all supported MCUs and
) well as a set of STMicroelectronics boards to choose from

Loads an existing STM32CubeMX project configuration by
selecting an STM32CubeMX configuration .ioc file.

Load Project | caution: When upgrading to a new version of
STM32CubeMX, make sure to always backup your
projects before loading the new project (especially
when the project includes user code).

Opens a new window to select the configuration file to be imported
as well as the import settings.

Import Project The .|mpor.t is possmle: only if you stgrt from an empty MCU

K| configuration. Otherwise, the menu is disabled.

A status window displays the warnings or errors detected when
checking for import conflicts. The user can then decide to cancel

the import.

Saves current project configuration (pinout, clock tree, peripherals,
[| Save Project | middlewares, Power Consumption Calculator) as a new project.
“l as ... This action creates an .ioc file with user defined name and located

in the destination folder

LJ Save Project | Saves current project
No icon Close Project | Closes current project and switch back to the welcome page
. Recent . .) .
No icon Projects > Displays the list of five most recently saved projects
No icon Exit Proposes to save the project if needed then close the application
DoclD025776 Rev 21 51/276

STM32CubeMX User Interface UM1718

4.4.2 Project menu

Refer to Table 4 for a description of the Project menu and icons.

Table 4. Project menu

Icon Name Description

This menu generates C initialization C code for current
configuration (pinout, clocks, peripherals and middleware).
Opens a window for project settings if they have not been
defined previously.

(o] Generate Code | Note: It is recommended to backup the current projects when
upgrading to a new version of STM32CubeMX. The user
will be prompted to migrate to a new firmware library
version if any is available. Select "Continue" to keep the
previously used version.

T Generate This menu generates current project configuration as a pdf file
= Report(" and a text file.

This menu opens the project settings window to configure
)': Settings project name, folder, select a toolchain and C code generation
options

1. If the project was previously saved, the reports are generated at the same location as the project
configuration .ioc file. Otherwise, the user can choose the destination folder, and whether to save the
project configuration as an .ioc file or not.

443 Pinout menu

The Pinout menu and sub-menus shortcuts are available only when the Pinout tab is
selected (see Figure 28). They are hidden otherwise (see Figure 29). Refer to Table 5 for a
description of the Pinout menu and icons.

Figure 28. Pinout menus (Pinout tab selected)

& STM32CubeMX Untitled: STM32FA30VGTx (= [O]
File Project Pinout Window Help

B g HE @ O [Keep Current Signals Placement 4 & (] — @ <= Find E] 5, Q @ [/]Showuserlabel i 12| b : &
Finout | Clock Configuration | Configuration | Power Consumption Calculahor|
|Configuration - PADWELP

[-MiddleWares B ba1

. @ © FATFS - : Toleaz

FREERTOS sl o) ol af ol 8l sl) e [) el f e o]

a3
P4
Pas -
PALS
P12
PALL
PAL0

B AR

5

[F- & ADC1

A
L

3

52/276 DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface
Figure 29. Pinout menus (Pinout tab not selected)
STM32CubeMX Untitled: STM32F439VGTx
File Project Window Help
e U &5 =29 ¢
| F‘inoutl Clock Conﬁgurationl Configuration | Power Consumption Calculator
|C_<mﬁguration ‘
-I-MiddleWares
Table 5. Pinout menu
Icon Name Description
") Undo Undoes last configuration steps (one by one)
- Redo Redoes steps that have been undone (one by one)
Opens a window showing the list of all the configured pins
together with the name of the signal on the pin and a Label field
allowing the user to specify a label name for each pin of the list.
For this menu to be active, at least one pin must have been
No' Pins/Signals | configured.
oicon Options Click the pin icon to pin/unpin signals individually.
Select multiple rows then right click to open contextual menu
and select action to pin or unpin all selected signals at once.
Click column header names to sort alphabetically by name or
according to placement on MCU.
Allows the user to search for a pin name, signal name or signal
Pinout search |label in the Pinout view. When it is found, the pin or set of pins
Find hul field that matches the search criteria blinks on the Chip view. Click
the Chip view to stop blinking.
- - Show user | Allows showing on the Chip view, the user-defined labels
¥ | Ehaw user Labal labels instead of the names of the signals assigned to the pins.

Clears user pinout configuration in the Pinout window.
Note that this action puts all configured pins back to their reset

No icon Clear Pinouts | state and disables all the peripheral and middleware modes
previously enabled (whether they were using signals on pins or
not).

No icon Clear Single | Clears signal assignments to pins for signals that have no

Mapped Signals | associated mode (highlighted in orange and not pinned).
Opens a window to specify the number of GPIOs to be
configure among the total number of GPIO pins that are not
used yet. Specify their mode: Input, Output or Analog

No icon Se(tal;rllgsed (recommended configuration to optimize power consumption).

S
Caution: Before using this menu, make sure the debug pins
(available under SYS peripheral) are set to access
microcontroller debug facilities.
No icon Resetused | Opens a window to specify the number of GPIOs to be freed
GPIOs among the total number of GPIO pins that are configured.

3

DoclD025776 Rev 21 53/276

STM32CubeMX User Interface

UM1718

Table 5. Pinout menu (continued)

Icon Name Description
Gene_rate csv Generates pin configuration as a .csv text file
text pinout file
Provides a list of MCUs that best match the pin configuration of
the current project. The matching can be:
— An exact match
s — A partial match with hardware compatibility: pin locations are
List pinout .
. the same, pin names may have been changed
No lcon compatible) . L .
MCUs — A partial match without hardware compatibility: all signals
could be mapped but not all at the same pin location
Refer to Section 10: Tutorial 5: exporting current project
configuration to a compatible MCU for details on how to use
this feature.
— Collapse All | Collapses the Peripheral/Middleware tree view

Disable Modes

Resets to “Disabled” all peripherals and middleware modes that
have been enabled. The pins configured in these modes (green
color) are consequently reset to “Unused” (gray color).
Peripheral and middleware labels change from green to black
(when unused) or gray (when not available).

Expands the Peripheral/Middleware tree view to display all

+ Expand All | £\ ctional modes.

J Zooming in | Zooms in the chip pinout diagram

L Best Fit Adjusts the chip pinout diagram to the best fit size
=1 Zooming out | Zooms out the chip pinout diagram

Keep current

Available from toolbar only.
Prevents moving pin assignments to match a new peripheral

e B S . signals operating mode. It is recommended to use the new pinning
#gep Lurrent -ignals Flacement Placement feature that can block each pln assignment |nd|V|dUa”y and
leave this checkbox unchecked.
Rotates the MCU core as well as its pins and mapped signals
Rotate . .
. by 90 degrees clockwise or counterclockwise from the current
_"1 clockwise h
Counter view.
j"* . Click twice to rotate by 180 degrees, and three times to rotate
- clockwise
by 270 degrees.
Available only for BGA packages.
l Fli Allows to flip horizontally or vertically between bottom and top
ip . o :
L : ; views. (then keep text as it is). The bottom view corresponds to
horizontal/flip X .
i vertical the bottom side of the BGA package (ball side up), and the top

view to the other side (ball side down, and ST logo clearly
visible if any).

54/276

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface
4.4.4 Window menu
The Window menu allows to access the Outputs function (see Table 6).
Table 6. Window menu
Name Description
Opens the MCUs selection window at the bottom of STM32CubeMX Main
window.
Opens two tabs at the bottom of STM32CubeMX main window:
Outputs — MCUs selection tab that lists the MCUs that match the user criteria selected
via the MCU selector.
— Outputs tab that displays STM32CubeMX messages, warnings and errors
encountered upon users actions.
4.4.5 Help menu
Refer to Table 7 for a description of the Help menu and icons.
Table 7. Help menu
Icons Name Description
? Help Content Opens the STM32CubeMX user manual
S P About... Shows version information
1 Check for Updates Shows the software and firmware release updates available for
()] download.
Shows all STM32CubeMX and firmware releases available for
(e Install New Libraries | installation. Green check box indicates which ones are already
) installed on you PC and up-to-date.
Opens the updater settings window to configure manual
» . versus automatic updates, proxy settings for internet
y Updater Settings... connections, repository folder where the downloaded software
and firmware releases will be stored.
4.4.6 Social links

3

Developer communities on popular social platforms such as Facebook, Twitter, STM32
YouTube channel, as well as ST Community can be accessed from STM32CubeMX toolbar
(see Figure 30).

Figure 30. Link to social platforms

ltI
i
“ n ii‘-

DoclD025776 Rev 21 55/276

STM32CubeMX User Interface

UM1718

4.5

Output windows

451 MCUs selection pane
This window lists all the MCUs of a given family that match the user criteria (Series,
peripherals, package..) when an MCU was selected last.
Note: Selecting a different MCU from the list resets the current project configuration and switches
to the new MCU. The user will be prompted to confirm this action before proceeding.
Figure 31. MCU selection menu
IMCLs Selection |
Series Lines Tl Package Required Peripherals
STM3IZF4 STMIZF429,/439 STMIZF420ETx LQFP100 RTC,SAILSDIO ~
STM3ZF4 STMIZF429,/439 STMIZF4200GTx LOFP100 RTC,SAISDIO
STM3Z2F4 STMIEF429,/439 STMIZF4204ITx LOFP100 RTC,SAISDIO
STM3IZF4 STM3IZF429,/439 STMIZF420ZETx LOFP144 RTC,SAISDIO
STM3IZF4 STM3IZF429,/439 STMIZF4202GTx LOFP144 RTC,SAISDIO 1
STM3Z2F4 STMI=F429,/439 STMIZF42971Tx LOFF144 RTC,541,5010 |
STMIZ2F4 STM3=F429,/439 STMIZF42097E % WLCSP143 RTC,541,5010 |
STMIZ2F4 STM3=F429,/439 STMIZF42097CYx WLCSP143 RTC,541,5010 |
STMIZ2F4 STM3IZF429,/439 STMIZF4297Tx WLCSP143 RTC,541,5010 |
STMI2F4 STMIZF429,/439 STMIZF4F0BGT LOFP202 RTC,SALSDIO |
STMI2F4 STMIZF429,/439 STMIZF430BITx LOFP202 RTC,SALSDIO |
STM3I2F4 STMIZF429,/439 STMIZF430IGH: UFBGAL7E RTC,SALSDIO
STM3I2F4 STMIZF429,/439 STMIZF430TIHx UFBGAL76 RTC,SALSDIO
STM3I2F4 STMIZF429,/439 STMIZF430IETx LOFFP176 RTC,SALSDIO
STM3ZF4 STMIZF429,/439 STMIZF4300ITx LOFP176 RTC,SALSDIO =
STM3ZF4 STMIZF429,/439 STMIZF4IOMNGHx TFBGAZ16 RTC,SAISDIO |
STM3ZF4 STMIZF429,/439 STMIZF43OMIHx TFBGAZ16 RTC,SAISDIO |
STM3Z2F4 STMIEF429,/439 STMIZF430VGETx LOFP100 RTC,SAISDIO |
| SISTMIZF4 STM3IZF429,/439 STMIZF430%ITx LQFP100 RTC,SAISDIO |
STM3IZF4 STM3IZF429,/439 STMIZF4302GTx LOFP144 RTC,SAISDIO |
STMIZ2F4 STM3=F429,/439 STMIAZF43970Tx LOFF144 RTC,SALSDIO Al
STMIZ2F4 STM3=F429,/439 STMIZF4397CYx WLCSP143 RTC,SALSDIO -« |l
SThAZ2EL CThAZEARD fA120 SThAIIEAOFT UYL = =R I] IRT SAT SOTM (]
This window can be shown/hidden by selecting/deselecting Outputs from the Window
menu.
4.5.2 Output pane

This pane displays a non exhaustive list of the actions performed, errors and warnings

raised (see Figure 32).

Figure 32. Output pane

MCUs Selection | Output |

Loading: S5TM32F411V(C-E)Tx

Import :
Importing Pinout ...

Importing IP configurations ...
B -

)

Importing project completed

% Import error: DMAZD peripheral does not exist

Import Analysis: C:\STM32CubeM{ Projects\Testl\test\test.ioc project

The Mcou (STM32F429ZITxz) found in the Project being imported is not the same than the Meou (STHM32F411VET=z) currently edited

1

I

m

56/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

4.6

3

Import Project window

The Import Project menu eases the porting of a previously-saved configuration to another
MCU.

By default the following settings are imported:

Pinout tab: MCU pins and corresponding peripheral modes.The import fails if the same
peripheral instances are not available in the target MCU.

Clock configuration tab: clock tree parameters.
Configuration tab: peripherals and middleware libraries initialization parameters.
Project settings: choice of toolchain and code generation options.

To import a project, proceed as follows:

1.

Select the Import project icon | [that appears under the File menu after starting a
New Project and once an MCU has been selected.

The menu remains active as long as no user configuration settings are defined for the
new project, that is just after the MCU selection. It is disabled as soon as a user action
is performed on the project configuration.

Select File > Import Project for the dedicated Import project window to open. This
window allows to specify the following options:

— The STM32CubeMX configuration file (.ioc) pathname of the project to import on
top of current empty project.

— Whether to import the configuration defined in the Power Consumption Calculator
tab or not.

— Whether to import the project settings defined through the Project > Settings
menu: IDE selection, code generation options and advanced settings.

— Whether to import the project settings defined through the Project > Settings
menu: IDE selection and code generation options.

— Whether to attempt to import the whole configuration (Automatic import) or only a
subset (Manual Import).

a) Automatic project import (see Figure 33)

DoclD025776 Rev 21 57/276

STM32CubeMX User Interface

UM1718

Figure 33. Automatic project import

% Import Project

=)

Imported Project

Import MX Settings

D Import Project Settings
'._6__.' Automatic Import

'.:_.' Manual Import

Import Pinning Status

Peripheral List

C:\STM32CubenX_uUM\Import IDC\IOC to import\f4_demo.ioc

[] 1mport Power Consumption Calculator Settings

Import Pinout/Clock Configuration/Configuration Settings

Import Peripherals Configuration

From STM32F4271GHx To STM32F722ICKx
ETH Mone |
ADC1 import to [ADC1 - i
ADC2 import to [ADC2 -
ADC3 import to [ADC3 -

Import Status

The Mcu (STM32F427IGHx)
& Import error: ETH peripheral doesn't exist in STM32F722ICEx

Try Import Show View | Pinout -

Initializing: S5TM32F42T7I(G-I)H=x
Import Bnalysis: C:\STM32CubeMX UM\Import ICCM\ICC to importh\f4 demo.ioc project
found in the Project being imported is not the same as the Meou (STM32F

4

(L1

| »

1

58/276

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface

b) Manual project import

In this case, checkboxes allow to manually select the set of peripherals (see
Figure 34).

Select the Try Import option to attempt importing.

Figure 34. Manual project import

-
% Import Project ﬁ

Imported Project
C:\STM32CubeMX_UM\Import IOC\IOC to import\f4_demo.ioc (e

Import MX Settings
[| 1mport Power Consumption Calculator Settings
D Import Project Settings
Import Pinout/Clock Configuration/Configuration Settings
() Automatic Import
(@) Manual Import
Import Finning Status
Import Peripherals Configuration
Peripheral List
From STM32F427IGHx To STM32F722ICKx

ETH None

ADC1 || import to | ADC1 -
ADC2 || import to | ADC2 -
ADC3 || import to | ADC3 -
CANL [¥| can1

RCC [¥| RCC

SPI1 || import to | SPI1 -
SPIS || import to | SPI5 -
SPI6 || import to | SPI2 v
SYS V| svs

NVIC || nvIC

Try Import Show View | Pinout hd

Import Status

Initializing: STM32F427I(G-I)Hx

Import Bnalysis: C:\STM32CubeMX UM\Import ICCA\ICC to import\f4 demo.ioc project

The Meow (STM32F427IGHx) found in the Project being imported is not the same as the Meou (STM32F
&3 Tmport error: ETH peripheral doesn't exist in STM32F722ICEx

4 I [2

3

DoclD025776 Rev 21 59/276

STM32CubeMX User Interface UM1718

60/276

The Peripheral List indicates:
— The peripheral instances configured in the project to be imported

— The peripheral instances, if any exists for the MCU currently selected, to which the
configuration has to be imported. If several peripheral instances are candidate for
the import, the user needs to choose one.

Conflicts might occur when importing a smaller package with less pins or a lower-end
MCU with less peripheral options. Click the Try Import button to check for such
conflicts: the Import Status window and the Peripheral list get refreshed to indicate
errors (see Figure 35), warnings and whether the import has been successful or not:

— Warning icons indicate that the user has selected a peripheral instance more than
once and that one of the import requests will not be performed.

— A cross sign indicates that there is a pinout conflict and that the configuration can
not be imported as such.

The manual import can be used to refine import choices and resolve the issues raised

by the import trial. Figure 36 gives an example of successful import trial, that has been

obtained by deselecting the import request for some peripherals.

The Show View function allows switching between the different configuration tabs
(pinout, clock tree, peripheral configuration) for checking influence of the "Try Import"
action before actual deployment on current project (see Figure 36).

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Figure 35. Import Project menu - Try import with errors

% Import Project

Imported Project

Import MX Settings

) Manual Import

Peripheral List

C:\STM32CubeMX_UM\Import I0C\IOC to import\f4_demo.ioc E

[] 1mport Power Consumption Calculator Settings
[1mport Project Settings

Import Pinout/Clock Configuration/Configuration Settings
() Automatic Import

Import Pinning Status
Import Peripherals Configuration

From STM32F427IGHx To STM32F722ICKx

ETH None
ADC1 || import to | ADC1 -
ADC2 |¥| &9 import to | ADC2 v
ADC3 |¥| &9 import to | ADC3 v
CAN1 Iv'| CAN1
RCC ¥| 4% RCC
SPTL || impart to | SPIL v
SPIS || import to | SPIS v
SPIG || import to | SPI2 -
SYS | SYS
NVIC | NVIC
Show View | Pinout -
Import Status
W import ADCZ2 partly failed -~
W error: E igger-for-Injected-conver=sion:Set mode doesn't exist in STM32FT722ICE
LX o3 1y failed
E igger-for-Injected-conversion:Set mode doesn't exist in STM32F722ICE

Importing project completed]

1 | 3

3

DoclD025776 Rev 21 61/276

STM32CubeMX User Interface

UM1718

Figure 36. Import Project menu - Successful import after adjustments

Import Project

|

Imported Project
C:\STM32CubeMX_UM\Import IOC\IOC to import\MyProject1F7.ioc

Import MX Settings
|:| Import Power Consumption Calculator Settings

|:| Import Project Settings

Import Pinout/Clock Configuration/Configuration Settings
Automatic Import
(@) Manual Import
Import Finning Status
Import Peripherals Configuration
Peripheral List
From STM32F732ZETx To STM32F722VCTx

(=]

11

ADC1 || import to | ADC1 -
ADC2 ||+ import to | ADC2 -
ADC3 || Timport to | ADC3 -
AN T 1 T AN

Show View .Pinout

Import Status

Import Try :
Importing project completed

4 I

l 0K ” Cancel l

m

62/276

3. Choose OK to import with the current status or Cancel to go back to the empty project

without importing.

Upon import, the Import icon gets grayed since the MCU is now configured and it is no

more possible to import a non-empty configuration.

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface
4.7 Set unused / Reset used GPIOs windows

These windows allow configuring several pins at a time in the same GPIO mode.

To open them:

e Select Pinout > Set unused GPIOs from the STM32CubeMX menu bar.
Note: The user selects the number of GPIOs and lets STM32CubeMX choose the actual pins to

3

be configured or reset, among the available ones.

Figure 37. Set unused pins window

ey B

=

Mumber of GPIOs |

GPIO Type Input -

I Ok || Cancel

e Select Pinout > Reset used GPIOs from the STM32CubeMX menu bar.

Depending whether the Keep Current Signals Placement option is checked or not on

the toolbar, STM32CubeMX conflict solver will be able to move or not the GPIO signals

to other unused GPIOs:

— When Keep Current Signals Placement is off (unchecked), STM32CubeMX
conflict solver can move the GPIO signals to unused pins in order to fit in another
peripheral mode.

— When Keep Current Signals Placement is on (checked), GPIO signals will not be
moved and the number of possible peripheral modes becomes limited.

Refer to Figure 39 and Figure 40 and check the limitation in available peripheral

modes.

Figure 38. Reset used pins window

Ok Cancel

DoclD025776 Rev 21 63/276

STM32CubeMX User Interface

UM1718

Figure 39. Set unused GPIO pins with Keep Current Signals Placement checked

|2 sTM32Cuby
File Project Pinout Window Help

Bodl: &5

ep Current Signais Placement @] = @ 4 Find |

Show user Label 7 5§

Pinout | Clock Configuration | Configuration | Power Consumption Caleulator |

Configuration

ErMiddlewares
o FATFS
(@ FREERTOS
s
e
03

EHPs
4\ ADC1
© Apc2
& € ADC3
© CAN1
o CANZ
€ DAC
E-€3 DoMI
% DMA2D
HQEH
o MC
o 1201
Q1202
e 1203
Q1252
@ o 1253
© IWDE
B LTDC
A\ ReC
@ RNG
A RTC
€3 SAIL
© SDIo
@ SPI1
© sp12
@ sP13
€ sP14
B4 sYs
& TIML
B8 TIMZ
o TIM3
e TIMe
& Tivs
@ o TIM6
o TM?7
8 TIVE
A\ TIMo
¢ TIM10
® TIM11
B TIM12
@ TIM13
o TIM14
o UART4
% UARTS
€ UARTT
@ © UARTS
© USARTL
[@ USART2

n

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input:

GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input

Ndu~OL4s

STM32F429VITx
LQFP100

m

=
S

v2d
0ad
Tad

Indur oI
Indur”olds
Indur” oIds
NI 01D
InduUrOlds
Indur”olds
Indur oIds
AU 01D
INdUr Ol

Indur oI
Indur oIds

63d

INdUT OIdS

13d

NI OIS
Indur oI

113d

T3d

AU~ OL4s
INAUT OIdD

13d

[GET]

N OIds

13d

ndur QI
AU~ Ol

T8d
T18d

ndui”olde

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

64/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

Figure 40. Set unused GPIO pins with Keep Current Signals Placement unchecke

|= STM32CubeMX |
File Project Pinout Wi

B 5 & [Clkesp curent signak Placement 0 5 — @ 4 Find ES

+ = [¥] Show user Label

»

¢

Pinaut | Clack Configuration | Configuration | Pawer Consumption Caleulator |

Configuration
(£ MiddleWares
[= FATFS
(- # FREERTOS
e
@e
B
EHPs
[& ADECL
f-» ADCZ
“ ADC3
H % CANL
* CANZ
£ & DAC
* DOMI
f- & DMAZD
“ ETH

B
[
=
\
=
e
B
[
2
\
=
e
B
[
=
\
=
e
B
[
2
\
o SPI2
e
B
[
=
\
=
e
B
[
2
\
=
e
B
[
=
\
=
e
B
[
2
E

f® USART1
% USART2

GPIO_Irput
GPIO_Irput
GPIO_Irput |
GPIO_Input |

GPIO_Input [g=4)

GPIO_Irput
GPIO_Input
GPIO_Input

il

GPIO_Input

GPIO_Input |Gkl

GPIO_Irput
GPIO_Input |38
GPIO_Input |l

GPIO_Input

GPIO_Input |t
GPIO_Input |SE88
GPIO_Input [gi

SS5A

Pyd
+od

T8d

STM32F429VITx
LQFP100

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

213d

9
2]

223

=)

2]

2:)

223

)

2]

z:)

23

23

)

o JEE
z:]

)

4o [N
2y S
Z:3

4o [

IndulOIde
Ol
[&)
[&
o
ol
Ol
[®
[®
[o
&)
Ol
[
o
&
&)
[
[®
[o)
&)
[&

4.8

3

Project Settings window

This Project Settings windows includes 3 tabs:

A general project setting tab allowing to specify the project name, the location, the
toolchain, and the firmware version.

A code generation tab allowing to set code generation options such as the location of
peripheral initialization code, library copy/link options, and to select templates for
customized code.

An advanced settings tab dedicated to ordering STM32CubeMX initialization function
calls.

There are several ways to open the Project Settings window:

1.

By selecting Project > Settings from the STM32CubeMX menu bar (see Figure 41).
The code generation will then be generated in the project folder tree shown in
Figure 42.

By clicking Project > Generate code for the first time.

By selecting Save As for a project that includes C code generation (and not only pin
configuration).

DoclD025776 Rev 21 65/276

STM32CubeMX User Interface

UM1718

Figure 41. Project Settings window

-

% Project Settings

e

Project | Code Generator | Advanced Settings

Project Settings
Project Name
Projectl

Project Location
C:\STM32CubeMX_Projects\Projects
Toolchain Folder Location
C:\STM32CubeMX_Projects\Projects\Project1’,

Toolchain / IDE

MDK-ARM V4

MDK-ARM V5

TruesSTUDIO

SW45TM32

Makefile

Other Toolchains (GPDSC)
Mcu and Firmware Package

Mcu Reference
STM32F4H13VHHx

Firmware Package Mame and Version

STM32Cube FW_F4 V1.16.0

Use Default Firmware Location
C:/Users{frq09031/STM32Cube/Repository/STM32Cube_FW_F4 V1.16.0

EWARM - Generate Under Root

Browise

Browse

Ok

[Cancel

66/276

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface
Figure 42. Project folder
()
@u?l <« STM32Cube projects » Projectl » - | 4-¢| | Search Proj.. P '
Crganize = Include in library = Share with - Burn » = - 0l -ZE}
4 JehnDee i Mame }
4 S5TM32Cube projects .
Drivers
Projectl
EWARM
Inc
Src
|| .mxproject
Projectl.ioc
- 4 10 3
& items
4.8.1 Project tab

3

The Project tab of the Project Settings window allows configuring the following options (see
Figure 41):

Project settings: project name, location, toolchain folder for toolchain specific
generated files, and toolchain to be used for project generation.

Selecting "Makefile" under Toolchain/IDE leads to the generation of a generic gcc-
based makefile.

Selecting Other Toolchains (GPDSC) generates a gpdsc file. The gpdsc file provides a
generic description of the project, including the list and paths of drivers and other files
(such as startup files) that are required for building the project. This allows extending
STM32CubeMX project generation to any toolchain supporting gpdsc since the
toolchain will be able to load a STM32CubeMX generated C project by processing the
gpdsc file information. To standardize the description of embedded projects, the gpdsc
solution is based on CMSIS-PACK.

Additional project settings for SW4STM32 and Atollic TrueSTUDIO toolchains:

Select the optional Generate under root checkbox to generate the toolchain project
files in STM32CubeMX user project root folder or deselect it to generate them under a
dedicated toolchain folder.

STM32CubeMX project generation under the root folder allows to benefit from the
following Eclipse features when using Eclipse-based IDEs such as SW4STM32 and
TrueStudio:

— Optional copy of the project into the Eclipse workspace when importing a project.
— Use of source control systems such as GIT or SVN from the Eclipse workspace.

However, it shall be noted that choosing to copy the project into workspace will prevent
any further synchronization between changes done in Eclipse and changes done in
STM32CubeMX as there will be 2 different copies of the project.

DoclD025776 Rev 21 67/276

STM32CubeMX User Interface UM1718

e Linker settings: value of minimum heap and stack sizes to be allocated for the
application. The default values proposed are 0x200 and 0x400 for heap and stack
sizes, respectively. These values may need to be increased when the application uses
middleware stacks.

e Firmware package selection when more than one version is available (this is the case
when successive versions implement the same APl and support the same MCUs). By
default, the latest available version is used.

. Firmware location selection option
The default location is the location specified under the menu Help > updater settings.

Deselecting the Use Default Firmware Location checkbox allows specifying a
different path for the firmware that will be used for the project (see Figure 43).

Figure 43. Selecting a different firmware location
Project Settings I‘ﬁ

Project | Code Generatorl Advanced Settings

Project Settings
Project Name
Projectl

Project Location

C:\CUBEMX\MyProjectsRepository

Toolchain Folder Location
C:\CUBENMX\MyProjectsRepository\Projectl

Toolchain / IDE !
EWARM - Generate Under Root

Linker Settings
Minimum Heap Size 0x200

Minimum Stack Size 0400

Mcu and Firmware Package
Mcu Reference
STM32F412VETx®

Firmware Package Name and Version

STM32Cube PW_F4 V1.13.1 - Use latest available version

|| use Default Firmware Location
C:\CUBENMX\MyProjectsRepository

0Ok] [Cancel

68/276 DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface

The new location should contain at least a Drivers directory containing the HAL and

CMSIS drivers from the relevant STM32Cube firmware package. An error message
pops up if the folders cannot be found (see Figure 44).

Figure 44. Firmware location selection error message

Choice Firmware Library Directory

[

The selected Firmware should contain at least 'Drivers\STM32F&xx_HAL_Driver" and 'Drivers\CMSIS' folders.

To reuse the same Drivers folder across all projects that use the same firmware

location, select the Add the library files as reference from the Code generator tab
allows (see Figure 45).

Figure 45. Recommended new firmware repository structure

F - — - ~
- == X
s , - ._ ey & = -
®| |« CUBEMX » MyProjectsRepository » v| +3 |I| Search MyProjectsRepository p|
N — = = :
File Edit View Tools Help
Organize * Include in library = Share with = New folder =~ O @
P
| CUBEMX * Name Date modified i
| MyProjectsReposito
Lk P g4 I Drivers 11/17/2016 12:16 ...
= . Projectl
. Project2
v 4 11 | bl
3 items i
I
A S —

Caution: STM32CubeMX manages firmware updates solely for this default location. Choosing

another location will prevent the user from benefiting from automatic updates. The user
must manually copy new driver versions to his project folder.

3

DoclD025776 Rev 21 69/276

STM32CubeMX User Interface UM1718

4.8.2

70/276

Code Generator tab

The Code Generator tab allows specifying the following code generation options (see
Figure 46):

STM32Cube Firmware Library Package option
Generated files options

HAL settings options

Custom code template options

STM32Cube Firmware Library Package option

The following actions are possible:

Copy all used libraries into the project folder

STM32CubeMX will copy to the user project folder, the drivers libraries (HAL, CMSIS)
and the middleware libraries relevant to the user configuration (e.g. FatFs, USB, ..).
Copy only the necessary library files:

STM32CubeMX will copy to the user project folder only the library files relevant to the
user configuration (e.g., SDIO HAL driver from the HAL library,...).

Add the required library as referenced in the toolchain project configuration file

By default, the required library files are copied to the user project. Select this option for
the configuration file to point to files in STM32CubeMX repository instead: the user

project folder will not hold a copy of the library files but only a reference to the files in
STM32CubeMX repository.

Generated files options

This area allows defining the following options:

Generate peripheral initialization as a pair of .c/.h files or keep all peripheral
initializations in the main.c file.

Backup previously generated files in a backup directory
The .bak extension is added to previously generated .c/.h files.
Keep user code when regenerating the C code.

This option applies only to user sections within STM32CubeMX generated files. It does
not apply to the user files that might have been added manually or generated via ftl
templates.

Delete previously generated files when these files are no longer needed by the current
configuration. For example, uart.c/.h file are deleted if the UART peripheral, that was
enabled in previous code generation, is now disabled in current configuration.

HAL settings options

This area allows selection one HAL settings options among the following:

Set all free pins as analog to optimize power consumption

Enable/disable Use the Full Assert function: the Define statement in the
stm32xx_hal_conf.h configuration file will be commented or uncommented,
respectively.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Custom code template options

To generate custom code, click the Settings button under Template Settings, to open the
Template Settings window (see Figure 47).

The user will then be prompted to choose a source directory to select the code templates
from, and a destination directory where the corresponding code will be generated.

The default source directory points to the extra_template directory, within STM32CubeMX
installation folder, which is meant for storing all user defined templates. The default
destination folder is located in the user project folder.

STM32CubeMX will then use the selected templates to generate user custom code (see
Section 5.3: Custom code generation). Figure 48 shows the result of the template
configuration shown on Figure 47: a sample.h file is generated according to sample_h.ftl
template definition.

Figure 46. Project Settings Code Generator
[Project Settings @1

- Code Generator | Advanced Settings

STM32Cube Firmware Library Package

@ Copy all used libraries into the project folder

() Copy only the necessary library files

(7) Add necessary library files as reference in the toolchain project configuration file

Generated files
[7] Generate peripheral initialization as a pair of .c/.h' files per IP
|| Backup previously generated files when re-generating
Keep User Code when re-generating

Delete previously generated files when not re-generated

HAL Settings
[7] setall free pins as analog (to optimize the power consumption)

[~ Enable Full Assert

Template Settings

Select a template to generate customized code Settings...

Ok] ’ Cancel

3

DoclD025776 Rev 21 71/276

STM32CubeMX User Interface UM1718

Figure 47. Template Settings window

r B
o) Tempat Seting Jrp—p— -

Template Settings
Source Folder

[7] Use defauilt location

Location: C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeMx|\db\extra_tem;

Select your templates

Available Templates Selected Templates
‘comman_h. il \sample_h.fl
Destination Folder
Use default location
Location: C:\Users\JohnDoe\5TM32Cube projects\Projecti\Project1 Browse

oK] [Cancel

3

72/276 DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface
Figure 48. Generated project template
& — |E| i:h |
QQ | < Projectl » Projectl » V|+f|| Search Proj PI
Eile Edit View Tools Help
Organize = Includein library = = -~ ['::.E:'i'
4 JohnDoe - Mame :
4 5TM32Cube projects e
» Projectl
Inc
Sre
| .mxproject]
Projectl.ioc
| sample.h
| T 3
7 items
4.8.3 Advanced Settings tab

3

Figure 49 shows the peripheral and/or middleware selected for the project.

Ordering initialization function calls

By default, the generated code calls the peripheral/middleware initialization functions in the
order in which peripherals and middleware have been enabled in STM32CubeMX. The user
can then choose to re-order them by modifying the Rank number using the up and down
arrow buttons.

The reset button allows switching back to alphabetical order.

Disabling calls to initialization functions

If the “Not to be generated” checkbox is checked, STM32CubeMX does not generate the
call to the corresponding peripheral initialization function. It is up to the user code to do it.

Choosing between HAL and LL based code generation for a given peripheral
instance

Starting from STM32CubeMX 4.17 and STM32L4 Series, STM32CubeMX offers the
possibility for some peripherals to generate initialization code based on Low Layer (LL)
drivers instead of HAL drivers: the user can choose between LL and HAL driver in the
Driver Selector section. The code will be generated accordingly (see Section 5.2:
STM32Cube code generation using Low Layer drivers).

DoclD025776 Rev 21 73/276

STM32CubeMX User Interface

UM1718

Figure 49. Advanced Settings window

% Project Settings

| Projectl Code Generator| Advanced Settings|

rDriver Selector
Search :| Search (Cril+F) P & 4l
= LPTIM

LFTIM1 LL

LFTIMZ2 HAL
= USART

USART1 HAL

USART2 LL

RCC HAL

= 2C

2C1 HAL

2c2 LL
SPI HAL

GFID HAL
- Generated Function Calls
Rank Function Mame IP Instance Name [] Mot Generate Function Call
1 MX_GPIO_Init GFIO
2 SystemClock_Config RCC
3 MX_I2C1_Init 2C1
4 Mx_I2C2_Init 2C2
5 MX_LPTIM1_Init LFTIM1
6 MX_LFTIM2_Init LFTIM2
7 MX_USART1_UART_Init|USART1
8 MX_USARTZ_UART_Init|USART2
9 MX_SPI1_Init SFI1
10 MX_SPI2_Init SFI2
'

Ok

Cancel l

4.9

74/276

Update Manager windows

Three windows can be accessed through the Help menu available from STM32CubeMX

menu bar:

1. Select Help > Check for updates to open the Check Update Manager window and

find out about the latest software versions available for download.

2. Select Help > Install new libraries to open the New Libraries Manager window and
find out about the software packages available for download. It also allows removing

previously installed software packages.

3. Select Help > Updater settings to open the Updater settings window and configure
update mechanism settings (proxy settings, manual versus automatic updates,

repository folder where STM32Cube software packages are stored).

DoclD025776 Rev 21

S74

UM1718 STM32CubeMX User Interface
410 About window
This window displays STM32CubeMX version information.
To open it, select Help > About from the STM32CubeMX menu bar.
Figure 50. About window
(About &J‘
[|
Version 4.14.0 /
STM32Cube V1.0 1
http:iiwww.st.com/stm32cube
f'\ y 4
L' ’ augmented
4.11 Pinout view
The Pinout view helps the user configuring the MCU pins based on a selection of
peripherals/middleware and of their operating modes.
Note: For some middleware (USB, FATS, LwlIP), a peripheral mode must be enabled before

3

activating the middleware mode. Tooltips guide the user through the configuration.

For FatFs, a user-defined mode has been introduced. This allows STM32CubeMX to
generate FatFs code without a predefined peripheral mode. Then, it will be up to the user to
connect the middleware with a user-defined peripheral by updating the generated
user_diskio.c/.h driver files with the necessary code.

Since STM32 MCUs allow a same pin to be used by different peripherals and for several
functions (alternate functions), the tool searches for the pinout configuration that best fits the
set of peripherals selected by the user. STM32CubeMX highlights the conflicts that cannot
be solved automatically.

The Pinout view left panel shows the Peripheral and Middleware tree and the right pane,
a graphical representation of the pinout for the selected package (e.g. BGA, QFP...) where
each pin is represented with its name (e.g. PC4) and its current alternate function
assignment if any.

DoclD025776 Rev 21 75/276

STM32CubeMX User Interface UM1718

STM32CubeMX offers two ways to configure the microcontroller:

e From the Peripheral and Middleware tree by clicking the peripheral names and
selecting the operating modes (see Section 4.11.1: Peripheral and Middleware tree
pane).

e For advanced users, by clicking a pin on the Chip view to manually map it to a
peripheral function (see Section 4.11.2: Chip view).

In addition, selecting Pinout > Set unused GPIOs allows configuring in one shot several
unused pins in a given GPIO mode.

Note: The Pinout view is automatically refreshed to display the resulting pinout configuration.

Pinout relevant menus and shortcuts are available when the Pinout view is active (see the
menu dedicated sections for details on the Pinout menus).

Figure 51. STM32CubeMX Pinout view

L & 5 [Crenisgrat Feesmeni + o [

o .
et P TREEFME] [CHIPVIEW]

| Exierral ERaM
S0 Card
L8 Dl

135205
1252 0k

-, Dowl
© o0 DMAZD
e ETH "
Hiocks [M11 -
s,
il & 1204
G 102
i = 1203
B s 1252 | c2
Mok Fub-Dupks Mt x 3 STM3IZF439VITx
b] Master Clock Curpout
g 1 L LQFP100
o0 oG
H- GG
i 8 RCC
rire 1252 50
-y BT IZ52_ext_SDv
3o EALL =
- & 5080 = ETH_T-D1
(SR] ETH_TvDxa
3
R e
i s 5r4
a5
Hoe Tl
.
W T -
WL Sakction |
Eerias Lines L] Fackags Fecuired Ferpharals
i [Tz [STHEFCINETs LoFFion | hora I
e Ehnrans e L barun it
76/276 DoclD025776 Rev 21 ‘Yl

UM1718

STM32CubeMX User Interface

4111 Peripheral and Middleware tree pane
In this pane, the user can select the peripherals, services (DMA, RCC,...), middleware in the
modes corresponding to the application.

Note: The peripheral tree panel is also accessible from the Configuration view. However, only the
peripherals and middleware modes without influence on the pinout can be configured
through this menu.

Icons and color schemes
Table 8 shows the icons and color scheme used in the Peripheral and Middleware tree
pane.
Table 8. Peripheral and Middleware tree pane - icons and color scheme
Display Peripheral status
The peripheral is not configured (no mode is set) and all
S modes are available.
ADC1 The peripheral is configured (at least one mode is set) and all
other modes are available
The peripheral is configured (one mode is set) and at least
-4\ ADC3 . : .
: one of its other modes is unavailable.
; The peripheral is not configured (no mode is set) and at least
A4 ADC2 . .]
one of its modes is unavailable.
The peripheral is not configured (no mode is set) and no
&3 ETH mode is available. Move the mouse over the peripheral name
to display the tooltip describing the conflict.
CAN1 Available peripheral mode configurations are shown in plain
Mode | Disable black.
95 DCMI
. DCMI |Disable
H- o pMATE The warning yellow icon indicates that at least one mode
- 8 Slave-8-bits-Embedded-Synchro : H i i
__—\' E;: configuration is no longer available.
..
12¢3
W ETH When no more configurations are left for a given peripheral
[Disable mode, this peripheral is highlighted in red.
H Some modes depends on the configuration of other
: . %Lw,p: LightWeight TCP/IP Not availzble: peripherals or middleware modes. A tooltip explains the
| Belen SR ERIE e dependencies when the conditions are not fulfilled.

3

DoclD025776 Rev 21

771276

STM32CubeMX User Interface UM1718

4.11.2

Chip view
The Chip view shows, for the selected part number:

e The MCU in a specific package (BGA, LQFP...)

e The graphical representation of its pinout, each pin being represented with its name
(e.g. PC4: pin 4 of GPIO port C) and its current function assignment (e.g.
ETH_MII_RXDO) (see Figure 52 for an example).

The Chip view is automatically refreshed to match the user configuration performed via the
peripheral tree. It shows the pins current configuration state.

Assigning pins through the Chip view instead of the peripheral pane requires a good
knowledge of the MCU since each individual pin can be assigned to a specific function.

Tips and tricks

. Use the mouse wheel to zoom in and out.

e Click and drag the chip diagram to move it. Click best fit to reset it to best suited
position and size (see Table 5).

e Use Pinout > Generic CSV pinout text file to export the pinout configuration into text
format.

e Some basic controls, such as insuring blocks of pins consistency, are built-in. See
Appendix A: STM32CubeMX pin assignment rules for details.

Figure 52. Chip view

|5 sTM32Cub
File Project Pinout Window Help

B WE & O [Zkeep Curent SignalsPlacement 2 & & — @ + Find | ~ 1%\ AV show user Label | 12

Pinaut | Clock Configuration | Configuration | Power Consumpation Caleulator |

Configuration
(i Middlewares

[} © FATFS

[o FREERTOS

o LWIP
@e

e

ps

B\ ADCL
-4\, ADC2
4\ ADC3
i o CANL

[¢ CANZ

i 8 DAC
4\ oM
I & DMA2D
= ® ETH
Wode (M1
| o MC
o 1201
1 €3 1202
o 1263
1 o 1282
o 1253
|+ IWDG
© e
] » ROC
 RNG
| RTC
4\ SAIL
| » SDIO
o spr1
| o SPI2
o spI3
1 o SPH
A sys
| TM1
A\ vz
1 o TM3
o TM4
14\ TIMS
° TIM6
| o TM7
A\ Tive
| o TIMg
° 10
| o TIM11
o 12
1o TIM13
° T4
| » UART4
© UARTS
| % UART?
© UARTS

| © USART1

ETH_TxD3 [{=2)
1=

n

ETH_MDC |8
ETH_TxD2 [jlee]

ok [STM32F439VITx
LQFP100

ETH RS [0S
ETHRX_CLK |8 JER ETH_TXD1

ETH_MDIO [JE8 Gel ETH_TXDO

1007HI3

78/276

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Icons and color schemes

Table 9 shows the icons and color scheme used in the Chip view.

Table 9. STM32CubeMX Chip view - Icons and color scheme

Display

Pin information

(26)-PF8:
& ADC3_ING (IN6G)

I

—

H (19)-PF2: Reset State
2|

Loy

Tooltip indicates the selected pin current configuration: alternate function
name, Reset state or GPIO mode.

Move your mouse over the pin name to display it.

When a pin features alternate pins corresponding to the function currently
selected, a popup message prompts the user to perform a CTRL + click to
display them.

The alternate pins available are highlighted in blue.

PGO j
Reset_State |
FSMC_A10
GFIO_Input
GFIO_Output
GPIO_Analog
EVENTOUT
GPIO_EXTIND

List of alternate functions that can be selected for a given pin. By default,
no alternate function is configured (pin in reset state).

Click the pin name to display the list.

Reset_State

ADC1_EXTII1
ADC2_EXTIL1
ADC3_EXTIL1

12C2_SDA

TIMZ2_CH4
USART3_RX
USB_OTG_HS_ULPL D4
GFIO_Input
GPIO_Output
GPIO_Analog
EVENTOUT
GPIO_EXTI11

When a digital peripheral function has been mapped to the pin, it is
highlighted in blue.

When it corresponds to a well configured peripheral mode, the list caption
is shown in green.

3

DoclD025776 Rev 21 79/276

STM32CubeMX User Interface

UM1718

Table 9. STM32CubeMX Chip view - Icons and color scheme (continued)

Display

Pin information

Reset_State
J'_
< ADC2_IN4
J'_
DCMI_HSYNC
1253_WS
SPI1_NSS

SPI3_MNSS
USARTZ2_CK
USB_OTG_HS_S0H
GPIO_Input
GPIO_Output

<+ GPIO_Analog
EVENTOUT

Y GIOEXTI4 -
B FFFETFT]

ML 12OV TLNO OWa

Analog signals can share the same pin. As an example, DAC_OUT1 was
first enabled on PA4, then ADC_IN4 is also assigned to this pin.

Boot and reset pins are highlighted in khaki. Their configuration cannot be
changed.

DD
V55 Power dedicated pins are highlighted in yellow. Their configuration cannot
' /RE. be changed.
DD
L Non-configured pins are shown in gray (default state).
PF2

ADCE_IMG

When a signal assignment corresponds to a peripheral mode without
ambiguity, the pin color switches to green.

o
RCC_OSC3Z_IN |PCi4. gl

When the signal assignment does not correspond to a valid peripheral
mode configuration, the pin is shown in orange. Additional pins need to be
configured to achieve a valid mode configuration.

When a signal assignment corresponds to a peripheral mode without
ambiguity, the pins are shown in green.

122 500 (G5 As an example, assigning the PF2 pin to the 12C2_SMBA signal matches
1202 500 [l to 12C2 mode without ambiguity and STM32CubeMX configures
202 SMEh (Lo automatically the other pins (PFO and PF1) to complete the pin mode
configuration.
Tooltips

Move the mouse over peripherals and peripheral modes that are unavailable or partially
available to display the tooltips describing the source of the conflict that is which pins are
being used by which peripherals.

80/276

S74

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

As an example (see Figure 53), the Ethernet (ETH) peripheral is no longer available
because there is no possible mode configuration left. A tooltip indicates to which signal are
assigned the pins required for this mode (ADC1-INO signal, USART3 synchronous signal,
etc...).

Figure 53. Red highlights and tooltip example: no mode configuration available

ETH

B Ois2ble =

FMC -

12C1 Mode Conflict with

zc pe |ADC3 :INO or/and

12¢2 Active only when TIM2 has enabled the Pulse Per Second Output or/and

Bl 0isabie| ADCL - IN1 or/and

12¢3 ADC1 : INO or/and

1252 USARTS3 : Synchronous or/and
1253 ADC1 :IN2

In the next example (see Figure 54), the SDIO peripheral is partially available because at
least one of its modes is unavailable: the necessary pins are already assigned to the 12C
mode of the 12C3 peripheral.

Figure 54. Orange highlight and tooltip example: some configurations unavailable

&4\ spio
“Mode jDisabIe vj
o sl
W o SPR
o s

Mode Conflict with
12C3:12C12C

In this last example (see Figure 55) 12C2 peripheral is unavailable because there is no
mode function available. A tooltip shows for each function where all the remapped pins have
been allocated (USART3 synchronous mode).

Figure 55. Tooltip example: all configurations unavailable

=-&3 12C2

il Disable

12C Conflict with
USART3 : Mode Synchronous

b - - -

4.11.3 Chip view advanced actions

Manually modifying pin assignments

To manually modify a pin assignment, follow the sequence below:

1. Click the pin in the Chip view to display the list of all other possible alternate functions
together with the current assignment highlighted in blue (see Figure 56).

2. Click to select the new function to assign to the pin.

3

DoclD025776 Rev 21 81/276

STM32CubeMX User Interface UM1718

Caution:

Note:

82/276

Figure 56. Modifying pin assignments from the Chip view

LA

Reset_State

USART3_TX
USB_OTG_HS_ULPI_D3
GPI0_Analog
GPIO_Input
GPIO_Output
EVENT_OUT

Manually remapping a function to another pin

To manually remap a function to another pin, follow the sequence below:

1. Press the CTRL key and click the pin in the Chip view. Possible pins for relocation, if
any, are highlighted in blue.

2. Drag the function to the target pin.

A pin assignment performed from the Chip view overwrites any previous assignment.

Manual remapping with destination pin ambiguity

For MCUs with block of pins consistency (STM32F100x/ F101x/ F102x/ F103x and
STM32F105x/F107x), the destination pin can be ambiguous,e.g. there can be more than
one destination block including the destination pin. To display all the possible alternative
remapping blocks, move the mouse over the target pin.

A "block of pins" is a group of pins that must be assigned together to achieve a given
peripheral mode. As shown in Figure 57, two blocks of pins are available on a
STM32F107xx MCU to configure the Ethernet Peripheral in RMII synchronous mode: {PC1,
PA1, PA2, PA7, PC4, PC5, PB11, PB12, PB13, PB5} and {PC1, PA1, PA2, PD10, PDS9,
PD8, PB11, PB12, PB13, PB5}.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 57. Example of remapping in case of block of pins consistency

14

STM32F107VBTx
LQFP100

ETH_RMIL_TXD1
Al ETH_RMII_TXDO

T I HLT
ERT T RTE]

STM32F107VBTx =
LQFP100 ETH_RMII_RXD1

ETH_RMII_RXD0
ETH_RMII_CRS DV

ETH_RMIL_REF_CLK [J08 ETH_RMII_TXD1
ETH_RMIL_MDIO [0 B ETH_RMII_TXDO

NI T LS R

Resolving pin conflicts

To resolve the pin conflicts that may occur when some peripheral modes use the same pins,
STM32CubeMX attempts to reassign the peripheral mode functions to other pins. The
peripherals for which pin conflicts could not be solved are highlighted in red or orange with a
tooltip describing the conflict.

If the conflict cannot be solved by remapping the modes, the user can try the following:

e Ifthe [¥IKeep Current Signals Placement box is checked, try to select the peripherals in a
different sequence.

e Uncheck the Keep Current Signals Placement box and let STM32CubeMX try all the
remap combinations to find a solution.

e Manually remap a mode of a peripheral when you cannot use it because there is no
pin available for one of the signals of that mode.

411.4 Keep Current Signals Placement

This checkbox is available from the toolbar when the Pinout view is selected (see Figure 28
and Table 5). It can be selected or deselected at any time during the configuration. It is
unselected by default.

It is recommended to keep the checkbox unchecked for an optimized placement of the
peripherals (maximum number of peripherals concurrently used).

The Keep Current Signals Placement checkbox should be selected when the objective is
to match a board design.

Keep Current Signals Placement is unchecked

This allows STM32CubeMX to remap previously mapped blocks to other pins in order to
serve a new request (selection of a new peripheral mode or a new peripheral mode
function) which conflicts with the current pinout configuration.

3

DoclD025776 Rev 21 83/276

STM32CubeMX User Interface UM1718

Note:

411.5

84/276

Keep Current Signals Placement is checked

This ensures that all the functions corresponding to a given peripheral mode remain
allocated (mapped) to a given pin. Once the allocation is done, STM32CubeMX cannot
move a peripheral mode function from one pin to another. New configuration requests are
served if it is feasible within current pin configuration.

This functionality is useful to:

e Lock all the pins corresponding to peripherals that have been configured using the
Peripherals panel.

e Maintain a function mapped to a pin while doing manual remapping from the Chip view.
Tip

If a mode becomes unavailable (highlighted in red), try to find another pin remapping
configuration for this mode by following the steps below:

1. From the Chip view, deselect the assigned functions one by one until the mode
becomes available again.

2. Then, select the mode again and continue the pinout configuration with the new
sequence (see Appendix A: STM32CubeMX pin assignment rules for a remapping
example). This operation being time consuming, it is recommended to deselect the
Keep Current Signals Placement checkbox.

Even if Keep Current Signals placement is unchecked, GPIO_ functions (excepted
GPIO_EXTI functions) are not moved by STM32CubeMX.

Pinning and labeling signals on pins

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins: This will prevent STM32CubeMX from automatically moving the pinned signals to
other pins when resolving conflicts. There is also the possibility to label the signals: User
labels are used for code generation (see Section 5.1 for details).

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins. This prevents STM32CubeMX from automatically moving pinned signals to other pins
when resolving conflicts. Labels, that are used for code generation, can also be assigned to
the signals (see Section 5.1 for details).

There are several ways to pin, unpin and label the signals:

1. From the Chip view, right-click a pin with a signal assignment. This opens a contextual
menu:
a) For unpinned signals, select Signal Pinning to pin the signal. A pin icon is then
displayed on the relevant pin. The signal can no longer be moved automatically
(for example when resolving pin assignment conflicts).
b) For pinned signals, select Signal Unpinning to unpin the signal. The pin icon is
removed. From now on, to resolve a conflict (such as peripheral mode conflict),

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Note:

4.11.6

3

c)

this signal can be moved to another pin, provided the Keep user placement option

is unchecked.

Select Enter User Label to specify a user defined label for this signal. The new
label will replacing the default signal name in the Chip view.

2. From the Pinout menu, select Pins/Signals Options
The Pins/Signals Options window (see Figure 58) lists all configured pins.

a) Click the first column to individually pin/unpin signals.
b) Select multiple rows and right-click to open the contextual menu and select
Signal(s) Pinning or Unpinning.
Figure 58. Pins/Signals Options window
Fa
Pin Mame Signal Mame User Label
P&0ANKUP ETH_CRS
Pal ETH_RX_CLK
P&z ETH_MDIO
Pa3 ETH_COL
DAC_OUT1
o DaC_ouUT2
PA7 ETH_Rx_D¥
PBO ETH_RXDZ2
PB1 ETH_R¥C3
PE10 ETH_RX_ER
PBE11 ETH_T*_EM
FB12 ETH_TxDO
FE13 ETH_TXD1
Y |PB14 1252_ext_SD
PR1S 1252_SD
FBS 1252 _\WS
[Apply] l OK I [Cancel
c) Select the User Label field to edit the field and enter a user-defined label.
d) Order list alphabetically by Pin or Signal name by clicking the column header.

Click once more to go back to default i.e. to list ordered according to pin

placement on MCU.

Even if a signal is pinned, it is still possible however to manually change the pin signal
assignment from the Chip view: click the pin to display other possible signals for this pin and
select the relevant one.

Setting HAL timebase source

By default, the STM32Cube HAL is built around a unique timebase source which is the
ARM-Cortex system timer (SysTick).

However, HAL-timebase related functions are defined as weak so that they can be
overloaded to use another hardware timebase source. This is strongly recommended when

DoclD025776 Rev 21

85/276

STM32CubeMX User Interface UM1718

the application uses an RTOS, since this middleware has full control on the SysTick
configuration (tick and priority) and most RTOSs force the SysTick priority to be the lowest.

Using the SysTick remains acceptable if the application respects the HAL programming
model, that is, does not perform any call to HAL timebase services within an Interrupt
Service Request context (no dead lock issue).

To change the HAL timebase source, go to the SYS peripheral in the Peripheral and
Middleware tree pane and select a clock among the available clock sources: SysTick,
TIM1, TIM2,... (see Figure 59).

Figure 59. Selecting a HAL timebase source (STM32F407 example)

B & SYS
é----DEI:nug :Disal:ule "":
- [] System Wake-Up
.- Timebase Source ;SysTin:k. "i
G- & TIM1 SysTick i
i@ T2 TIM1
TIM3 TIM2 =
- TIM3
o TIMA TIM4 B
- & TIMS TIMS
i TIMe TIMG
TIMT b
[& TIMZ
[% TIMB

When used as timebase source, a given peripheral is grayed and can no longer be selected
(see Figure 60).

Figure 60. TIM2 selected as HAL timebase source

58 SYS
| é----DEI:nug :Disal:ule
: ----- || System Wake-p
(--Tlmehase Source :'I'IME _)
& TIMI
-- TIM2 is no longer available as Timer periphe
o TIM3
-- TIM4
86/276 DoclD025776 Rev 21 Kys

UM1718

STM32CubeMX User Interface

As illustrated in the following examples, the selection of the HAL timebase source and the
use of FreeRTOS influence the generated code.

Example of configuration using SysTick without FreeRTOS

As illustrated in Figure 61, the SysTick priority is set to 0 (High) when using the SysTick
without FreeRTOS.

Figure 61. NVIC settings when using SysTick as HAL timebase, no FreeRTOS

& NVIC Cenfiguration

=)

fed NVIC | o/ Code generah’on|

Search Search (CrHl+F)

Priority Group :4 bits for pre-emption prierity O bits for subpriarity -

E] @ [] Show only enabled interrupts

[] Sort by Premption Prierity and Sub Prority

Interrupt Table Enabled

|Mon maskable interrupt

Preemption Priority

Sub Priority

*

Hard fault interrupt

Memory management fault

Pre-fetch fault, memory access fault

{lUndefined instruction or ilegal state

||Debug maonitor

||T|me base: System tick timer

|PVD interrupt through EXTI line 16

Flash global interrupt

[) o e e e e e
[=R = =T =]) e =

RCC global interrupt

Enabled Preemption Priority Sub Priority

oo) [

] [Cancel

Interrupt priorities (in main.c) and handler code (in stm32f4xx_it.c) are generated

accordingly:

e main.cfile

/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);

o stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.
*/

void SysTick_Handler (void)

3

DoclD025776 Rev 21

87/276

STM32CubeMX User Interface

UM1718

/* USER CODE BEGIN SysTick_IROn 0 */
/* USER CODE END SysTick IRQn 0 */

HAL_IncTick() ;

HAL_SYSTICK_IRQHandler () ;
/* USER CODE BEGIN SysTick_IRQn 1 */

/* USER CODE END SysTick IRQn 1 */

}

Example of configuration using SysTick and FreeRTOS

As illustrated in Figure 62, the SysTick priority is set to 15 (Low) when using the SysTick

with FreeRTOS.

Figure 62. NVIC settings when using FreeRTOS and SysTick as HAL timebase

-
@ ' NVIC Cenfiguration

=2

fed/ NVIC | o/ Code generaﬁon|

Search Search {CrtHF)

Priority Group 4 bits for pre-emption priority 0 bits for subpriority =

[7] Show only enabled interrupts

[7] Sort by Premption Pricrity and Sub Prority

Interrupt Table
Mon maskable interrupt

Enabled

Preemption Priority

Sub Priority

Hard fault interrupt

Memory management fault

Pre-fetch fault, memory access fault

||Undeﬁned instruction or ilegal state

||Debug manitor

0
0
0
0

(=] =] =T =]

Time base: System tick timer

|[PvD interrupt through EXTI line 15

Flash global interrupt

I RCC global interrupt

15
5
5
5

[=T =] =]

Enabled Preemption Priority

Sub Priority

[_Aemty |

Ok

] [Cancel

88/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

3

As shown in the code snippets given below, the SysTick interrupt handler is updated to use
CMSIS-os osSystickHandler function.

e main.cfile
/* SysTick_IRQn interrupt configuration */

HAL_NVIC_SetPriority (SysTick_IRQn, 15, 0);

e stm32f4xx_it.c file
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler (void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */

/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick() ;
osSystickHandler () ;

/* USER CODE BEGIN SysTick_IRQn 1 */

/* USER CODE END SysTick _IRQn 1 */

DoclD025776 Rev 21 89/276

STM32CubeMX User Interface UM1718

Example of configuration using TIM2 as HAL timebase source

When TIM2 is used as HAL timebase source, a new stm32f4xx_hal_timebase_TIM.c file is
generated to overload the HAL timebase related functions, including the HAL_InitTick
function that configures the TIM2 as the HAL time-base source.

The priority of TIM2 timebase interrupts is set to 0 (High). The SysTick priority is set to 15
(Low) if FreeRTOS is used, otherwise it is set to 0 (High).

Figure 63. NVIC settings when using FreeRTOS and TIM2 as HAL timebase

- ™
@ NVIC Configuration ﬁ

fqd’ NVIC | o Code generaﬁon|
Priority Group :4 bits for pre-emption priority 0 bits for subpriority - [Sort by Premption Priority and Sub Prority
Search Search (Cril+F) @ @ [] Show enly enabled interrupts
Interrupt Table Enabled Preemption Priority Sub Priority
||Mon maskable interrupt 0 0 -
Hard fault interrupt 0 0
Memaory management fault 0 0 I
Pre-fetch fault, memory access fault 0 0
||Undeﬁned instruction or ilegal state 0 0
Debug monitor 0 0
stem tick timer 15 H | 0
PVD interrupt through EXTI line 16 =] 5 0
i Flash global interrupt] 5]
RCC global interrupt [l 5] I
I ime base: TIM2 global interrupt 0 j 0
Enabled Preemption Priority Sub Priority
Apply] [Ok] [Cancel

The stm32f4xx_it.c file is generated accordingly:

e SysTick_Handler calls osSystickHandler when FreeRTOS is used, otherwise it calls
HAL_SYSTICK_IRQHandler.

o TIM2_IRQHandler is generated to handle TIM2 global interrupt.

3

90/276 DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

412

Note:

Configuration view

STM32CubeMX Configuration window (see Figure 64) gives an overview of all the
software configurable components: GPIOs, peripherals and middleware. Clickable buttons
allow selecting the configuration options of the component initialization parameters that will
be included in the generated code. The button icon color reflects the configuration status:

Green checkmark: correct configuration
Warning sign: incomplete but still functional configuration
Red cross: for invalid configuration.

GPIO and Peripheral modes that influence the pinout can be set only from the Pinout view.
They are read-only in the Configuration view.

In this view, the MCU is shown on the left pane by its Peripheral and Middleware tree and
on the right pane, by the list of peripherals and middleware organized in Middleware,
Multimedia, Connectivity, Analog, System and Control categories. Each peripheral instance
has a dedicated button to edit its configuration: as an example, TIM1 and TIM3 TIM
instances are shown as dedicated buttons in Figure 64.

Figure 64. STM32CubeMX Configuration view

-
%' STM32CubeMX STM32CubeﬁSlmpIeLedToggle‘|9c": ST‘MSZFMTVGTX_* pa——

File Project Window Help

i)

Bu &g

o=

Plnnutl Clock Configuration | Configuration | Power Consumption Calculamr‘

Configuration
Ehviddlewares
- % FATFS

L #use
- [+ Enable

B % LwIp
. [¥]Enable

|| =1ps

B4y ADCL

o IMIE: S
B # CANL

£ ® RO

B & DAC
-4\ DCMI

B ® ETH

{* - Mode MII
= FSMC

- © IwDG

1

<

E % FREERTOS

) & USB_HDST
“Class for FS IF |MSC_FS

" Master Mode: Set
g Be [Activated
| "~ OUTL Configuration: Set

| - DCMLSlave 8 bits Frmbed

. NAND Flash 1
NCEZ chip select: Set

[T Activated

s

d

Middlewares

o (s |8, | |

= |
I OO .?tﬁ_] l -] l DMAQ+ l]
I ETH ey] I GPID —ob, I]

d

m

USE_HOST === »

CANL ==, l A0CT WL

|

Fa-y
Ly] l TIML §5g

l

Py
DAC i, [T3 £,

S

] »

3

A configuration button is associated to each peripheral in the Configuration window (see
Table 10).

DoclD025776 Rev 21 91/276

STM32CubeMX User Interface

UM1718

Table 10. Peripheral and middleware configuration buttons

Format Peripheral Instance configuration status

Available but not fully configured yet. Click to open the

pma 1=1 ‘ . o
| = configuration window.

Well configured with default or user-defined settings
| that allows proceeding with the generation of
corresponding initialization C code. Click to open the
configuration window.

| ETH Ieébﬁ

Badly configured with some wrong parameter values.
Click to display the errors highlighted in red.

Other example (UART):
Baud Rate A& 1000000 Bits/s

% TIM4 Configuration M

Al Please select a Trigger Source in the Pinout view Dialog box that explains source of error. It shall be
fixed in another view.

GPIO, DMA and NVIC settings can be accessed either via a dedicated button like other
peripherals or via a tab in the other configuration windows of the peripherals which use them
(see Figure 65).

Figure 65. Configuration window tabs for GPIO, DMA and NVIC settings (STM32F4 Series)

- ™
@ 5SDIO Cenfiguration M

| Q:/) Parameter Settings | Q:/} User Constants | Q_’/} MVIC Settings | Q_’/) DMA 5ettings| Qﬂ GPIO Settings |

Search Signals

search (Crtl+F) [] Show only Modified Fins
3
Fin Mame Signal on Fin GPIOPin State GPIOmode GPIO Pull-up... Maximum ou... User Label Modified

|PCa SDIO_DO nfa Alternate Fun... [Mo pull-up an... |High]
{Pca SDI0_D1 n/a Alternate Fun... [No pull-up an... |High &
{PC1o SDIO D2 n/a Alternate Fun... [No pull-up an... [High T
PC11 SDIO_D3 nfa Alternate Fun... |No pull-up an... |High]
fPciz SDIO_CK n/a Alternate Fun... [Mo pull-up an... |High]
i{Po2 SDIO_CMD n/a Alternate Fun... [No pull-up an... |High]

|?| Select Pins from table to configure them. Multiple selection is Allowed.

[Apply] [Ok] [Cancel

3

92/276 DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

4121

3

Peripherals and Middleware Configuration window

This window is open by clicking the peripheral instance or Middleware name from the
Configuration pane. It allows to configure the functional parameters that are required for
initializing the peripheral or the middleware in the selected operating mode. This
configuration is used to generate the corresponding initialization C code. Refer to Figure 66
for a Peripheral Configuration windows example.

The configuration window includes several tabs:

Parameter settings to configure library dedicated parameters for the selected
peripheral or middleware,

NVIC, GPIO and DMA settings to set the parameters for the selected peripheral (see
Section 4.12.5: NVIC Configuration window, Section 4.12.3: GPIO Configuration
window and Section 4.12.4: DMA Configuration windowfor configuration details).

User constants to create one or several user defined constants, common to the whole
project (see Section 4.12.2: User Constants configuration window for user constants
details).

Invalid settings are detected and are either:

Reset to minimum valid value if user choice was smaller than minimum threshold,
Reset to maximum valid value if user choice was greater than maximum threshold,

Reset to previous valid value if previous value was neither a maximum nor a minimum
threshold value,

Highlighted in red: # 1000000 Bits/s

Table 11 describes peripheral and middleware configuration buttons and messages.

Figure 66. Peripheral Configuration window (STM32F4 Series)

@ SDIO Configuration ﬁ

=/ Parameter Settings | o/’ User Constants | =/ NVIC Settings | </ DMA Settings | </ GPIO Settings|
Configure the below parameters :

Search :| Search (Cril+F) ¥ &
[=] SDIO parameters
SDIOCLK clock dvide factar p
|| I
i I
SDIOCLK clock divide factor

ClockDiv must be between 0 and 255.

Parameter Description:

SDIO_CK = SDIOCLK / [CLKDIV + 2]. The output clock frequency can vary between 187 KHz and 24 MHz. It is
advised to keep the default ClockDiv value (0) to have a maximum SDIO_CK frequency of 24 MHz.

o) [0) [e

DoclD025776 Rev 21 93/276

STM32CubeMX User Interface

UM1718

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages

Action

Apply Saves the changes without closing the window
OK Saves and closes the window
Cancel Closes and resets previously saved parameter settings

Restore Default

For the selected peripheral, the whole user configuration is reset to
STM32CubeMX default settings without clearing the project user
constants defined in the User Constants tab: STM32CubeMX default
values are restored on peripheral parameter, GPIO, NVIC and DMA
tabs.

Note: Restore default button is not available for GPIO/DMA and NVIC
windows as they address more than one peripheral.

Note: Clicking Cancel after Restore Default closes the window and
preserves the user configuration.

Caution: Clicking Apply after Restore Default saves the changes. In
this case the user original configuration cannot be restored.

|E]

Shows and Hides the description pane

Tooltip

Guides the user through the settings of parameters with valid min-max
range.

To display it, moves the mouse over a parameter value from a list of
possible values.

(Pariy | 4
Stop Bits

:ed Parameters
Data Direction

Over Samnlina

UART_PARITY_EVEN

16 Samnles

Hexadecimal vs decimal
values

Choose to display the field as an hexadecimal or a decimal value by
clicking the arrow on the right:

P
Timeout Time {ns) 25000000 v Decimal
Timeout 0x00008061 Hexadecimal ‘

Timeout Time (ns) 0x17d7840 Decimal
Timeout 0x00008000 v H T

Timeout Time (ns)
TIMEOUT _time must be between 25 000 000 and 35 000 000.

94/276

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

3

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages

Action

No check option

By default, STM32CubeMX checks that the parameter values entered
by the user are valid. You can bypass this check by selecting the option
No Check for a given parameter. This allows entering any value (such
as a constant) that might not be known by STM32CubeMX
configuration.

Voltage Class ||| I

SWPMI Clock frequency 4000 kHz
Bit Rate 4000/ (((const1 + const2 + 5)+1) *4) kBits/s
No Software buffer

No Software buffer

v Ho check l

Transmission Buffering Mode

b Reception Buffering Mode

it Rate
Since BitRate is a parameter without chedk, you can enter any value.) ‘
T = =

Note: The validity check can be bypassed only on the parameters
which values are of integer type (either hexadecimal or
decimal). It cannot on parameters coming from a predefined list
of possible values or on those which are of non-integer or text
type.

To go back to the default mode, that is decimal or hexadecimal values

with validity check enabled, enter a decimal or hexadecimal value and

check the relevant option (hexadecimal or decimal check).

Caution: When a parameter depends on another parameter that is
set to No Check:

— Case of a parameter depending on another parameter for the
evaluation of its minimum or maximum possible value
If the other parameter is set to No Check, the minimum or maximum
value is no longer evaluated and checked.

— Case of a parameter depending on another parameter for the
evaluation of its current value
If the other parameter is set to No Check, the value is no longer
automatically derived. Instead, it is replaced with the formula text
showing as variable the string of the parameter set to No check.

LTDC Cenfiguration | S

.

%/ Parameter Settings | Q/‘ Layer Settings | Q/‘ User Constants | { NVIC Settings | Q/" GPIO 5etﬁngs|

Configure the below parameters :

Search 1| Searc ¥ &
= Synchronization for Width -
Horizontal Synchronization Width ixels
Horizontal Back Porch 7 pixels
Active Width 540 pixels
Horizontal Front Porch 6 pixels
HSync Width MY_HSYNC_VALUE-1

Accumulated Horizontal Back Porch WidtH MY_HSYNC_VALUE-1+7
MY_HSYNC_VALUE-14+7+640
MY_HSYNC_VALUE-1+7+540+6

Accumulated Active Width
Total Width

DoclD025776 Rev 21 95/276

STM32CubeMX User Interface

UM1718

Table 11. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages

Action

Decimal and hexadecimal
check tooltip

& SWPMIL Configuration E)
& parameter settings | o/ User Constants | /7 NVIC Settings | </ GPIO Settings | </ DMA Settings|
Configure the below parameters :
Search :| & ¥ &
[# Basic Parameters
Voltage Class Class B
i SWPMI Clock frequency 4000 kHz
Bit Rate 5| ® Bit Rate Prescaler value must be between 0 and 9
Transmission Buffering Mode .| Your entry is no more a valid value.
Reception Buffering Mode Mo Software buffer
Bit Rate Prescaler
BitRate must be between 0 and 9.

If the value entered by the user is out of range, an the error will be
highlighted in red along with an explanatory tooltip:

T — e — e e

4.12.2 User Constants configuration window
A User Constants window is available to define user constants (see Figure 67). Constants
are automatically generated in the STM32CubeMX user project within the main.h file (see
Figure 68). Once defined, they can be used to configure peripheral and middleware
parameters (see Figure 69).
Figure 67. User Constants window
% SDIO Configuration ﬂ
«/ Parameter Settings| &/ User Constants | «// NVIC Settings | «/ DMA Settings | «/ GPIO Settings|
Search Constants
| add | [remove
M| Constant Name Constant Value
||{CONSTANT_1 10
COMNSTANT_2 0t
CONSTANT_3 CONSTANT_1
CONSTANT_4 (CONSTANT_3 + CONSTANT_1)*100/CONSTANT_1
COMNSTANT_S (CONSTANT_2 - CONSTANT_1)
L
[
' wooy] [ok [cance
96/276 DoclD025776 Rev 21 Kys

UM1718 STM32CubeMX User Interface

Figure 68. Extract of the generated main.h file

/* Inclwdes -------------------—-—-—---------------- - -- -+ ""”0666oe l S =/
/* USER CODE BEGIN Includes */

/* U3ER CODE END Includes */

/* Private defiig --------—--------------------------------- -\ -+ - -\« + —«+—\—«(— ——— *J
#define CONSTANT 1 10

#define CONSTANT 2 Oxff

f#define CONSTANT 3 CONSTANT 1

#define COMSTANT 4 (CONSTANT 3S+CONSTANT 1) *100/CONSTANT 1

#define CONSTANT 5 (CONSTANT 2 - CONSTANT 1)

/* USER CODE BEGIN Priwvate defines +*/

S* USER CODE END Priwvate defines */

Figure 69. Using constants for peripheral parameter settings

% SDIO Configuration E

«/ Parameter Settings | o/ User Constants | «/ NVIC Settings | «/ DMA Settings | </ GPIO Settings
Configure the below parameters :

Search :| Search (CriF v &

[=| SDIO parameters
SDIOCLK clock divide factor CONSTANT_1 .

SDIOCLK clock divide factor -
ClockDiv must be between D and 255.

Parameter Description:

SDIO CK = SDIOCLK / [CLKDIV + 2. The output clock frequency can vary between 187 KHz and 24 MHz. Itis ™~

Coom) [0) [cone

3

DoclD025776 Rev 21 97/276

STM32CubeMX User Interface UM1718

98/276

Creating/editing user constants

Click the Add button to open the User Constants window and create a new user-defined
constant (see Figure 70).
A constant consists of:
e A name that must comply with the following rules:
It must be unique.
It shall not be a C/C++ keyword.
It shall not contain a space.
It shall not start with digits.
e Avalue
The constant value can be: (see Figure 67 for examples):
— asimple decimal or hexadecimal value
— a previously defined constant

— aformula using arithmetic operators (subtraction, addition, division, multiplication,
and remainder) and numeric value or user-defined numeric constants as
operands.

— acharacter string: the string value must be between double quotes (example:
“constant_for_usart”).

Once a constant is defined, its name and/or its value can still be changed: double- click the
row that specifies the user constant to be modified. This opens the User Constants window
for edition. The change of constant name is applied wherever the constant is used. This
does not affect the peripheral or middleware configuration state. However changing the
constant value impacts the parameters that use it and might result in invalid settings (e.g.
exceeding a maximum threshold). Invalid parameter settings will be highlighted in red with a
red cross.

Figure 70. Specifying user constant value and name

r© -
User Constants [&J
constant Name COMNSTAMT_1
constant Value 10
| Ok | | Cancel
L

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Deleting user constants

Click the Remove button to delete an existing user-defined constant.

The user constant is then automatically removed except in the following cases:

e When the constant is used for the definition of another constant. In this case, a popup
window displays an explanatory message (see Figure 71).

Figure 71. Deleting user constant not allowed when
constant already used for another constant definition

v |
Delete user constant warning: &J

! i Cannot delete, the selected user constant is used in the definition of another constant !

oK | l Cancel

e When the constant is used for the configuration of a peripheral or middleware library
parameter. In this case, the user is requested to confirm the deletion since the constant
removal will result in a invalid peripheral or middleware configuration (see Figure 72).

Figure 72. Deleting a user constant used for parameter configuration-
Confirmation request

F |
Delete user constant warning: @

l \ Theselected user constant is used in the configuration of some ips! Are you sure you want to delete it ?

Clicking Yes leads to an invalid peripheral configuration (see Figure 73))

3

DoclD025776 Rev 21 99/276

STM32CubeMX User Interface UM1718

Figure 73. Deleting a user constant used for peripheral configuration -
Consequence on peripheral configuration

% SDIO Configuration ﬂ

& Parameter Settings | o/ User Constants | </ NVIC Settings | «// DMA Settings | </ GPIO Settings|
Configure the below parameters @

(Crii+F) ¢ o

= % SDIO parameters
SDIOCLK clock divide factor * CONSTANT_2

=)

Search :| 5

SDIOCLK clock divide factor

ClockDiv must be between 0 and 255.

Parameter Description:

SDIO_CK = SDIOCLK / [CLKDIV + 2]. The output clock frequency can vary between 187 KHz and 24 MHz. It is
advised to keep the default ClockDiv value (0) to have a maximum SDIO_CK frequency of 24 MHz.

oy) [ok) [

Searching for user constants

The Search Constants field allows searching for a constant name or value in the complete
list of user constants (see Figure 74 and Figure 75).

Figure 74. Searching for a name in a user constant list

% SDIO Configuration ﬁ
</ Parameter Settings| =/ User Constants | o/ NVIC Settings | =/ DMA Settings | =/ GPIO Settings|

Search Constants
CONSTANT_4 remove

Constant Name Constant Value

CONSTANT_4 |(CONSTANT_3 + COMSTANT_1)*100/CONSTANT _1

o) (k] (oo

3

100/276 DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface
Figure 75. Searching for a value in a user constant list
, % SDIO Configuration ﬁ
</ Parameter Settings| ©/ User Constants | // NVIC Settings | «// DMA Settings | </ GPIO Settings|
Search Constants
10 remove
Constant Name Constant Value
CONSTANT_1 |10
CONSTANT_4 |[CONSTANT_3 + COMSTANT_1)*100/CONSTANT_1
o] [0] [concl
412.3 GPIO Configuration window
Click GPIO in the Configuration pane to open the GPIO configuration window that allows
configuring the GPIO pin settings (see Figure 76). The configuration is populated with
default values that might not be adequate for some peripheral configurations. In particular,
check if the GPIO speed is sufficient for the peripheral communication speed and select the
internal pull-up whenever needed.
Note: GPIO settings can also be accessed for a specific peripheral instance via the dedicated

3

GPIO window in the peripheral instance configuration window.

In addition, GPIOs can be configured in output mode (default output level). The generated
code will be updated accordingly.

DoclD025776 Rev 21

101/276

STM32CubeMX User Interface UM1718

Figure 76. GPIO Configuration window - GPIO selection

r ~
% Pin Configuration L&J
GPI0 | apct | apc2 | ETH | spio|
Search Signals
search (Crtl+F) [] Show only Modified Pins
=
Pin Name Signal on Pin GPIO Fin State GPIO mode GPIO Pull-up/... Maximum out... User Label Modified
FD10 nfa nfa Input mode Mo pull-up and ...|nfa [l
FD11 nfa Low Output Push Pull [No pull-up and ... |Low &
FD12 nfa nfa Analog mode Mo pull-up and ... [nfa [
PD13 WE] High Output Push Pull Mo pull-up and ... Low
PD13 Configuration :
GPIO Pin State High -
GPIO mode Output Push Pul -
GPIO Pull-up/Pull-down :No pull-up and no pull-down -
Maximum output speed :Low -
User Label
] Group By IP [Apply] [Ok] ’ Cancel]

Click a row or select a set of rows to display the corresponding GPIO parameters (see
Figure 77):

° GPIO PIN state

It changes the default value of the GPIO Output level. It is set to low by default and can
be changed to high.

e GPIO mode (analog, input, output, alternate function)

Selecting a peripheral mode in the Pinout view automatically configures the pins with
the relevant alternate function and GPIO mode.

e GPIO pull-up/pull-down
It is set to a default value and can be configured when other choices are possible.
e GPIO maximum output speed (for communication peripherals only)

Itis set to Low by default for power consumption optimization and can be changed to a
higher frequency to fit application requirements.

° User Label

It changes the default name (e.g. GPIO_input) into a user defined name. The Chip
view is updated accordingly. The GPIO can be found under this new name via the Find
menu.

3

102/276 DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 77. GPIO Configuration window - displaying GPIO settings

F ™
% Pin Configuration ﬁ

| apc1 | apcz| 1201 | 12¢3 | 1203

Search Signals
Search (Crtl+F) [7] show only Modified Fins

=
Pin Mame Signal on Pin GPIO outputlevel GPIOmode GPIOPull... Maximum output speed User Label Modified

PBG 12C1_SCL nfa Alternate Fun... [Pull-up Very High
FET 12C1_SDA nfa Alternate Fun... [Pull-up Very High

|?| Select Pins from table to configure them. Multiple selection is Allowed.

[Group By Peripherals l Apply l [Ok] l Cancel l

The Group by Peripherals checkbox allows to group all instances of a peripheral under a
same window (see Figure 78).

Figure 78. GPIO configuration grouped by peripheral

% Pin Configuration ﬂ
GPIO I ADC | 12C
Search Signals
I [] Show only Modified Pins
"
I Pin Name Signal on Pin GPIO Pin State GPIOmode GPIO Pull-up/... Maximum out... User Label Modified
FEG [2C1 SCL nia Alternate Func... |Pull-up High [l
MIPET 12C1 SDA nfa Alternate Func... |Pull-up High &
FE10 12C2_SCL nfa Alternate Func... [Pull-up High [
FE11 12C2_SDA nia Alternate Func... |Pull-up High [
PAS 12C3 SCL nfa Alternate Func... |Pull-up High &
PC3 12C3_SDA nja Alternate Func. .. [Pull-up High [
|
| ?| Select Pins from table to configure them. Multiple selection is Allowed.
L [Apply] [Ok] ’ Cancel
-
1S7 DoclD025776 Rev 21 103/276

STM32CubeMX User Interface

UM1718

4124

Note:

104/276

Figure 79. Multiple Pins Configuration

As shown in Figure 79, row multi-selection can be performed to change a set of pins to a
given configuration at the same time.

% Pin Configuration ﬁ
GPIO | ADC | 12C
Search Signals
Search (Cri+F) [] Show enly Modified Pins
=
i Pin Name Signal on Pin | GPIO Pin State GPIOmode GPIO Pull-up... Maximum ou... User Label Modified
PHo 1201 500 n/a Alternate Fun... [Pull-up High
FPE7 12C1_SDA nfa Alternate Fun... [Pull-up High

12C2_SCL

PB11#PAS Configuration :

GPIO mode

GPIO Pull-up/Pull-down

Maximum output speed

User Label

n/fa

Alternate Fun...
Alternate Fun...
Alternate Fun...

Pull-up

.Pull—up

:Fast

High

AT

Group By IP

o) [

] ’ Cancel

DMA Configuration window

DoclD025776 Rev 21

Click DMA in the Configuration pane to open the DMA configuration window.

This window allows to configure the generic DMA controllers available on the MCU. The
DMA interfaces allow to perform data transfers between memories and peripherals while the
CPU is running, and memory to memory transfers (if supported).

Some peripherals such as USB or Ethernet, have their own DMA controller, which is
enabled by default or via the Peripheral Configuration window.

Clicking Add in the DMA configuration window adds a new line at the end of the DMA
configuration window with a combo box proposing to choose between possible DMA
requests to be mapped to peripherals signals (see Figure 80).

3

UM1718 STM32CubeMX User Interface

Figure 80. Adding a new DMA request

- B
& DMA Cenfiguration ﬁ

| DMa 1| DMAZ | MeniToMem|

DMA Reguest Stream Direction Priority

Select]

MEMTOMEM
SPIS_RX
SPIS_TX

Add | | Delete |

DMA Reguest Settings
Peripheral Memary

Mode Mormal Increment Address

Use Fifo Threshold | One Quarter Full Data Width Byte Byte

Burst Size Single Single

ey] [0x] [Lconc |

b

Selecting a DMA request automatically assigns a stream among all the streams available, a
direction and a priority. When the DMA channel is configured, it is up to the application code
to fully describe the DMA transfer run-time parameters such as the start address, etc....

The DMA request (called channel for STM32F4 MCUSs) is used to reserve a stream to
transfer data between peripherals and memories (see Figure 81). The stream priority will be
used to decide which stream to select for the next DMA transfer.

DMA controllers support a dual priority system using the software priority first, and in case of
equal software priorities, a hardware priority that is given by the stream number.

3

DoclD025776 Rev 21 105/276

STM32CubeMX User Interface UM1718

106/276

Figure 81. DMA Configuration

-

:

DMAL | pmMA2 | MemToMem|

DMA Request Stream Direction Priority
12C1_RX DMA1 Stream 0 Peripheral To Memo Lows

DMAL Stream 6 Memory To Peripheral Low

[Add] [Delete]
DMA Request Settings
Peripheral Memory

Mode |Normal v Increment Add...]]
Use Fifo [] Thres... |Half Full ~| Data width Byte w| | |Byte -

Burst Size Single - Single -

L
’ Apply ” Ok][Cancel] IJ

Additional DMA configuration settings can be done through the DMA configuration
window:

Mode: regular mode, circular mode, or peripheral flow controller mode (only available
for the SDIO peripheral).

Increment Add: the type of peripheral address and memory address increment (fixed
or post-incremented in which case the address is incremented after each transfer).
Click the checkbox to enable the post-incremented mode.

Peripheral data width: 8, 16 or 32 bits

Switching from the default direct mode to the FIFO mode with programmable threshold:
a) Click the Use FIFO checkbox.

b) Then, configure the peripheral and memory data width (8, 16 or 32 bits).

c) Select between single transfer and burst transfer. If you select burst transfer,
choose a burst size (1, 4, 8 or 16).

In case of memory-to-memory transfer (MemtoMem), the DMA configuration applies to a
source memory and a destination memory.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 82. DMA MemToMem configuration

[|
DMA Configuration @
DMA1 | DMAZ2 | MemToMem |
DMA Reguest Stream Direction Priority
MEMTOMEM DMAZ2 Stream 0 Memory To Memory Low

| Add | [Delete |
DMA Request Settings
Src Memory Dst Memory
Mode Normal - Increment Address [[
|Use Fifo Threshold |Half Full - Data Width Byte - Byte -
Burst Size Single - Single -
[Apply] [Ok] [Cancel

412.5 NVIC Configuration window

Click NVIC in the Configuration pane to open the Nested Vector interrupt controller
configuration window (see Figure 83).
Interrupt unmasking and interrupt handlers are managed within 2 tabs:

e The NVIC tab allows enabling peripheral interrupts in the NVIC controller and setting
their priorities.

e The Code generation tab allows selecting options for interrupt related code
generation.

Enabling interruptions using the NVIC tab view

The NVIC view (see Figure 83) does not show all possible interrupts but only the ones
available for the peripherals selected in the Pinout and Configuration panes. System
interrupts are displayed but can never be disabled.

Check/Uncheck the Show only enabled interrupts box to filter or not enabled interrupts.

Use the search field to filter out the interrupt vector table according to a string value. As an
example, after enabling UART peripherals from the Pinout pane, type UART in the NVIC
search field and click the green arrow close to it: all UART interrupts are then displayed.

Enabling a peripheral interrupt will generate of NVIC function calls
HAL_NVIC_SetPriority and HAL_NVIC_EnablelRQ for this peripheral.

3

DoclD025776 Rev 21 107/276

STM32CubeMX User Interface UM1718

108/276

Figure 83. NVIC Configuration tab - FreeRTOS disabled

- ™
@& NVIC Configuration ﬁ

‘e NVIC}| o7 Code generaﬁonl

Prigrity Group j4 bits for pre-emption priority O bits for subpriority - [Sort by Premption Priority and Sub Prority

E] @ |:| Show only enabled interrupts

Search

Interrupt Table Enabled Preemption Priority Sub Priority

MNon maskable interrupt 0 -
Hard fault interrupt

Memory management fault

Pre-fetch fault, memory access fault
Undefined instruction or ilegal state
System service call via SWT instruction
Debug monitor

Pendable request for system service
Time base: System tick timer

PVD interrupt through EXTI line 16
Flash global interrupt

R.CC global interrupt

12C1 eventinterrupt

12C1 error interrupt

SPI1 global interrupt

SPI2 global interrupt

USE On The Go FS global interrupt
FFPU global interrupt

FEEEEEEEEEEEEEEEE
HEEEEEEEEEEEEEEEE

Enabled Preemption Priority Sub Priority

[Apply][Ok H Cancel]

h

When FreeRTOS is enabled, an additional column is shown (see Figure 84). In this case, all
the interrupt service routines (ISRs) that are calling the interrupt safe FreeRTOS APIs,
should have a priority lower than the priority defined in the
LIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY parameter (the highest the value, the
lowest the priority). The check in the corresponding checkbox guarantees that the restriction
is applied.

If an ISR does not use such functions, the checkbox can be unchecked and any priority level
can be set.

It is possible to check/uncheck multiple rows at a time (see rows highlighted in blue in
Figure 84).

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

3

Figure 84. NVIC Configuration tab - FreeRTOS enabled

@ NVIC Configuration

=

Qﬁ? NVIC | Qﬁ’ Code generaﬁonl

Priority Group [4 bits for pre-emption priority 0 bits for subpriority -] |:| Sort by Premption Priority and Sub Prority
Search | Search (Crtl+F) | E] @ [] Show only enabled interrupts
Interrupt Table Enabled = Preemption Priority Sub Priority Uses FreeRTOS functions
MNon maskable interrupt (o] 0 -
Hard fault interrupt o] 0
Memory management fault] 0]
Pre-fetch fault, memary access fault (o] 0]
Undefined instruction or ilegal state 0 0]
| ||System service call via SWI instruction 0]]
Debug monitor 0 0]
" ||Pendable request for system service 15 0
Time base: System tick timer 15 0
PVD interrupt through EXTI line 16 [s 0 [¥]
Flash global interrupt 1 |5 0 [¥]
RCC global interrupt b s] [¥]
12C1 event interrupt W o 0)
12C1 error interrupt W o 0)
SPI1 global interrupt W o0 0)
SPI2 global interrupt W o 0)
USE On The Go F5 global interrupt 1 |s 0
FPU global interrupt [IEE 0

[T]Enabled Preemption Priority Sub Priority [Uses FreeRTOS functions

Eaply || ok | [cancel |

Figure 85. 12C NVIC Configuration window

Peripheral dedicated interrupts can also be accessed through the NVIC window in the
Peripheral Configuration window (see Figure 85).

-

& [2C1 Configuration

===

| o/ Parameter Settings | «// User Constants |:/’ NVIC Settings || /7 GPIO Settings | /7 DMA Settings

12C1 eventinterrupt Vv 0 0

Interrupt Table Enabled Preemption Priority Sub Priority

12C1 error interrupt 0 0

oty) [o

][Canoel

DoclD025776 Rev 21

109/276

STM32CubeMX User Interface UM1718

110/276

STM32CubeMX NVIC configuration consists in selecting a priority group, enabling/disabling
interrupts and configuring interrupts priority levels (preemption and sub-priority levels):

1.

Select a priority group

Several bits allow to define NVIC priority levels. These bits are divided in two priority
groups corresponding to two priority types: preemption priority and sub-priority. For
example, in the case of STM32F4 MCUs, the NVIC priority group 0 corresponds to 0-
bit preemption and 4-bit sub-priority.

In the interrupt table, click one or more rows to select one or more interrupt vectors.
Use the widgets below the interrupt table to configure the vectors one by one or several
at a time:

— Enable checkbox: check/uncheck to enable/disable the interrupt.

— Preemption priority: select a priority level. The preemption priority defines the
ability of one interrupt to interrupt another.

— Sub-priority: select a priority level. The sub-priority defines the interrupt priority
level.

— Click Apply to save changes, and OK to close the window.

Code generation options for interrupt handling

The Code Generation view allows customizing the code generated for interrupt initialization
and interrupt handlers:

Selection/Deselection of all interrupts for sequence ordering and IRQ handler
code generation

Use the checkboxes in front of the column names to configure all interrupts at a time
(see Figure 86). Note that system interrupts are not eligible for init sequence reordering
as the software solution does not control it.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

3

Figure 86. NVIC Code generation — All interrupts enabled

-
@ NVIC Configuration

et

lm‘ Q/? Code generation ’

Enabled interrupt table
Mon maskable interrupt

Select for init sequence ardering

Generate IRQ handler

|Hard fault interrupt

|Memary management fault

||Pre-fetch fault, memory access fault

||Undefined instruction or illegal state

| Debug monitor

ime base: System tick timer
Flash global interrupt

RCC global interrupt

ADC1, ADC2 and ADC3 global interrupts

CAN1TX interrupts

12C1 eventinterrupt

<< ===

EEEEEEEEEEEE

Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)

Rank Interrupt name
1 Flash global interrupt
2 RCC global interrupt
3 ADC1, ADC2 and ADC3 global interrupts
4 CAN1TX interrupts
5 12C1 eventinterrupt

[_#emty] |

H Cancel l

Default initialization sequence of interrupts
By default, the interrupts are enabled as part of the peripheral MSP initialization
function, after the configuration of the GP1Os and the enabling of the peripheral clock.

This is shown in the CAN example below, where HAL_NVIC_SetPriority and
HAL_NVIC_EnablelRQ functions are called within stm32xxx_hal_msp.c file inside the

peripheral msp_init function.

Interrupt enabling code is shown in green.
void HAL_CAN_MspInit (CAN_HandleTypeDef* hcan)

{

GPIO_InitTypeDef GPIO_InitStruct;

if (hcan->Instance==CAN1)
{

/* Peripheral clock enable */

__ CAN1_CLK_ENABLE() ;

/**CAN1 GPIO Configuration

DoclD025776 Rev 21

111/276

STM32CubeMX User Interface

112/276

UM1718
PDO —--——-— > CAN1_RX
130 A ————— > CAN1_TX
*/

GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_CANI1;
HAL_GPIO_Init (GPIOD, &GPIO_InitStruct);

/* Peripheral interrupt init */

HAL_NVIC_SetPriority (CAN1_TX_TIRQn, 2, 2);

HAL_NVIC_EnableIRQ (CAN1_TX_TIRQn) ;

}
}

For EXTI GPIOs only, interrupts are enabled within the MX_GPIO_Init function:
/*Configure GPIO pin : MEMS_INT2_Pin */

GPIO_InitStruct.Pin = MEMS_INT2_Pin;

GPIO_InitStruct.Mode = GPTO_MODE_EVT_RISING;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init (MEMS_INT2_GPIO_Port, &GPIO_InitStruct);

/* EXTI interrupt init*/
HAL_NVIC_SetPriority (EXTI15_10_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (EXTI15_10_IRQn);

For some peripherals, the application still needs to call another function to actually
activate the interruptions. Taking the timer peripheral as an example, the
HAL_TIM_IC_Start_IT function needs to be called to start the Timer input capture (IC)
measurement in interrupt mode.
Configuration of interrupts initialization sequence
Checking Select for Init sequence ordering for a set of peripherals moves the
HAL_NVIC function calls for each peripheral to a same dedicated function, named
MX_NVIC_lInit, defined in the main.c. Moreover, the HAL_NVIC functions for each
peripheral are called in the order specified in the Code generation view bottom part
(see Figure 87).
As an example, the configuration shown in Figure 87 generates the following code:

/** NVIC Configuration

*/

void MX_NVIC_Init (void)

{
/* CAN1_TX_IRQn interrupt configuration */
HAL_NVIC_SetPriority (CAN1_TX IRQn, 2, 2);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn) ;
/* PVD_IRQn interrupt configuration */
HAL_NVIC_SetPriority (PVD_IRQn, 0, 0);

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

3

HAL_NVIC_EnableIRQ (PVD_IRQn) ;

/* FLASH_IRQn interrupt configuration */
HAL_NVIC_SetPriority(FLASH_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(CAN1_IRQn) ;

/* RCC_IRQn interrupt configuration */
HAL_NVIC_SetPriority (RCC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (CAN1_IRQn) ;

/* ADC_IRQn interrupt configuration */
HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (ADC_IRQn) ;

Figure 87. NVIC Code generation — Interrupt initialization sequence configuration

& NVIC Configuration

I dmﬂc JCodegenerab‘onl

Enabled interrupt table
| maskable interrupt

[Select for init sequence ordering

[7] Generate IRQ handler

|Hard fault interrupt

|[Mernory management fault

|F’re~feﬁda fault, memory access fault

|undefined instruction or illegal state

VD interrupt through EXTI line 16

|Flash global interrupt

|RCC global interrupt

1 SISISIS

|ADC1, ADC2 and ADC3 global interrupts
CAN1TX interrupts

HEENEEEEEE0O

O

[EXTI line[15: 10] interrupts

l IM1 capture compare interrupt

S

Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)

(DI ETIEN]

ADC1, |JADC2 and ADC3 global interrupts

(e J[ok][concel] |

Interrupts handler code generation

DoclD025776 Rev 21

113/276

STM32CubeMX User Interface UM1718

By default, STM32CubeMX generates interrupt handlers within the stm32xxx_it.c file.
As an example:
void NMI_Handler (void)
{
HAL_RCC_NMI_TIRQHandler () ;
}
void CAN1_TX IRQHandler (void)
{
HAL_CAN IRQHandler (&hcanl);
}
The column Generate IRQ Handler allows controlling whether the interrupt handler
function call shall be generated or not. Deselecting CAN1_TX and NMI interrupts from

the Generate IRQ Handler column as shown in Figure 87 removes the code
mentioned earlier from the stm32xxx_it.c file.

Figure 88. NVIC Code generation — IRQ Handler generation

[& NVIC Configuration E
wNv[c QﬂCode generation {

Enabled interrupt table [7] select for init sequence ordering [Generate IRQ handler
Non maskable interrupt
”Hard fault interrupt
| Memory management fault
| Pre-fetch fault, memory access fault
|{Undefined instruction or illegal state
i[Debug monitor
|
|

ime base: System tick timer
PVD interrupt through EXTI line 16
[Flash global interrupt

IRCC global interrupt]
ADC1, ADC2 and ADC3 global interrupts]

LN EEREEREEEE

Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)

Rank Interrupt name

114/276 DoclD025776 Rev 21 ‘Yl

UM1718 STM32CubeMX User Interface

4.12.6 FreeRTOS middleware configuration view

Through STM32CubeMX FreeRTOS configuration window, the user can configure all the
resources required for a real-time OS application and reserve the corresponding heap.
FreeRTOS elements are defined and created in the generated code using CMSIS-RTOS
API functions. Follow the sequence below:

1. In the Configuration tab, enable FreeRTOS from the tree view.

2. Click FreeRTOS in the Configuration pane to open the FreeRTOS configuration
window (see Figure 89).

All tabs but the User Constants tab allow configuring FreeRTOS native configuration
parameters and objects, such as tasks, timers, queues, and semaphores.

The Config parameters values allow configuring Kernel and Software settings.

The Include parameters tab allows selecting only the API functions required by the
application and thus optimizing the code size.

Both Config and Include parameters will be part of the FreeRTOSConfig.h file.

Figure 89. FreeRTOS configuration view

. -
o FREERTOS Configuration S
[ofuserconstants | o/ Tasks and Queues | /7 Timers and Semaphares | / FreeRTOS Heap Usage
Q@ Config parameters | Q/’ Indude parameters

Configure the following parameters:

Search : | Search (Crtl+F) ¥ &
=] Versions -

CMSIS-RTOS version 1.02 I

FreeRTOS version 3.2.3 E I
= Kernel settings
e = I

CPU_CLOCK_HZ SystemCoreClock

TICK_RATE_HZ 1000

MAX_PRIORITIES 7

MIMIMAL_STACK_SIZE 128 Words

MAX_TASK_NAME_LEN 16

USE_16_BIT_TICKS Disabled

IDLE_SHOULD_YIELD Enabled

USE_MUTEXES Enabled ~

USE_PREEMPTION

configUSE_PREEMPTION

Parameter Description:

Set to 1 to use the preemptive RTOS scheduler, or 0 to use the cooperative RTOS scheduler.

[Apply] [Ck] [Cancel

3

DoclD025776 Rev 21 115/276

STM32CubeMX User Interface UM1718

116/276

Tasks and Queues Tab

As any RTOS, FreeRTOS allows structuring a real-time application into a set of independent
tasks, with only one task being executed at a given time. Queues are meant for inter-task
communications: they allow to exchange messages between tasks or between interrupts
and tasks.

In STM32CubeMX, the FreeRTOS Tasks and Queues tab allows creating and configuring
such tasks and queues (see Figure 90). The corresponding initialization code will be
generated within main.c or freeRTOS.c if the option “generate code as pair of .c/.h files per
peripherals and middleware” is set in the Project Settings menu.

The corresponding initialization code will be generated within main.c by default or within
freeRTOS.c if the option “generate code as pair of .c/.h files per peripherals and
middleware” is set in the Project Settings menu.

Figure 90. FreeRTOS: configuring tasks and queues

-
FREERTOS Configuration ==
| Q/‘ Config parameters | Q/‘ Incude parameters | Q" User Constants |Q‘ Tasks and Queues | Q{“Tlmers and Semaphores|
r Tasks
Mame Priority Stack Size (Words) Entry Function Code Generation Option
defaultTask osPriorityMormal 128 StartDefaultTask Default
ol | Task_a osPriorityHigh 128 StartTask_A Default f
Task_B osPriorityLow 256 StartTask_B Default
|| GQueues I
| MName Queue Size Item Size
myQueue_1 | 16 |4 |
myQueus_2 |32 |z |
[Apply] [Ok] [Cancel]
e Tasks

Under the Tasks section, click the Add button to open the New Task window where
task name, priority, stack size and entry function can be configured (see Figure 91).
These settings can be updated at any time: double-clicking a task row opens again the
new task window for editing.
The entry function can be generated as weak or external:
— When the task is generated as weak, the user can propose another definition than
the one generated by default.

— When the task is extern, it is up to the user to provide its function definition.
By default, the function definition is generated including user sections to allow
customization.

e Queues

Under the Queues section, click the Add button to open the New Queue window
where the queue name, size and item size can be configured (see Figure 917). The

DoclD025776 Rev 21 ‘Yl

UM1718 STM32CubeMX User Interface

queue size corresponds to the maximum number of items that the queue can hold at a
time, while the item size is the size of each data item stored in the queue. The item size
can be expressed either in number of bytes or as a data type:

e 1 byte for uint8 _t, int8 t, char and portCHAR types

e 2 bytes for uint16_t, int16_t, short and portSHORT types
e 4 bytes for uint32_t, int32_t, int, long and float

e 8 bytes for uint64_t, int64_t and double

By default, the FreeRTOS heap usage calculator uses 4 bytes when the item size can
not be automatically derived from user input.

These settings can be updated at any time: double-clicking a queue row opens again
the new queue window for editing.

Figure 91. FreeRTOS: creating a new task

r B
© FREERTOS Configuration P—— R o]

| | Q{q Config parameters | Q{q Indude parameters | Q") User Constants | Q[?Tasks and Queves | Q:f?'l'lmers and Semaphoresl & FreeRTOS Heap Usage

=] Summary
HEAP STILL AVAILABLE 0 Bytes
TOTALHEAPUSED [|
Total amount for tasks 14316 Bytes
Total amount for gueues 724 Bytes
Total amount for timers 96 Bytes
Total amount for mutexes and semaphores 352 Bytes
= FreeRTOS tasks
Idle task (FreeRTOS internal) 632 Bytes
Timer service task (FreeRTOS internal) 1144 Bytes
defaultTask 3920 Bytes
myTask02 4120 Bytes
=] FreeRTOS queues
Timer command gueue (FreeRTOS internal) 212 Bytes
myQueusdl 512 Bytes
=] FreeRTOS timers
myTimerd1l 48 Bytes
myTimerQd2 45 Bytes
[=] FreeRTOS mutexes ans semaphores
myMutex(1 88 Bytes
myRecursiveMutexd1 38 Bytes
myBinarySem01l 38 Bytes
myCountingSemd1 88 Bytes
TOTAL HEAP USED -
Total amount of the heap used by known objects {user objects, internal freertos objects) v
WARNING
Current computed value is greater than the configTOTAL_HEAP_SIZE value set in Config parameters tab =
To avoid runtime issues, you should increase config_TOTAL_HEAP_SIZE, remove adjust some defined objects (tasks, gueues, timers, mutexes, semaphores)
or change the Memory Management scheme to heap_3
More about FreeRTOS Heap:
FreeRTOS uses a region of memory called Heap (into the RAM) to allocate memory for tasks, queues, timers, semaphores, mutexes and when dynamically
creating variables.
(FreeRTOS heap is different than the system heap defined at the compier level)
The total amonnt af that availahle hean snare is set hv confinTOTAI HFAP ST7F which is defined in FreeRTOSCanfin.h. i

Apply] [Ok] [Cancel

3

DoclD025776 Rev 21 117/276

STM32CubeMX User Interface UM1718

Note:

118/276

The following code snippet shows the generated code corresponding to Figure 90:
FreeRTOS: configuring tasks and queues.

/* Create the thread(s) */

/* definition and creation of defaultTask */
osThreadDef (defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate (osThread(defaultTask), NULL) ;

/* definition and creation of Task_A */
osThreadDef (Task_A, StartTask_A, osPriorityHigh, 0, 128);
Task_AHandle = osThreadCreate(osThread(Task_A), NULL) ;

/* definition and creation of Task_ B */
osThreadDef (Task_B, StartTask_B, osPriorityLow, 0, 256);
Task_BHandle = osThreadCreate(osThread(Task_B), NULL) ;

/* Create the queue(s) */
/* definition and creation of myQueue_1 */
osMessageQDef (myQueue_1, 16, 4);

myQueue_lHandle = osMessageCreate (osMessageQ (myQueue_1), NULL) ;

/* definition and creation of myQueue_2 */
osMessageQDef (myQueue_2, 32, 2);

myQueue_2Handle = osMessageCreate (osMessageQ (myQueue_2), NULL) ;

Timers, Mutexes and Semaphores

FreeRTOS timers, mutexes and semaphores can be configured via the FreeRTOS Timers
and Semaphores tab (see Figure 92).

Under each object dedicated section, clicking the Add button to open the corresponding
New <object> window where the object specific parameters can be specified. Object
settings can be modified at any time: double- clicking the relevant row opens again the New
<object> window for edition.

Expand the window if the newly created objects are not visible.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 92. FreeRTOS - Configuring timers, mutexes and semaphores

~
FREERTOS Configuration &
. DhOFES o/ FreeRTOS Heap Usage
Timers
MName Callback Type Code Generation Option
myTimerQ1 Callbacko1 josTimerPeriodic Default | =
myTimerD2 Callback02 losTimerOnce |Default o
[add | [Delete |
Mutexes -
Name
myMutexd1
[add | [Delete |
Recursive Mutexes -
Name
myRecursiveMutex0 1
[Add | [Delete
Binary Semaphores -
Name
myBinarySem01
[add | [Delete |
Counting Semaphores -
Name: Count
myCountingSem0 1 |7
[Add | [Delete |
[Aoy | [ok | [cancel |
i
e Timers

Prior to creating timers, their usage (USE_TIMERS definition) must be enabled in the
software timer definitions section of the Configuration parameters tab. In the
same section, timer task priority, queue length and stack depth can be also configured.

The timer can be created to be one-shot (run once) or auto-reload (periodic). The timer
name and the corresponding callback function name must be specified. It is up to the
user to fill the callback function code and to specify the timer period (time between the
timer being started and its callback function being executed) when calling the CMSIS-
RTOS osTimerStart function.

e Mutexes/Semaphores

Prior to creating mutexes, recursive mutexes and counting semaphores, their usage
(USE_ MUTEXES, USE_RECURSIVE_MUTEXES,
USE_COUNTING_SEMAPHORES definitions) must be enabled within the Kernel
settings section of the Configuration parameters tab.

The following code snippet shows the generated code corresponding to Figure 92:
FreeRTOS - Configuring timers, mutexes and semaphores).

/* Create the semaphores(s) */
/* definition and creation of myBinarySem0l */
osSemaphoreDef (myBinarySem01) ;

myBinarySemOlHandle = osSemaphoreCreate (osSemaphore (myBinarySem01l), 1);

/* definition and creation of myCountingSem01l */

3

DoclD025776 Rev 21 119/276

STM32CubeMX User Interface UM1718

120/276

osSemaphoreDef (myCountingSem01) ;

myCountingSem0lHandle = osSemaphoreCreate (osSemaphore (myCountingSem01l),
7);

/* Create the timer(s) */
/* definition and creation of myTimerQ0l */
osTimerDef (myTimer01l, Callback01l);

myTimerOlHandle = osTimerCreate (osTimer (myTimer0l), osTimerPeriodic,
NULL) ;

/* definition and creation of myTimer02 */
osTimerDef (myTimer02, Callback02);

myTimerO2Handle = osTimerCreate (osTimer (myTimer02), osTimerOnce, NULL) ;

/* Create the mutex(es) */
/* definition and creation of myMutex01l */
osMutexDef (myMutex01) ;

myMutex0lHandle = osMutexCreate (osMutex (myMutex01)) ;

/* Create the recursive mutex(es) */
/* definition and creation of myRecursiveMutex01l */
osMutexDef (myRecursiveMutex01) ;

myRecursiveMutex0lHandle =
osRecursiveMutexCreate (osMutex (myRecursiveMutex01)) ;

FreeRTOS heap usage

The FreeRTOS Heap usage tab displays the heap currently used and compares it to the
TOTAL_HEAP_SIZE parameter set in the Config Parameters tab. When the total heap
used crosses the TOTAL _HEAP_SIZE maximum threshold, it is shown in red and a red
cross appears on the tab (see Figure 93).

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 93. FreeRTOS Heap usage
& FREERTOS Configuration Pw =5

I|| q'? Config parameters | q'? Indude parameters | q'? User Constants | Q?Tasks and Queues | q'? Timers and Semaphores | K FreeRTOS Heap Usage

= Summary
HEAP STILL AVAILABLE 0 Bytes
TOTALHEAPUSED ||
Total amount for tasks 14816 Bytes
Total amount for queues 724 Bytes
Total amount for timers 96 Bytes
Total amount for mutexes and semaphores 352 Bytes
[=] FreeRTOS tasks
Idle task (FreeRTOS internal) 632 Bytes
Timer service task (FreeRTOS internal) 1144 Bytes
Il | defaultTask 8920 Bytes
myTask02 4120 Bytes
= FreeRTOS queues
Timer command queue (FreeRTOS internal) 212 Bytes
i myQueuell 512 Bytes
= FreeRTOS timers
myTimerQ1 43 Bytes
myTimer02 45 Bytes
[= FreeRTOS mutexes ans semaphores
myMutex01 85 Bytes
myRecursiveMutex01 88 Bytes
myBinarySemd1 88 Bytes
myCountingSem01 85 Bytes I
TOTAL HEAP USED -
Total amount of the heap used by known objects {user objects, internal freertos objects) y
WARNING
Current computed value is greater than the configTOTAL_HEAP_SIZE value setin Config parameters tab ﬂ
To avoid runtime issues, you should increase config_TOTAL_HEAP_SIZE, remove fadjust some defined objects (tasks, queues, timers, mutexes, semaphores) |
or change the Memory Management scheme to heap_3
More about FreeRTOS Heap:
FreeRTOS uses a region of memory called Heap (into the RAM) to allocate memoary for tasks, queues, timers, semaphores, mutexes and when dynamically
creating variables.
(FreerTOS heap i different than the system heap defined at the compier leve))
The total amoint of that availahle hean snare is set hv confinTOTAI HFAP STZF which is defined in FreeRTOSConfin.h. 3

[Apply] [Ok] [Cancel

3

DoclD025776 Rev 21 121/276

STM32CubeMX User Interface UM1718

413

4131

122/276

Clock tree configuration view

STM32CubeMX Clock configuration window (see Figure 94) provides a schematic
overview of the clock paths, clock sources, dividers, and multipliers. Drop-down menus and
buttons allow modifying the actual clock tree configuration to meet user application
requirements.

Actual clock speeds are displayed and active. The clock signals that are used are
highlighted in blue.

Out-of-range configured values are highlighted in red to flag potential issues. A solver
feature is proposed to automatically resolve such configuration issues (see Figure 95).

Reverse path is supported: just enter the required clock speed in the blue filed and
STM32CubeMX will attempt to reconfigure multipliers and dividers to provide the requested
value. The resulting clock value can then be locked by right clicking the field to prevent
modifications.

STM32CubeMX generates the corresponding initialization code:

e main.c with relevant HAL_RCC structure initializations and function calls

e stm32xxxx_hal_conf.h for oscillator frequencies and Vpp values.

Clock tree configuration functions

External clock sources

When external clock sources are used, the user must previously enable them from the
Pinout view available under the RCC peripheral.

Peripheral clock configuration options

Some other paths, corresponding to clock peripherals, are grayed out. To become active,
the peripheral must be properly configured in the Pinout view (e.g. USB). This view allows
to:

e Enter a frequency value for the CPU Clock (HCLK), buses or peripheral clocks

STM32CubeMX tries to propose a clock tree configuration that reaches the desired
frequency while adjusting prescalers and dividers and taking into account other
peripheral constraints (such as USB clock minimum value). If no solution can be found,
STM32CubeMX proposes to switch to a different clock source or can even conclude

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

that no solution matches the desired frequency.
e Lock the frequency fields for which the current value should be preserved

Right click a frequency field and select Lock to preserve the value currently assigned
when STM32CubeMX will search for a new clock configuration solution.

The user can unlock the locked frequency fields when the preservation is no longer
necessary.

e Select the clock source that will drive the system clock (SYSCLK)
— External oscillator clock (HSE) for a user defined frequency.
— Internal oscillator clock (HSI) for the defined fixed frequency.
— Main PLL clock
e Select secondary sources (as available for the product)
— Low-speed internal (LSI) or external (LSE) clock
— 12S input clock
e Select prescalers, dividers and multipliers values.
e Enable the Clock Security system (CSS) on HSE when it is supported by the MCU

This feature is available only when the HSE clock is used as the system clock source
directly or indirectly through the PLL. It allows detecting HSE failure and inform the
software about it, thus allowing the MCU to perform rescue operations.

e Enable the CSS on LSE when it is supported by the MCU

This feature is available only when the LSE and LSI are enabled and after the RTC or
LCD clock sources have been selected to be either LSE or LSI.

e Reset the Clock tree default settings by using the toolbar Reset button (@):
This feature reloads STM32CubeMX default clock tree configuration.

¢ Undo/Redo user configuration steps by using the toolbar
Undo/Redo buttons (., .)

e Detect and resolve configuration issues

Erroneous clock tree configurations are detected prior to code generation. Errors are
highlighted in red and the Clock Configuration view is marked with a red cross (see
Figure 95).

Issues can be resolved manually or automatically by clicking the Resolve Clock Issue
button (&) which is enabled only if issues have been detected.

The underlying resolution process follows a specific sequence:
a) Setting HSE frequency to its maximum value (optional).

b) Setting HCLK frequency then peripheral frequencies to a maximum or minimum
value (optional).

c) Changing multiplexers inputs (optional).

d) Finally, iterating through multiplier/dividers values to fix the issue. The clock tree is

cleared from red highlights if a solution is found. Otherwise an error message is
displayed.

Note: To be available from the clock tree, external clocks, 12S input clock, and master clocks shall
be enabled in RCC configuration in the Pinout view. This information is also available as
tooltips.

3

DoclD025776 Rev 21 123/276

STM32CubeMX User Interface UM1718

124/276

The tool will automatically perform the following operations:

e Adjust bus frequencies, timers, peripherals and master output clocks according to user
selection of clock sources, clock frequencies and prescalers/multipliers/dividers values.

e Check the validity of user settings.

e Highlight invalid settings in red and provide tooltips to guide the user to achieve a valid
configuration.

The Clock tree view is adjusted according to the RCC settings (configured in RCC pinout
and configuration views) and vice versa:

e Ifin RCC Pinout view, the external and output clocks are enabled, they become
configurable in the clock tree view.

e Ifin RCC Configuration view, the Timer prescaler is enabled, the choice of Timer clocks
multipliers will be adjusted.

Conversely, the clock tree configuration may affect some RCC parameters in the
configuration view:

e Flash latency: number of wait states automatically derived from Vpp voltage, HCLK
frequency, and power over-drive state.

e Power regulator voltage scale: automatically derived from HCLK frequency.
e Power over-drive is enabled automatically according to HCLK frequency. When the

power drive is enabled, the maximum possible frequency values for AHB and APB
domains are increased. They are displayed in the Clock tree view.

The default optimal system settings that is used at startup are defined in the
system_stm32f4xx.c file. This file is copied by STM32CubeMX from the STM32CubeF4
firmware package. The switch to user defined clock settings is done afterwards in the main
function.

Figure 94 gives an example of Clock tree configuration view for an STM32F429x MCU and
Table 12 describes the widgets that can be used to configure each clock.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface

Figure 94. STM32F429xx Clock Tree configuration view
(& sTM32CubeMX Untitied: STM32FA29VITx =] e

File Project Clock C Window Help

EebdR: d5: aqa-00: 7392 3

Pinout | Clock Configuration | Configuration | Power Consumption Calculator | DB Editor |

RTC Clock Mux
HEE RTC

LSI RC
Y To TWDG (KHz)

HSE

0-1000 KHz

16 Ethernet PTP clock (MHz)
HCLK to AHB bus, core,
ra et

32 KHz
System Clock Mixx o= 1& | To Cortex System timer (MHz]
HSIRC N
e 5 Jraxcommdktonn
18 Mz SYSOLK [MHZ) | AHE Prescsler HOLK (MHz) APEA Prescsier =
. i APE1 peripheral clocks (MHz)|
T80 Wz max
PLL Source Mux ¢ APB1 Timer clocks (MHz)
~ 1’
APE2 peripheral clocks (MHz)|
= prre— Enatis C58
™ N APE2 timer clocks (MHz)
426 MHz a8 48MHz docks (MHz)
P 125 source Mux
ain
Bk | ™
L
. 125 clocks (MHz)
PLLIZSLK
SAI1-A source Mix
PUDSAK ——— pupsaKk |
It~
PLLIZS Q
. = » ox SAL-A clocks (MHz)
MCO2 source Mux
PLLSAICLK
~| _svsax
@]
PUIZSOK -

Figure 95. Clock Tree configuration view with errors

File Project Clock Configuration Window Help
HeRER &5 4qa2c00: 29§

3 Clock Configuration | Configuration | Pawer Consumption Calaulator |

RTC Clock Mux

TR
-
s Co2 TnRTC(KHz)

P s | 16 |Eﬂ|ernet PTP dlock (MHz)
LS RC l—> @
HCLK to AHB bus, core,
= To IWDG (KHz) memory and DMA (MHz)
32 KHz
e et Clock Hus [e o Cortex Systemtimer i) |=
.
HS
b FCLK Cortex clock (MHz)
16 MHz SYSCLK (MHZ) | AHE Prascaler HOLK (MHz) APBL Prascaler
_HSE| E PCLKL -
B { - pryv—.. 4 APB1 peripheral clocks (MHz)|
180 MHz max
PLL Source Mux PLLOLK ‘ T & APB1 Timer clocks (MHz)
Clack configuration L=
APB2 peripheral clocks (MHz)
Input frequency - X3% - @ Do you want to run automatic clock issues solver ?
N APB2 timer clocks (MHz) L4
Otherwise you can doiit later by dicking on button "Resolve Clock Issues” @)
26 MHz 48MHz clocks (MHz)
Main PLL
[] Do not show this message again,
[Remember my dedision for next projects. 125 clocks (MHz)
* 152
n
g . Tl W
Input fregquency
put freguency PLLIZS I ik -

3

DoclD025776 Rev 21 125/276

STM32CubeMX User Interface

UM1718

126/276

Table 12. Clock tree view widget

Format

Configuration status of the Peripheral

Instance
HSIRC
- Active clock sources
Unavailable settings are blurred or grayed out
(clock sources, dividers,...)
+ -
AHE Prescaler Gray drop down lists for prescalers, dividers,
Y . multipliers selection.
» X1 - Multiplier selection
H5E O&C
L5 ¢ User defined frequency values
HCLK {MHz)

48

Automatically derived frequency values

User-modifiable frequency field

Right click blue border rectangles, to lock/unlock
a frequency field. Lock to preserve the frequency
value during clock tree configuration updates.

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface

4.13.2 Recommendations

The Clock tree view is not the only entry for clock configuration.

1. Go first through the RCC pinout configuration in the Pinout view to enable the clocks
as needed: external clocks, master output clocks and Audio 12S input clock when
available (see Figure 96).

Figure 96. Clock tree configuration: enabling RTC, RCC Clock source
and outputs from Pinout view

_
& STM32CubeMX Untitled*: STM32F420VTTx [E=RE

File Project Pinout Window Help
BEoRUR: &9

Finout | Clock Configuration | Configuration I Power Consumption Caloulator

[) 1203 =
[+ & 1252

[#- & 1283

[& IWDG

[& LTDC

B RCC

-~ High Speed Clock (HSE) | BYPASS Clock Source -
--Low Speed Clodk (LSE) :CrysEIICeramic Resonator -
----- Master Clock Output 1

----- audio Clock Input (125_CKIN)
[f- & RNG
E- @ RTC
----- Activate Clock Source M

L= CHIN

m

----- [Activate Calendar
----- Alarm A |Disable
----- Alarm B | Disable

--\WakeUp | Disable

----- Timestamp Routed to AF1

----- [] Tamper1 Routed to AF1

--Calibration :Disable -

----- [] Reference dock detection

[& SAT1 ¥

3

DoclD025776 Rev 21 1271276

STM32CubeMX User Interface UM1718

2. Then go to the RCC configuration in the Configuration view. The settings defined
there for advanced configurations will be reflected in the clock tree view. The settings
defined in the clock tree view may change the settings in the RCC configuration (see
Figure 97).

Figure 97. Clock tree configuration: RCC Peripheral Advanced parameters

RCC Conﬁgurati_on‘ - @

Ec\\:ﬁ‘ Parameter Settings | Q/‘ NVIC Settings

Configure the below parameters :

El System Parameters

i VDD voltage (V) 3.3V
Instruction Cache Enabled
Prefetch Buffer Enabled
] Data Cache Enabled
Flash Latency(Ws) 0WsS {1 CPU cyde)
=l RCC Parameters |
| HSI Calibration Value & i
TIM Prescaler Selection Disabled

=l Power Parameters
Power Regulatror Voltage Scale Power Regulator Voltage Scale 3 i

Power Qver Drive Disabled

[Apply] [Ok] [Cancel

413.3 STM32F43x/42x power-over drive feature

STM32F42x/43x MCUs implement a power over-drive feature allowing to work at the
maximum AHB/APB bus frequencies (e.g., 180 MHz for HCLK) when a sufficient Vpp
supply voltage is applied (e.g Vpp > 2.1 V).

Table 13 lists the different parameters linked to the power over-drive feature and their
availability in STM32CubeMX user interface.

3

128/276 DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

3

Table 13. Voltage scaling versus power over-drive and HCLK frequency

Parameter

STM32CubeMX panel

Value

Vpp voltage

Configuration (RCC)

User-defined within a predefined range. Impacts
power over-drive.

Power Regulator
Voltage scaling

Configuration (RCC)

Automatically derived from HCLK frequency and
power over-drive (see Table 14).

Power Over Drive

Configuration (RCC)

This value is conditioned by HCLK and Vpp value
(see Table 14). It can be enabled only if
Vpp222V

When Vpp 22.2 'V, it is either automatically
derived from HCLK or it can be configured by the
user if multiple choices are possible (e.g., HCLK
=130 MHz)

HCLK/AHB clock
maximum frequency
value

Clock Configuration

Displayed in blue to indicate the maximum
possible value. For example: maximum value is
168 MHz for HCLK when power over-drive
cannot be activated (when Vpp £2.1V),
otherwise it is 180 MHz.

APB1/APB2 clock
maximum frequency
value

Clock Configuration

Displayed in blue to indicate maximum possible
value

Table 14 gives the relations between power-over drive mode and HCLK frequency.

Table 14. Relations between power over-drive and HCLK frequency

HCLK frequency range: . .
- Corresponding voltage scaling and power
Vpp > 2.1 V required to enable power over- over-drive (POD)
drive (POD)
Scale 3
<120 MH
z POD is disabled
Scale 2

120 to 14 MHz

POD can be either disabled or enabled

144 to 168 MHz

Scale 1 when POD is disabled
Scale 2 when POD is enabled

168 to 180 MHz

POD must be enabled

Scale 1 (otherwise frequency range not
supported)

DoclD025776 Rev 21

129/276

STM32CubeMX User Interface UM1718

4.13.4 Clock tree glossary

Table 15. Glossary

Acronym Definition
HSI High Speed Internal oscillator: enabled after reset, lower accuracy than
HSE.
HSE High Speed External oscillator: requires an external clock circuit.
PLL Phase Locked Loop: used to multiply above clock sources.
LS| L.ow Speed Internal clock: low power clocks usually used for watchdog
timers.
LSE Low Speed External clock: powered by an external clock.
SYSCLK System clock
HCLK Internal AHB clock frequency
FCLK Cortex free running clock
AHB Advanced High Performance Bus
APB1 Low speed Advanced Peripheral Bus
APB2 High speed Advanced Peripheral Bus

414 Power Consumption Calculator view

For an ever-growing number of embedded systems applications, power consumption is a
major concern. To help minimizing it, STM32CubeMX offers the Power Consumption
Calculator tab (see Figure 98), which, given a microcontroller, a battery model and a user-
defined power sequence, provides the following results:

130/276

Average current consumption

Power consumption values can either be taken from the datasheet or interpolated from
a user specified bus or core frequency.

Battery life

Average DMIPs

DMIPs values are directly taken from the MCU datasheet and are neither interpolated
nor extrapolated.

Maximum ambient temperature (Tapmax)

According to the chip internal power consumption, the package type and a maximum

junction temperature of 105 °C, the tool computes the maximum ambient temperature
to ensure good operating conditions.

Current Tapax implementation does not account for I/O consumption. For an accurate
Tamax estimate, /0 consumption must be specified using the Additional Consumption
field. The formula for I/O dynamic current consumption is specified in the
microcontroller datasheet.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

The Power Consumption Calculator view allows developers to visualize an estimate of
the embedded application consumption and lower it further at each power sequence step:

e Make use of low power modes when any available
e Adjust clock sources and frequencies based on the step requirements.
e Enable the peripherals necessary for each phase.

For each step, the user can choose VBUS as possible power source instead of the battery.
This will impact the battery life estimation. If power consumption measurements are
available at different voltage levels, STM32CubeMX will also propose a choice of voltage
values (see Figure 102).

An additional option, the transition checker, is available for STM32L0, STM32L1 and
STM32L4 Series. When it is enabled, the transition checker detects invalid transitions within
the currently configured sequence. It ensures that only possible transitions are proposed to
the user when a new step is added.

4141 Building a power consumption sequence
The default starting view is shown in Figure 98.
Figure 98. Power Consumption Calculator default view
STM32CubeMX Untitled: STM32L475VGTx = e |

File Project Power Window Help
i1 HE @G T:9 e ippig

| Pinaut | Clock Configuration | Configuration | Power Consumption Calculator | DB Editor |

Series
Line
mMcu

Battery
In Series
In Parallel

Capadty

Help

Microcontroller Selected (&) 4) M

Datasheet

Parameter Selection \ Q)
Ambient Temp... | 25 -
dd Power Su... | —Choose— =

Battery Selection

0.0 mAh

Self Discharge 0.0 %&/month
Mominal Voltage 0.0V

Max Cont Curr...0.0 mA

Max Pulse Cur... 0.0 mA

Information Notes ¥

4 | 5tep Transitions Checker

il

A

Sequence
[X [» (7

5TM32L4 rSequence Table

STM32L4x5 .
STM32L475VGTX Step Mode Vdd Ran... Mem... CPU.. Cloc... Src... Peri.. Add.. Step... Dur.. DMIPS Volt... TaMax Cat...

027692 _Revi

Display
’V Plot: All Steps ?

»)

Mot set

@

3

DoclD025776 Rev 21 131/276

STM32CubeMX User Interface UM1718

Selecting a Vpp value

From this view and when multiple choices are available, the user must select a Vpp value.

Selecting a battery model (optional)

Optionally, the user can select a battery model. This can also be done once the power
consumption sequence is configured.

The user can select a predefined battery or choose to specify a new battery that best
matches his application (see Figure 99).

Figure 99. Battery selection

File Project Power Window Help

1 UR &0: 9« I S

Finout I Clock Configuration I Config

Available batteries:

Mi troller Salacted
feracantrafier selacts Battery Database Management Add Battery

Serie: 5TM
Line: 5TM.
MCU: STM,
Datasheet: 0253

Available Batteries List
MName Capacity (mAh) Self Discharge (%... Mominal Voltage (V) Max Cont Current... Max Pulse Curren... Datsbase

Parameter Selection Alkaline(AAA LROZ)] X . T ¥ Default

. Alkaline(C LR.14) x 2 . X Default
Ambient Temperature (°C): |2 Alkaline (D LR.20) L

| ; Default
vdd Power Supply (V): 3 Alkaline(9v) . Add battery: X Default

Li-MnO2| . ' Default
1 Mame Battery_29 T

Li-MnO2| Default
Battery Selection Li-MnO2| . Capacity (mah) 0.0 1 Default
Li-MnO2(CR2430) 1 ! Default
Select Battery Li-MnO2(CR2477) . Gelf Discharge (Ye/month) 0.0 . Default
Li-SOCL2(AAATDO) 1 ! Default

. Mominal Voltage (V) 0.0
Battery: Li-50CL2(A3400) .) Default

Capacity: Li-50CL2(Co000) . Max Cont Current (mA) . X Default
Self Discharge: .1 | Li-socL2(p1g000) X : Default
Nominal Voltage: || Lisoci2(ppas000) [tadESaisnral Default
Ni-Cd{AA1100) - ! Default
Ni-Cd(A1700) - ! Default
Ni-Cd(C3000) - ! Default
Ni-Cd{D4400) - - . ! Default
In Series: Mi-Cd{F7000) x x . X Default
Ni-MH{AAASDD) ! - . ! Default
In Parallel: Ni-MH(AA 1500) . . .) Default
Ni-MH{A2500) 2500.0 . ! Default

Help

Max Cont Current:

Max Pulse Current:

3

132/276 DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Power sequence default view

The user can now proceed and build a power sequence (see Figure 100).

Figure 100. Building a power consumption sequence

Parameter Selection R

Ambient Tem. .. 25
vdd Power 5... 3.0

STM32CubeMX PCC_stm321053_projectioc®: STM32L053C8Tx =NRcN X
File Project Power Window Help

BeELER G 2 0P $
| Plnoutl Clock Configuration | Conﬁgurahon| Power Consumption Calculator

Microcontroller Selec... (&) »| 4 |f5tep Sequence Transitions Checker

: » [o ~
- t L 4 " X | 12 [@] on Log

Series STM32L0 C] :]

Line STM32L0x3 rSequence Table

MCU STM32L053C... .

Datasheet 025844 Reva Step Mode Vdd Ran... Mem... CPU... Cloc.. Src... Peri... Add... Step... Dura... DMIPS Volt.. TaMax Cat...

. Display
Battery Selection &) [Plot: All Steps =
2

m

Battery Alkaline{AA L...
In Series 1=

In Parallel 1=

Capacity 2850.0 mAh

Self Discharge 0.3 Ya/month
Nominal Valt... 1.5V

Max Cont Cu...1000.0 mA
Max Pulse C... 0.0 mA

Information Notes ‘%' —

L Haln (34

Managing sequence steps

Steps can be reorganized within a sequence (Add new, Delete a step, Duplicate a step,
move Up or Down in the sequence) using the set of Step buttons (see Figure 107).

The user can undo or redo the last configuration actions by clicking the Undo button in the
Power Consumption Calculator view or the Undo icon from the main toolbar

Figure 101. Step management functions

Step

=

it JLd (9]

g

Adding a step

There are two ways to add a new step:
e Click Add in the Power Consumption panel. The New Step window opens with empty

step settings.

e Or, select a step from the sequence table and click Duplicate. A New Step window
opens duplicating the step settings. (see Figure 102).

3

DoclD025776 Rev 21

133/276

STM32CubeMX User Interface

UM1718

Figure 102. Power consumption sequence

: new step default view

-

S

@ New Step
-Power Memary |Peripherals -
Power Mode RUN - [| i [l AapC
—_—— | | B2 COMP1
Power Range —Choose-- - O
- : =)= COMP2
Memory Fetch Type [] Fast
Vvad =[] e [7] Show
Voltage Source Battery - ||| [Tl cre
: o | I D CRS
..... DAE
-Clocks O
-----] DBGMCU
CPUFrequency | = |1} D DMA -
Interpolation Ranges | = | |[] - |:| FIREWALL
User Choice(Hz | |l | FLASH
----- [cPIOA
Clock Configuration] GP10B
Clock Source Freguency | = |]| i] GPIOC
----- [cPIOH
-Optional Settngs —M || i [1201
Step Duration 1 :ms - """ D 1ac2
— |1 i D WDG
Additional Consumption] mi - o &
-----] LPTIM1
-Results
s————I| i. | LPUART1
5tep Consumption (0pA] i [7] PVD/BOR
Without Peripherals (opa | "1 PwWR
..... D RNG
Peripherals Part O pA (A: OpA-D: O pa)] RTC
Ta Max (°C) ws] ke [[] sP11
— -
Warnings
b
134/276 DoclD025776 Rev 21 Kys

UM1718

STM32CubeMX User Interface

Once a step is configured, resulting current consumption and Tapax values are provided in

the window.

Editing a step

To edit a step, double-click it in the sequence table. The Edit Step window opens (see

Figure 103).

Figure 103. Edit Step window

-

& Edit Step
F]
e AR]
r Poveer Memory Peripherals i
Power Mode: RUN =\ P [7] anc
r N | N COHP]_
Power Range: Range1-High - 0
: ||| =---- comp2
Memory Fetch Type: FLASH - . [[] Fast
Vd: 3.0 - - [[] Slow
) N I:l CRC
Voltage Source: Battery =] . [crs
..... I:l DAC
rClodg—m — | | I:l DBGMCU
CPU Frequency: 32,0 MHz = Il [pMA
----- FIREWALL E
Interpolation ranges D
..... I:l FLASH
User choice (H2): [[} i [] GPTIOA
il Clock Configuration: HSEBYP PLL = = [7] cPIOB
: 18- [] GPIOC
Clock Source Freguency: | 16.0 MHz = . | GPIOH
| | [| 12C1
rOptional Settngs ———————————————————————————— (| . [(]12C2
|| Step Duration: 1 [| [IwDG
I 1] i LCD
Additional Consumption: 0 mA 0
- 18- [LpTIM1
----- [] LPUARTL
Results
..... I:l WD,"BOR
Step Consumption: | 6.65mA] Ll [PR
Without Peripherals: (6.3ma |7 [C] Rue
..... I:l RTC
Peri Iz Part: 352 pA (A: DpA-D: 352 pA
eripherals Par pA n pA)]] sP11
Ta Max ("C): B 1 1 [7] spP12
----- [SYSCFG i
-Warnings
H

3

DoclD025776 Rev 21

135/276

STM32CubeMX User Interface UM1718

Moving a step

By default, a new step is added at the end of a sequence.

Click the step in the sequence table to select it and use the Up and Down buttons to move it
elsewhere in the sequence.

Deleting a step

Select the step to be deleted and click the Delete button.

Using the transition checker

Not all transitions between power modes are possible. The Power Consumption Calculator
proposes a transition checker to detect invalid transitions or restrict the sequence
configuration to only valid transitions.

Enabling the transition checker option prior to sequence configuration ensures the user will
be able to select only valid transition steps.

Enabling the transition checker option on an already configured sequence will highlight the
sequence in green (green frame) if all transitions are valid (see Figure 104), or in red if at
least one transition is invalid (red frame with description of invalid step highlighted in red)
(see Figure 105).

In this case, the user can click the Show log button to find out how to solve the transition
issue (see Figure 106).

Figure 104. Enabling the transition checker option on an already configured sequence -

all transitions valid

-Step Sequence Transitions Checker
N t (800 [0]| i () (o) (] (BB [o}
- Sequence Table

Step Mode Vdd Ran... Mem... CPU... Cloc... Src... Peri... Add... Step... Dur... DMIPS Volt... Ta... Cat..

1 3.0 Rang... |[FLASH |1004Q... |MS5I 1.0 MHz 0 mA 166.9... [1ms 0.95 Battery (104.97 |[Inter... | =
2 3.0 Rang... |FLASH |8.0 MHz HSEBYP |8.0 MHz 0 mA 1.3mA (1ms 7.6 Battery |104.79 |Datas...

3 3.0 Rang... |[FLASH |8.0 MHz [HSEBYP |8.0 MHz |ADC ... |OmA 3.51mA|1ms 7.6 Battery |104.42 |Datas...

4 SLEEP |3.0 Rang... |FLASH |8.0 MHz HSEBYP |8.0 MHz 0 mA 3830 pA |1ms 7.6 Battery |104.94 [Datas...| =
5 3.0 Rang... |[FLASH |[4.2 MHz [M5I 4.2 MHz |ADC ... |OmA 1.64mA|1ms 3.99 Battery |104.73 |Datas...

5] 3.0 Rang... [FLASH |1200... [HSEBYP |12.0... 0 mA 2.33mA |1 ms 11.4 Battery |104.62 |Inter... | —
7 STOP |3.0 MNoRa... nfa 0 Hz ALL C... |OHz 0 mA 0.41 pA [1ms 0.0 Battery |105 Datas...| ™

136/276

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Figure 105. Enabling the transition checker option on an already configured sequence -
at least one transition invalid

rStep Sequence Transitions Checker
C)= 8)0)| [t e e 9| o [
r Sequence Table
Step Mode Vdd Ran... Mem... CPU... Cloc... Src... Peri... Add.... Step... Dura... DMIPS Volt... TaMax Cat..
1 RLM 3.0 Rang... [FLASH |10000...|MS5L 1.0 MHz 0 mA 166.9... |1 ms 0.95 Battery |104.97 |Inter...
2 RLM 3.0 Rang... [FLASH |3.0 MHz HSEBYP (8.0 MHz 0 mA 1.3mA |1ms 7.6 Battery |104.79 |Datas...
3 RLM 3.0 Rang... |FLASH |3.0 MHz HSEBYP [8.0 MHz [ADC ... [OmA 3.51mA |1 ms 7.6 Battery |104.42 |Datas...
4 SLEEP |3.0 Rang... [FLASH |3.0 MHz HSEBYP (8.0 MHz 0 mA 330 pA |1ms 7.6 Battery |104.94 |Datas...
5 RLM 3.0 Rang... [FLASH |4.2 MHz |M5L 4.2MHz |ADC ... |0 mA 1.64mA |1 ms 3.99 Battery |104.73 |Datas...
5] RLM 3.0 . |FLASH |12000...H5EBYP |12.0 ... 0 mA 2.33mA |1 ms 11.4 Battery |104.62 |Inter...
7 STOP E 0.41pA 1ms Battery
8 3.0 MHz

Figure 106. Transition checker option -show log

@ Log for current sequence

Possible next step

Check transition between step 5 (RUN, Range1-High) and step 6 (STOP, NoRange)

Possible next step(s). RUN [Range1-High, Range2-Medium, Range3-Low]

Possible next step(s). LOWPOWER_RUN [NoRange]
(s} SLEEP [Range1-High, Range2-Medium, Range3-Low]

Possible next step(s). LOWPOWER_SLEEP [NoRange]

Possible next step(s). STOP [NoRange]

————————————=——=—=—==== Transition allowed !

Check transition between step 4 (SLEEP, Range2-Medium} and step 5 (RUN, Range1-High)
Possible next step(s). RUN [Range1-High, Range2-Medium, Range3-Low]
————————————=——=—=—==== Transition allowed !

Check transition between step 6 (STOP, NoRange) and step 7 (SLEEP, Range1-High)
Possible next step(s) WU_FROM_STOP [NoRange]
M| ====================Transition not possible |

m

[Close]

Save in a file

F —_ S ——

3

DoclD025776 Rev 21

137/276

STM32CubeMX User Interface UM1718

4.14.2

138/276

Configuring a step in the power sequence

The step configuration is performed from the Edit Step and New Step windows. The
graphical interface guides the user by forcing a predefined order for setting parameters.

Their naming may differ according to the selected MCU Series. For details on each
parameter, refer to Section 4.14.4: Power sequence step parameters glossary glossary and
to Appendix D: STM32 microcontrollers power consumption parameters or to the electrical
characteristics section of the MCU datasheet.

The parameters are set automatically by the tool when there is only one possible value (in
this case, the parameter cannot be modified and is grayed out). The tool proposes only the
configuration choices relevant to the selected MCU.

Proceed as follow to configure a new step:

1. Click Add or Duplicate to open the New step window or double-click a step from the
sequence table to open the Edit step window.

2. Within the open step window, select in the following order:
— The Power Mode
Changing the Power Mode resets the whole step configuration.
— The Peripherals

Peripherals can be selected/deselected at any time after the Power Mode is
configured.

— The Power scale

The power scale corresponds to the power consumption range (STM32L1) or the
power scale (STM32F4).

Changing the Power Mode or the Power Consumption Range discards all
subsequent configurations.

— The Memory Fetch Type
— The Vpp value if multiple choices available
— The voltage source (battery or VBUS)
— A Clock Configuration
Changing the Clock Configuration resets the frequency choices further down.

— When multiple choices are available, the CPU Frequency (STM32F4) and the
AHB Bus Frequency/CPU Frequency(STM32L1) or, for active modes, a user
specified frequency. In this case, the consumption value will be interpolated (see
Section : Using interpolation).

3. Optionally set
— A step duration (1 ms is the default value)

— An additional consumption value (expressed in mA) to reflect, for example,
external components used by the application (external regulator, external pull-up,
LEDs or other displays). This value added to the microcontroller power
consumption will impact the step overall power consumption.

4. Once the configuration is complete, the Add button becomes active. Click it to create
the step and add it to the sequence table.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Using interpolation

For steps configured for active modes (Run, Sleep), frequency interpolation is supported by
selecting CPU frequency as User Defined and entering a frequency in Hz (see Figure 107).

Figure 107. Interpolated Power Consumption

-

S

% MNew Step
F)
<O
rPower Memory Peripherals -
Power Mode: 'RUN
Power Range: -Range 1-High
Memaory Fetch Type: 'FLASH
Veld: 3.0
Voltage Source: -Battery
rClocks
CPU Frequency: {jeer-defined i
Interpolation ranges -S.EI MHz —-16.0MHz - | |[] |:| FIREWAILL
User choice (Hz): goooooo ||| [ALasH
—— || [] GPTOA
Clock Configuration: HSEEBYP] GPI0B
Clock Source Frequency: BomHz || [[] GPIOC
..... D GPIOH
rOptional Settings —————————————————[| i~ (1201 ;
Step Duration: 1 me ||| (p e
— ||| - [] IWDG i
Additional Consumption: a mA Lo
----- [LPTIM1
R ke [7] LPUART1
Step Consumption: (1.55mA [|]] - [C] rvD/BOR
Without Peripherals: [1.55m& || 7 [Cpwr
..... D RNG
Peripherals Part: O pA (A: O pA-D: 0pA) FRTC
Ta Max ("C): w44 e [sP11
..... [T sPT? | |
Warnings
[Add] [Cancel

3

DoclD025776 Rev 21

139/276

STM32CubeMX User Interface UM1718

Importing pinout

Figure 108 illustrates the example of the ADC configuration in the Pinout view: clicking
Import Pinout in the Power Consumption Calculator view selects the ADC peripheral and
GPIO A (Figure 109).

The Import pinout button 2 allows to automatically select the peripherals that have been
configured in the Pinout view.

Figure 108. ADC selected in Pinout view

File Project Pinout Window Help

B HE & O [[kesp Current Signals Placement = o O — @ 4 Flnd‘ w o, oy =, [V] Show user Label

Pinat | Clock Configuration I Configuration | Power Consumption Caltulah:lr|

onfiguration
=HMiddleWares

| [FATFS

; FREERTOS

ADC1
7m0
N1
P N2
[z
e
NS
e
Oz
- STM32F427VITx
- [Clma LQFP100
Cmio
bt

DINIE ADCI1_IMD |08
ADC1_IN1 |88

NE] apci e [0
-] N14
]S

Termperature Sensor Channel

140/276 DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

Figure 109. Power Consumption Calculator Step configuration window:
ADC enabled using import pinout

Selecting/deselecting all peripherals

Clicking the Select All button i allows selecting all peripherals at once.

Clicking Deselect All €3 removes them as contributors to the step consumption.

==

@& New Step
& <2)
rPower Memary -
Power Mode: :RUN - | I
Power Scale: :Smlel-High -
Memaory Fetch Type: :FLASH -
Vdd: _3. 3 hl
Voltage Source: :Batten-I - E
rClocks
CPU Frequency: 1680 MHz - |
Interpolation ranges
User choice (Hz): N
Clock Configuration: :HSE PLL \
Clock Source Frequency: -+ 0 MHz -
r Optional Settings
Step Duration: 1 :ms -
Additional Consumption: a :mA -
rResults
Step Consumption: | 52.41 mA
Without Peripherals: | 50 mA
Peripherals Part: 2.41mA (A: L.emA -D: 812,28 pA)
Ta Max ("C): 97.56
rWarnings
[Add] [Cancel

3

DoclD025776 Rev 21

141/276

STM32CubeMX User Interface

UM1718

4.14.3 Managing user-define

d power sequence and reviewing results

The configuration of a power sequence leads to an update of the Power Consumption

Calculator view (see Figure

110):

The sequence table shows all steps and step parameters values. A category column

indicates whether the consumption values are taken from the datasheet or are

[]

interpolated.
[)

display type (e.g. plot a
]

Il steps, plot low power versus run modes, ..)

The sequence chart area shows different views of the power sequence according to a

The results summary provides the total sequence time, the maximum ambient

temperature (Tapax), Plus an estimate of the average power consumption, DMIPS, and
battery lifetime provided a valid battery configuration has been selected.

Figure 110. Power Consumption Calculator view after sequence building

-
STM32CubeMX STM32L053CETx_sequence.ioc: STM32L053CETx =RACE X |
File Project Power Window Help
EECRBUB &4 0 i
| Pinout | Clock Configuration I Configuration | Power Consumption Calculator
= | 4 |rStep Sequence Transitions Checker
Micracontroller Selec... (2] [{E . i 1 N N ‘ h][W H X ” [}][By] 2 [#/on w
Series STM32L0 rSequence Table | |
Line STM32L0x3 .| Please select the step to move up first! |
Mcu STM32L053C... Step Mode vdd Rabr—rem———rorr —wo—are=———er... Add... Step... Dur... DMIPS Volt.. Ta... Cat..
Datasheet 025844 Rev4 1 RUN |30 |Rang... [FLASH [1000... [MSI [L.OMHz oma [166.9..[1me [0.95 |Battery [104.97 [Inter... | .
2 RN 3.0 Rang... |FLASH |8.0 MHz |HSEEYP |8.0 MHz 0 mA 1L3mA |1ms 7.6 Battery 104.79 Datas...| |
— 3 RUM 3.0 Rang... [FLASH (8.0 MHz [HSEBYP (8.0 MHz |ADC ... |0 mA 3.51mA|1ms 7.6 Battery [104.42 Datas...
Parameter Selection (&) 4 SLEEF |3.0 Rang... FLASH (8.0 MHz |HSEBYP (8.0 MHz 0 mA 330 pA [1ms 7.6 Battery [104.94 Datas...|=
i i 5 RN 3.0 Rang... FLASH |4.2 MHz |M5I 4.2 MHz [ADC ... [DmA 1.64mA |1 ms 3.99 Battery (104.73 |Datas...
AmbientTem..._ES - |] RUM 3.0 Rang... [FLASH [1200... [HSEBYP (12.0... 0 mA 2.33mA|1ms 11.4 Battery (104.62 [Inter... [
vdd Power 5... | 3.0 o | 7 STOP 3.0 MoRa... |nfa 0 Hz ALL C... |0 Hz OmA [0.41pA[ims (0.0 Battery [105 Datas...| =
)) Display
. = S - iy
Battery Selection @& | =
—— Plot: Run / Low Pomer [Consumption Profile by Step
Area % Run / Low Power SRUN
Battery Alkaline(AAL... Pie: All Modes = T ’
a Pie: Run Low Power 3:RUN S:RUN
In Series 2= . .
1P Consumption: All 2:RUN l
In Parallel 3 1P Consumption: Analog |
Capadty $550.0 mAh IP Consumption: Digiltanl i 5 FHIN]
@ 1.0 . l 7:5TOP
i =
Self Discharge 0.3 %%/month 505 l
Nominal Volt... 3.0V 0.0
Max Cont Cu...3000.0 mA 0.0 (el 1.0 L 2.0 25 2.0 2= 4.0 Ho= 5.0 55 6.0 51 7.0
Max Pulse C... 0.0mA Time (ms)
| == Idd by Step == Average Current |
T =i T)] Sequence Time /Ta Max 7 ms /10442 °C Average Consumption 1.33 mA
- Baltery Life Estimation 8 months, 20 days, 9 hours Average DMIPS 6.52 DMIPS
h

142/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX User Interface

3

Managing the whole sequence (load, save and compare)

The current sequence can be saved or deleted by clicking [X] and [A]
respectively.

In addition, a previously saved sequence can be either loaded in the current view or opened
for comparison by clicking | B (see Figure 111).

Figure 111. Sequence table management functions

Seguence

Lo Jlu J[®] [&

2
=y

To load a previously saved sequence:
1. Click the load button | .
2. Browse to select the sequence to load.

To open a previously saved sequence for comparison:

1. Click the Compare button .

2. Browse and select the .pcs sequence file to be compared with the current sequence. A
new window opens showing the selected sequence details.

DoclD025776 Rev 21 143/276

STM32CubeMX User Interface

UM1718

Managing the results charts and display options

In the Display area, select the type of chart to display (sequence steps, pie charts,
consumption per peripherals, ...). You can also click External Display to open the charts in
dedicated windows (see Figure 112).

Right-click on the chart to access the contextual menus: Properties, Copy, Save as png
picture file, Print, Zoom menus, and Auto Range to reset to the original view before zoom
operations. Zooming can also be achieved by mouse selecting from left to right a zone in
the chart and Zoom reset by clicking the chart and dragging the mouse to the left.

Figure 112. Power Consumption: Peripherals Consumption Chart

Current Sequence

=NRCN X

rMCU Settings / Results Summary

MCU: STM32L053C8Tx Sequence Time [Ta Max: 7ms [104.42 °C
Vdd: 3.0V Average Consumption: 1.33 mA
Datasheet: 025844 Rev4 Average DMIPS: 6.52 DMIPS
Batteries (3 in parallel): Alkaline(as LRE) Battery Life Estimation: 8 months , 20 days &9 hours
- Sequence Table
Step Mode \idd Rang... Memory CPUf... Clock... SrcF... Perip... Add.... Step... Dura... DMIPS \Volta... TaMax Cate...
1 RLM 3.0 Range... [FLASH 10000,., |MSL 1.0 MHz 0 ma 166.9 pA |1 ms 0.95 Battery |104.97 [Interp...
2 RUN 3.0 Range... FLASH |8.0 MHz |HSEBYP |3.0 MHz 0 mA L3imA [1ms 7.6 Battery [104.79 |Datas...
3 RLM 3.0 Range... FLASH (8.0 MHz |HSEBYP (8.0 MHz |ADC C... [OméA 3.51mA [1ms 7.6 Battery |104.42 |Datas...
4 SLEER 3.0 Range... [FLASH (8.0 MHz |HSEBYP (8.0 MHz 0 ma 3/OpA |[1ms 7.6 Battery |104.94 |Datas...
3 RUN 3.0 Range... FLASH |4.2 MHz |M5I 4,2MHz [ADC C... [0 mA 1L.64mA [1ms 3.99 Battery [104.73 |Datas...
3 RLM 3.0 Range... [FLASH 12000... |HSEBYP [12.0 MHz 0 ma 2.33mA [1ms 11.4 Battery |104.62 [Interp...
7 STOP 3.0 MoRange nfa 0 Hz ALL CL... |0 Hz 0 ma 0,41 pA (1ms 0.0 Battery |105 Datas...
rResults Charts
Activated Peripherals Consumption (All)
Peripherals Current Consumption (WA)
o 50 100 150 200 250 300 as0 400 450 500 550 G600 650 oo Ta0
coiBd
GOMPQ:%IEDSH
EEe .EB [
FIR mwﬁ:
. .
@ GPIOC |
E Sk
= e
E PTIA "
i
= PUDIE0R I
= RNG |
= o
SYS%F% I
TIM? :
S |
kd
USARTT | |
Us, E :
WD G i
W Analog © Digital
L, ———————————————— ——— ——————————————— ———— =
144/276 DoclD025776 Rev 21 Kys

UM1718

STM32CubeMX User Interface

Overview of the Results summary area

This area provides the following information (see Figure 113):

Total sequence time as the sum of the sequence steps durations.

Average consumption as the sum of each step consumption weighed by the step
duration.

The average DMIPS (Dhrystone Million Instructions per Second) based on Dhrystone
benchmark, highlighting the CPU performance for the defined sequence.

Battery life estimation for the selected battery model, based on the average power
consumption and the battery self-discharge.

Tamax: highest maximum ambient temperature value encountered during the
sequence.

Figure 113. Description of the Results area

Results Summary

Sequence Time/ TaMax 7 ms/104.42°C Average Consumption 1.33mA
Battery Life Estimation 8 months, 20 days & 9 hours Average DMIPS 6.52 DMIPS

4144 Power sequence step parameters glossary

The parameters that characterize power sequence steps are the following (refer to
Appendix D: STM32 microcontrollers power consumption parameters for more details):

3

Power modes

To save energy, it is recommended to switch the microcontroller operating mode from
running mode, where a maximum power is required, to a low-power mode requiring
limited resources.

Vcore range (STM32L1) or Power scale (STM32F4)

These parameters are set by software to control the power supply range for digital
peripherals.

Memory Fetch Type

This field proposes the possible memory locations for application C code execution. It
can be either RAM, FLASH or FLASH with ART ON or OFF (only for families that
feature a proprietary Adaptive real-time (ART) memory accelerator which increases the
program execution speed when executing from Flash memory).

DoclD025776 Rev 21 145/276

STM32CubeMX User Interface UM1718

146/276

The performance achieved thanks to the ART accelerator is equivalent to 0 wait state

program execution from Flash memory. In terms of power consumption, it is equivalent
to program execution from RAM. In addition, STM32CubeMX uses the same selection
choice to cover both settings, RAM and Flash with ART ON.

Clock Configuration

This operation sets the AHB bus frequency or the CPU frequency that will be used for
computing the microcontroller power consumption. When there is only one possible
choice, the frequencies are automatically configured.

The clock configuration drop-down list allows to configure the application clocks:

— The internal or external oscillator sources: MSI, HSI, LS|, HSE or LSE),

— The oscillator frequency,

— Other determining parameters: PLL ON, LSE Bypass, AHB prescaler value, LCD
with duty...

Peripherals

The peripheral list shows the peripherals available for the selected power mode. The
power consumption is given assuming that peripherals are only clocked (e.g. not in use
by a running program). Each peripheral can be enabled or disabled. Peripherals
individual power consumptions are displayed in a tooltip. An overall consumption due
to peripheral analog and digital parts is provided in the step Results area (see

Figure 114).

The user can select the peripherals relevant for the application:

— None (Disable All),

— Some (using peripheral dedicated checkbox),

— All (Activate All),

— Or all from the previously defined pinout configuration (Import Pinout).

Only the selected and enabled peripherals are taken into account when computing the
power consumption.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX User Interface
Figure 114. Peripheral power consumption tooltip
MNew Step &J
8 JO
rPower Memory Peripherals =
Power Mode :RUN """ ADC
Power Range :Rangel-High
Memary Fetch Type :FLASH
vdd 30
Voltage Source Battery =/l C
S (|| 8 CRS
~Clocks | IDAC
|) 4 DRI
M| cpuFrequency 32.0MHz = |:-|. DAC: 468 pA (Analog: 340 pA, Digital: 128 pA) | |12 |
InterpolatonRanges | = [||| i~ FIREWALL
User Choice(H2) | [} FLASH
: - [7] GPTIOA
M| Clodk Configuration \HSEBYP PLL =TT
Clodk Source Frequency RN F R — GPIOC
----- GPIOH
rOptional Settings —M || .. 12C1
Step Duration 1 :ms """ T2c2
: - [] TWDG
Additional Consumption 0 mA LCD "
----- LPTIM1
Resus ———— || | LPUARTL
Wl| Step Consumption 1248mA [} - PVD/BOR b
Without Peripherals 6.3ma [} PWR
----- V| RNG
[Peripherals Part 6.18 mA (A: 547.09 pA - D: 5.63 mA) J
----- RTC
Ta Max ("C) o294] i SPI1
-Warnings
| |
l Add l [Cancel I

3

e Step duration

The user can change the default step duration value. When building a sequence, the
user can either create steps according to the application actual power sequence or
define them as a percentage spent in each mode. For example, if an application
spends 30% in Run mode, 20% in Sleep and 50% in Stop, the user must configure a 3-
step sequence consisting in 30 ms in Run, 20 ms in Sleep and 50 ms in Stop.

e Additional Consumption

This field allows entering an additional consumption resulting from specific user
configuration (e.g. MCU providing power supply to other connected devices).

DoclD025776 Rev 21

147/276

STM32CubeMX User Interface UM1718

4.14.5 Battery glossary

Capacity (mAh)
Amount of energy that can be delivered in a single battery discharge.
Self-discharge (%/month)

This percentage, over a specified period, represents the loss of battery capacity when
the battery is not used (open-circuit conditions), as a result of internal leakage.

Nominal voltage (V)
Voltage supplied by a fully charged battery.
Max. Continuous Current (mA)

This current corresponds to the maximum current that can be delivered during the
battery lifetime period without damaging the battery.

Max. Pulse Current (mA)

This is the maximum pulse current that can be delivered exceptionally, for instance when
the application is switched on during the starting phase.

4.14.6 SMPS feature

Some microcontroller part numbers such as STM32L496xxxxP allow connecting an external
switched mode power supply (SMPS) to further reduce power consumption.

For such microcontrollers, the Power Consumption Calculator tool offer the following
features:

148/276

Selection of SMPS for the current project:

From the left panel, check the Use SMPS box to use SMPS (see Figure 115). By
default, ST SMPS model is used.

Selection of another SMPS model by clicking the Change button.

This opens the SMPS database management window in which the user can add a new
SMPS model (see Figure 116). The user can then select a different SMPS model for
the current sequence (see Figure 117, Figure 118 and Figure 119)

Check for invalid SMPS transitions in the current sequence by enabling the SMPS
checker.

To do this, select the checkbox to enable the checker and click the Help button to open
the reference state diagram (see Figure 120).

Configuration of SMPS mode for each step (see Figure 121).

If the SMPS checker is enabled, only the SMPS modes valid for the current step are
proposed.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX User Interface

Figure 115. Selecting SMPS for the current project

STM32L496RGTxP
Series 5TM32L4
Line STM32L4x6
Datasheet 029173_Revl

Ta 25°C / Vg, 3.0V

Battery Selection

)

(%)

)

Select

SMP51_S5T

Use SMPS ¥] | Help

VIN(SMPS} 3.0V
Vour(smps) 11V
OffCurrent 250 nA
QCurrent 500 nA
Efficiency 85 %
Type External

)

Figure 116. SMPS database - adding new SMPS models

% SMPS Database Management Py
User SMPS
{ - || Edit
r SMPS\Table
U... Name VIN[SMPS) OffCurrent QCurrent Vou-r{smps}. Efficiency Type Databa‘lse
@ [sMPg1_ST [3.0 |250.0 |500.0 1.1 |85 |External |Default
Kad smps e
rUser SMPS
Name SMPSZLUser
vin (W) 2.5
OffCurrent (nA) 10
Quiescent Current (nA) |10
VOUT(SMPS} 1.2
Efficiency (%) 85
Type External

o o] |

e

q |

DoclD025776 Rev 21

149/276

STM32CubeMX User Interface

UM1718
Figure 117. SMPS database - selecting a different SMPS model
% SMPS Database Management &
User SMPS —————————
{Ié £ =][edit |
SMPS Table
U... Name VIN(SMPS} OffCurrent QCurrent VOUT{SMPS} Efficiency Type Databgse
SMPS1_ST 3.0 250.0 500.0 1.1 85 External Default

Figure 118. Current project configuration updated with new SMPS model

SMP52 User

&)

Use SMPS [¥]
Change l

Vin(Emes) 2.5V
Vour(smes) 1.2V
OffCurrent 10 nA

QCurrent 10 nA
Efficiency 85 %

Type External

Figure 119. SMPS database management window with new model selected

% SMPS Database Management

]

rlUsar SMPS

: E_g - Edit

SMFS Table

e Hame ""m(g.ps) OffCurrent QCurrent Vu_n(g.qu_) Efficiency Type Database

@IsMPS2_User(2.5 [10.0 [10.0 1.2 85 External User |

SMPS1_ST 3.0 |250.0 |500.0 1.1 5 External |Default |
Cancel

150/276

DoclD025776 Rev 21

3

UM1718 STM32CubeMX User Interface
Figure 120. SMPS transition checker and state diagram helper window
Sequence Transitions Checker SMPS Checker
] | M {E 7] X =} by |2 ’V On Log " On | Log Help

e

12/ SMPS Checker Help

=g

Legend

SMPS Checker état::-' Diaéra;\

SMPS OFF

[(a1power odes) BN ~

(.

SMP5 DISCOMNECTED
{all Power Mades} BI» —————
{RUN Range2 on current and previous step} Br___ _____ {RUM on current and previous step} Iﬁ
SMPS CONMNECTED
{RUN, SLEEP, STOPO, WU_FROM_STOPO Ly |
on current and previous step})}

3

DoclD025776 Rev 21

151/276

STM32CubeMX User Interface

UM1718

Figure 121. Configuring the SMPS mode for each step
F |
% New Step ﬂ
<7 H2
Power Memary . » | |Peripherals -~
Power Mode :RUN Peripherals
Power Range 'Range1-High ~ [1T5_T0_ksps
Memory Fetch Type iFLASH,I’ARTfCache % :5—;—:5P5 =
Voo 3.6 ooTehs
= =h--- ADC2
Voltage Source Battery [] fs_10_ksps TN
~SMPS -] fs_1_Msps
SMPS Mode ICONNECTED - [[]fs_5_msps
' =h--- ADC3
QCurrent 500 nA Dfs 10_ksps
vDUT[SMPS} 1.1V D fs_1_Msps
Efficiency 85 % 3 -~ [] fs_5_Msps
T EEEEEEEE——— | | AHB_APB1_Bridge
CPU Frequency i--Choose—- """ %AHB;APBZ_Bndge
Interpolation Ranges | | i] crC
User Chaice (Hz) =}--- DACL
Clock Configuration - [] oUT1+0UT2-Buffer_OFF-Mi
Clock Source Freque... E Ml+m-:£er_:-:;d
-] OUT1+0UT2-Buffer_ON-Wo
rOptional Settings : - [] ouT1-Buffer_OFF-Middle_ci
Step Duration 1 | ms - [] ouT1-Buffer_oN-Middle_co
Additional Consumption |0 mA |:| OUT1-Buffer_ON-Worst_co
~Restts i - || ouT2-Buffer_OFF-Middle_ci
Step Consumption | 500 nA % OUT2-Buffer_ON-Middle_co
') QUT2-Buffer_ON-Worst_co
Without Peripherals 500 nA < || | DESDM1 Ll
< | n r 4 | 1] | b
rWarnings
A

152/276

DoclD025776 Rev 21

3

UM1718 STM32CubeMX C Code generation overview

5 STM32CubeMX C Code generation overview

Refer to Section 4.4.2: Project menu for code generation and C project settings related
topics.

5.1 STM32Cube code generation using only HAL drivers
(default mode)

During the C code generation process, STM32CubeMX performs the following actions:

1. Ifitis missing, it downloads the relevant STM32Cube firmware package from the user
repository. STM32CubeMX repository folder is specified in the Help > Updater
settings menu.

2. It copies from the firmware package, the relevant files in Drivers/CMSIS and
Drivers/STM32F4_HAL_Diriver folders and in the Middleware folder if a middleware
was selected.

3. It generates the initialization C code (.c/.h files) corresponding to the user MCU
configuration and stores it in the Inc and Src folders. By default, the following files are
included:

— stm32f4xx_hal_conf.h file: this file defines the enabled HAL modules and sets
some parameters (e.g. External High Speed oscillator frequency) to predefined
default values or according to user configuration (clock tree).

— stm32f4xx_hal_msp.c (MSP = MCU Support package): this file defines all
initialization functions to configure the peripheral instances according to the user
configuration (pin allocation, enabling of clock, use of DMA and Interrupts).

— main.cis in charge of:

Resetting the MCU to a known state by calling the HAL init() function that resets
all peripherals, initializes the Flash memory interface and the SysTick.

Configuring and initializing the system clock.
Configuring and initializing the GPIOs that are not used by peripherals.

Defining and calling, for each configured peripheral, a peripheral initialization
function that defines a handle structure that will be passed to the corresponding
peripheral HAL init function which in turn will call the peripheral HAL MSP
initialization function. Note that when LwIP (respectively USB) middleware is used,
the initialization C code for the underlying Ethernet (respectively USB peripheral)
is moved from main.c to LwIP (respectively USB) initialization C code itself.

— main.h file:

This file contains the define statements corresponding to the pin labels set from
the Pinout tab, as well as the user project constants added from the
Configuration tab (refer to Figure 122 and Figure 123 for examples):

#define MyTimeOut 10
#define LD4_Pin GPIO_PIN_12
#define LD4_GPIO_Port GPIOD
#define LD3_Pin GPIO_PIN_13
#define LD3_GPIO_Port GPIOD
#define LD5_Pin GPIO_PIN_ 14
m DoclD025776 Rev 21 153/276

STM32CubeMX C Code generation overview UM1718

#define LD5_GPIO_Port GPIOD
#define LD6_Pin GPIO_PIN_15
#define LD6_GPIO_Port GPIOD

Figure 122. Labels for pins generating define statements

Figure 123. User constant generating define statements

) Parameter Settings| &/ User Constants | o/ NVIC Settings | o/ GPIO Settings|

Search Constants

Search (CrH+F) remove

Constant Name Constant Value
MyTimeOut 10

In case of duplicate labels, a unique suffix, consisting of the pin port letter and the
pin index number, is added and used for the generation of the associated define
statements.

In the example of a duplicate 12C1 labels shown in Figure 124, the code

generation produces the following code, keeping the 12C1 label on the original port
B pin 6 define statements and adding B7 suffix on pin 7 define statements:

#define I2C1_Pin GPIO_PIN_6
#define I2C1_GPIO_Port GPIOB
#define I2C1B7_Pin GPIO_PIN_7

#define I2C1B7_GPIO_Port GPIOB

Figure 124. Duplicate labels

—
QO O
N N

3

154/276 DoclD025776 Rev 21

UM1718 STM32CubeMX C Code generation overview

In order for the generated project to compile, define statements shall follow strict

naming conventions. They shall start with a letter or an underscore as well as the
corresponding label. In addition, they shall not include any special character such
as minus sign, parenthesis or brackets. Any special character within the label will
be automatically replaced by an underscore in the define name.

If the label contains character strings between “[]” or “()”, only the first string listed
is used for the define name. As an example, the label “LD6 [Blue Led]”
corresponds the following define statements:

#define LD6_Pin GPIO_PIN_15
#define LD6_GPIO_Port GPIOD

The define statements are used to configure the GPIOs in the generated
initialization code. In the following example, the initialization of the pins labeled
Audio_RST_Pin and LD4 _Pin is done using the corresponding define statements:

/*Configure GPIO pins : LD4_Pin Audio_RST Pin */
GPIO_InitStruct.Pin = LD4_Pin | Audio_RST Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init (GPIOD, &GPIO_InitStruct);

4. Finally it generates a Projects folder that contains the toolchain specific files that match
the user project settings. Double-clicking the IDE specific project file launches the IDE
and loads the project ready to be edited, built and debugged.

5.2 STM32Cube code generation using Low Layer drivers

For STM32L1 Series and STM32L4 Series, STM32CubeMX allows generating peripheral
initialization code based either on the peripheral HAL driver or on the peripheral Low Layer
(LL) driver.

The choice is made through the Project Settings window (see Section 4.8.3: Advanced
Settings tab).

The LL drivers are available only for the peripherals which require an optimized access and
do not have a complex software configuration. The LL services allow performing atomic
operations by changing the relevant peripheral registers content:

e Examples of supported peripherals: RCC, ADC, GPIO, I12C, SPI, TIM, USART,...

e Examples of peripherals not supported by LL drivers: USB, SDMMC, FSMC.

The LL drivers are available within the STM32CubelL4 package:

e They are located next to the HAL drivers (stm3214_hal_<peripheral_name>) within
the Inc and Src directory of the
STM32Cube_FW _L4 V1.6\Drivers\STM32L4xx_HAL_Diriver folder.

e They can be easily recognizable by their naming convention:
stm3214_lI_<peripheral_name>

For more details on HAL and LL drivers refer to the STM32L4 HAL and Low-layer drivers
user manual (UM1884).

As the decision to use LL or HAL drivers is made on a peripheral basis, the user can mix
both HAL and LL drivers within the same project.

3

DoclD025776 Rev 21 155/276

STM32CubeMX C Code generation overview

UM1718

The following tables shows the main differences between the three possible
STM32CubeMX project generation options: HAL-only, LL-only, and mix of HAL and LL code.

Table 16. LL versus HAL code generation: drivers included in STM32CubeMX projects

Project configuration

and drivers to be HAL only LL only Mix of II_-::L\L and Comments
included
CMSIS Yes Yes Yes -

STM32xxx_HAL_Driver

Only HAL driver
files

Only LL driver files

Mix of HAL and LL
driver files

Only the driver files
required for a given
configuration (selection of
peripherals) are copied
when the project settings
option is set to “Copy only
the necessary files”.
Otherwise (“all used
libraries” option) the
complete set of driver files
is copied.

Table 17. LL versus HAL code generation: STM32CubeMX generated header files

Generat'ed header HAL only LL only Mix of HAL and Comments
files LL
This file contains the
include statements and the
main.h Yes Yes Yes generated define
statements for user
constants (GPIO labels and
user constants).
This file enables the HAL
stm32xxx_hal_conf.h Yes No Yes modules necessary to the
project.
Stm32x ith Yes Yes Yes Header file for interrupt
_ handlers

This file contains the assert

stm32xx_assert.h No Yes Yes macros and the functions

used for checking function
parameters.

156/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX C Code generation overview

Table 18. LL versus HAL: STM32CubeMX generated source files

Generated source
files

HAL only

Mix of HAL

LL only and LL

Comments

main.c

Yes

Yes Yes

This file contains the main functions
and optionally STM32CubeMX
generated functions.

stm32xxx_hal_msp.c

Yes

No Yes

This file contains the following
functions:

— HAL_Msplnit

— for peripherals using HAL drivers:
HAL_<Peripheral>_Msplnit,
HAL_<Peripheral>_MspDelnit,

These functions are available only for

the peripherals that use HAL drivers.

stm32xxx_it.c

Yes

Yes Yes

Source file for interrupt handlers

Table 19. LL versus HAL: STM32CubeMX generated functions and function calls

Generated source

files HAL only LL only Mix of HAL and LL Comments

This file performs the following

functions:

— Configuration of the Flash
prefetch and instruction and
data caches

Hal_init() Called in main.c Not used Called in main.c — Selection of the SysTick
timer as timebase source

— Setting of NVIC Group
Priority

— MCU low-level MCU
initialization.

Generated in Generated in This function performs the
. stm32xxx_hal_msp.c ;
Hal_msp_init() stm32xxx_hal_msp.c Not used And called by peripheral resource
ini i ion(
and called by HAL _init() HAL_init() configuration''/.
LL_init() Not used Generated and Not used System and memory interrupt

called in main.c

configuration

MX_<Peripheral>_lInit()

[l
Peripheral configuration
and call to
HAL_<Peripheral>_Init()

[2]
Peripheral and
peripheral resource
configuration(")
using LL functions.
Call to
LL_Peripheral_Init()

— When HAL driver is
selected for the
<Peripheral>,
function generation
and calls are done
following [1]

— When LL driver
selected for the
<Peripheral>,
function generation
and calls are done
following [2]

This file takes care of the
peripheral configuration.
When the LL driver is selected
for the <Peripheral>, it also
performs the peripheral
resource configuration(!).

3

DoclD025776 Rev 21

157/276

STM32CubeMX C Code generation overview UM1718

Table 19. LL versus HAL: STM32CubeMX generated functions and function calls (continued)

Generated source

files HAL only LL only Mix of HAL and LL Comments

[3]
Generated in
HAL_<Peripheral>_Msp | stm32xxx_hal_msp.c

Init() when HAL driver
selected for the
<Peripheral>

Only HAL driver can
be selected for the
Not used <Peripheral>: function
generation and calls
are done following [3]

Peripheral resource
configuration(")

[4]
Generated in
HAL_<Peripheral>_Msp | stm32xxx_hal_msp.c

Delnit() when HAL driver
selected for the
<Peripheral>

Only HAL driver can
be selected for the
Not used <Peripheral>: function
generation and calls
are done following [4]

This function can be used to
free peripheral resources.

1. Peripheral resources include:
Peripheral clock
Pinout configuration (GPIO)
Peripheral DMA requests
Peripheral Interrupt requests and priorities

3

158/276 DoclD025776 Rev 21

UM1718

STM32CubeMX C Code generation overview

3

Figure 125. HAL-based peripheral initialization: usart.c code snippet

USART Peripheral initialization - HAL-based
void MX_USART1_UART Init(void)

{ Peripheral Configuration
huartl.Instance = USARTI1;
huartl.Init.BaudRate = 115200;
huartl.Init.WordLength = UART_WORDLENGTH_7B;

huartl.Init.StopBits = UART_STOPBITS_1;

if (HAL UART Init(shuartl) != HAL OK)
{
Error Handler():
}
}
void HAL UART MsplInit (UART HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if (uartHandle->Instance==USART1)
{
/* Peripheval clock enable */
__HAL RCC_USART1 CLK ENABLE():
/* USART1 GPIO Configuration */
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIC InitStruct.Mcde = GPIO MODE AF PP;
GPIO_InitStruct.Pull = GPIO_PULLUE;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct):;
}
}
void HAL UART MspDelnit (UART_HandleIypeDef* uartHandle)
{
if (uartHandle->Instance==USART1)
{

Peripheral Resources Configuration

Peripheral Resources Release

/* Peripheral clock disable */
__HAL RCC_USART1_CLK DISABLE():
/* USART1 GPIO Configuration */
HAL._GPIO DeInit (GPICA, GPIO_PIN_ 10);
HAL GPIO_Delnit (GPIOB, GPIC_PIN_6):
}

DoclD025776 Rev 21 159/276

STM32CubeMX C Code generation overview

UM1718

160/276

Figure 126. LL-based peripheral initialization: usart.c code snippet

USART Peripheral Initialization using LL drivers
void MX_USART1 UART_ Init(void)
{
LL USART InitTypeDef USART InitStruct;
LL GPIO_InitTypeDef GPIO_InitStruct:
/* Peripheral clock enable */
LL APB2 GRP1_EnableClock(LL_APB2 GRP1_PERIPH USART1);

/**USART1 GPIO Configuration Peripheral Resources Configuration
PA10 —----- > USARTl_RX
PB§ -===-- > USART1 TX
*/
GPIO TnitStruct.Pin = LL GPIO_PIN 10;
GPIO_InitStruct.Mode = LL GPIO_MODE ALTERNATE;

GPIO_InitStruct.Speed = LL GPIO_SPEED FREQ_VERY_HIGH;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UPB;

GPIC InitStruct.Alternate = LL GPIO AF 7;

LL GPIO_Init(GPIOA, &GPIO_InitStruct):

GPIO InitStruct.Pin = LL GPIC PIN 6;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ VERY_ HIGH;
GPIO_InitStruct.Pull = LL GPIO PULL UP;
GPIO_InitStruct.Alternate = LL GPIO_AF 7;
LL_GPIO_Init(GPIOB, &GPIO_InitStruct):

Peripheral Configuration
USART_InitStruct.BaudRate = 115200;
USART_InitStruct.DataWidcth = LL_USART_DATAWIDTH_7B:
USART InitStruct.StopBits = LL USART STOPBITS 1;
USART_InitStruct.Parity = LL_USART_PARITY NONE;
USART_InitStruct.TransferDirection = LL USART DIRECTION_TX RX;
USART InitStruct.HardwareFlowControl = LL USART HWCONTROL_NCNE:
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;

LL USART Init(USART1, &USART_ InitStruct):;
LL_USART ConfigAsyncMode (USART1);

Figure 127. HAL versus LL : main.c code snippet

#include "m i #include "main.h"
#include “stm3214xx_hal.h" IR
#include "usart.h’ #include "usart.h"
#include "g i #include "gpio.h”
void SystemClock_Config(void); void SystemClock_Config(wvoid);
void Error_Handler(void); void Error_Handler(void);
int main(void) int main(void)
{ {
' t of all peripherals,
i ¢ ace and the Systick. Initial s the Flash interface and the
HAL_Init(); @« LL_Init();
/* Configure the system clock °* /* Configure the system clock *
SystemClock_Config(); SystemClock_Config();
Initialize all configured peripheral /* Initialize all configured peripherals */
MX_GPIO Init(); MX_GPIO_Init();
MX_USART1_UART_TInit(); MX_USART1_UART_Init();

main.c HAL-based . main.c LL-based

* Includes —-----essemsoam o s

Systick.

DoclD025776 Rev 21

3

UM1718

STM32CubeMX C Code generation overview

5.3

5.3.1

5.3.2

3

Custom code generation

STM32CubeMX supports custom code generation by means of a FreeMarker template
engine (see http://www.freemarker.org).

STM32CubeMX data model for FreeMarker user templates

STM32CubeMX can generate a custom code based on a FreeMarker template file (.ftl
extension) for any of the following MCU configuration information:

e List of MCU peripherals used by the user configuration
e List of parameters values for those peripherals
e List of resources used by these peripherals: GPIO, DMA requests and interrupts.
The user template file must be compatible with STM32CubeMX data model. This means
that the template must start with the following lines:

[#ftl]

#1list configs as dt]

#assign data = dt]

[

[

[#assign peripheralParams =dt.peripheralParams]
[#assign peripheralGPIOParams =dt.peripheralGPIOParams]
[

#assign usedIPs =dt.usedIPs]

and end with
[/#1list]

A sample template file is provided for guidance (see Figure 128: extra_templates folder —
default content).

STM32CubeMX will also generate user-specific code if any is available within the template.
As shown in the below example, when the sample template is used, the ftl commands are
provided as comments next to the data they have generated:

FreeMarker command in template:
${peripheralParams.get ("RCC") .get ("LSI_VALUE") }

Resulting generated code:
LSI_VALUE : 32000 [peripheralParams.get ("RCC") .get ("LSI_VALUE")]

Saving and selecting user templates

The user can either place the FreeMarker template files under STM32CubeMX installation
path within the db/extra_templates folder or in any other folder.

Then for a given project, the user will select the template files relevant for his project via the
Template Settings window accessible from the Project Settings menu (see Section 4.8:
Project Settings window)

DoclD025776 Rev 21 161/276

STM32CubeMX C Code generation overview UM1718

5.3.3

Custom code generation

To generate custom code, the user must place the FreeMarker template file under
STM32CubeMX installation path within the db/extra_templates folder (see Figure 129:
extra_templates folder with user templates).

The template filename must follow the naming convention <user filename>_<file
extension>.ftl in order to generate the corresponding custom file as <user filename>.<file
extension>.

By default, the custom file is generated in the user project root folder, next to the .ioc file
(see Figure 130: Project root folder with corresponding custom generated files).

To generate the custom code in a different folder, the user shall match the destination folder
tree structure in the extra_template folder (see Figure 131: User custom folder for
templates).

Figure 128. extra_templates folder — default content

| B |

m-v| « db » extra_templates - |+?| | Search extr... '

Organize = Include in library - Share with = Burn ¥ == m ﬂﬁ'
4 STMicroelectronics * Mame g
5TM32Cube ;
|| RTE_Dewice_h_ftl
4 STM32Cubebdx 4 £ || sample_h_ftl

4 db
extra_templates

e Moy

S mlivmime

162/276

3

DoclD025776 Rev 21

UM1718 STM32CubeMX C Code generation overview
Figure 129. extra_templates folder with user templates
W =E |
@Qﬂ | <« STM32CubeMX_4 6 AS » db » extratemplates » v |43 || Searchextr.. O
Organize = = Open Include in library = Share with = » = » [Iﬁl
, STM32CubeMX 4 6 £ Mame :
! db .
extra_templates ; .
S0P (L myFilens)
mcu 2
o e | | RTE Device_h ftl
, plugins |
= sample_h.ftl
. templates (— s)
|| sample_h_ftl
| help
- 4| 1} [b
b = — :

Figure 130. Project root folder with corresponding custom generated files

@Qv' .« Custom Code project » CustomCodeGen »

- | +3 | ' Search Cus... 0 l

Organize = Include in library = Share with « Burn New folder g== » i I@I
4 | CustomCodeGen - Mame ‘ 1
. Drivers .
. Drivers 1
) Inc
. Inc 1
. Mylnc
)) Mylnc 1
> 4 Projects .
. Projects 1
) Src
E) Src 1
- || .mxproject 1
@ CustomCodeGen.ioc 1
|| MyFileh 1
|
1
- 4| m = P
Kys DoclD025776 Rev 21 163/276

STM32CubeMX C Code generation overview UM1718

Figure 131. User custom folder for templates

S e — — - L= | E)
@O' .« db » extra_templates » Mylnc - | +4 I | Search Myinc O I
Organize » Include in library = Share with « Burn » =« i 9
4 | STM32CubeMX_4.6 + Name °

4) db
4 | extra_templates
[C L Myinc)
P mcu (3
> 1. plugins
b templates
. help

[|| Mylnc_h.ftl J

Figure 132. Custom folder with corresponding custom generated files

. e

Organize « Include in library « Share with + Burn » =~ [0
4 | CustomCodeGen “ Name : I
b g Drivers [Mylnch |
P & Inc -
o . Myinc) -
P J¢ Projects
& Src |

3

164/276 DoclD025776 Rev 21

UM1718

STM32CubeMX C Code generation overview

5.4

3

Additional settings for C project generation

STM32CubeMX allows specifying additional project settings through the .extSettings file.
This file must be placed in the same project folder and at the same level as the .ioc file.

As an example, additional settings can be used when external tools call STM32CubeMX to
generate the project and require specific project settings.

Possible entries and syntax

All entries are optional. They are organized under the followings three categories:
ProjectFiles, Groups or Others.

[ProjectFiles]: section where to specify additional include directories
Syntax

HeaderPath = <include directory 1 path>;< include directory 2 path >
Example

HeaderPath=../../IIR_Filter_int32/Inc ;
[Groups]: section where to create new groups of files and/or add files to a group
Syntax

<Group name> = <file pathnamel>;< file pathname2>
Example

Doc=$ PROJ_DIRS\..\readme.txt

Lib=C:\libraries\mylibl.lib; C:\libraries\mylib2.1lib;

Drivers/BSP/MyRefBoard = C:\MyRefBoard\BSP\board_init.c;
C:\MyRefBoard\BSP\board_init.h;

[Others] section where to enable HAL modules and/or specify preprocessor define
statements

— Enabling pre-processor define statements

Preprocessor define statements can be specified using the following syntax after
the [Others] line:

Syntax
Define = <definel_name>;<define2_name>
Example
Define= USE_STM32F429I_DISCO
— Enabling HAL modules in generated stm32f4xx_hal_conf.h
HAL modules can be enabled using the following syntax after the [Others] line:
Syntax
HALModule = <ModuleNamel>; <ModuleNamel>;
Example
HALModule=I2S;I2C

DoclD025776 Rev 21 165/276

STM32CubeMX C Code generation overview UM1718

166/276

.extSettings file example and generated outcomes

For the purpose of the example, a new project is created by selecting the STM32F429I-
DISCO board from STM32CubeMX board selector. The EWARM toolchain is selected under
Project Settings. The project is saved as MyF429IDiscoProject. In the project folder, next
to the generated .ioc file, a .extSettings text file is placed with the following contents:

[Groups]

Drivers/BSP/STM32F429IDISCO=C:\Users\frg09031\STM32Cube\Repository\STM3
2Cube_FW_F4_V1.14.0\Drivers\BSP\STM32F429I-
Discovery\stm32f429i_discovery.c;
C:\Users\frg09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\Drivers\
BSP\STM32F429I-Discovery\stm32f429i_discovery.h

Lib=C:\Users\frg09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\
Middlewares\Third_Party\FreeRTOS\Source\portable\IAR\ARM CM4F\portasm.s

Doc=$PROJ_DIRS\. . \readme. txt

[Others]

Define = USE_ STM32F429I_DISCO
HALModule = UART;SPI

Upon project generation, the presence of this .extSettings file triggers the update of:

e the project MyF429IDiscoProject.ewp file in EWARM folder (see Figure 133),

e the stm32f4xx_hal_conf.h file in the project Inc folder (see Figure 134)

e the project view within EWARM user interface as shown in Figure 135 and Figure 136.

Figure 133. Update of the project .ewp file (EWARM IDE)
for preprocessor define statements

<settings>
<name>ICCARM< /name>
<archiveVersion>2</archiveVer=ion>
<data>
<version>28</version>
<wantNonLocal>1</wantNonLocal>
<debug>l</debug>
<option>
<name>CCDefines</name>
<state>USE HAL DRIVER</state>
catate TS TMAZ?2FPA2 Qv foratas
<state>USE STM32F4291 DISCO</=state>
</option> - =

3

DoclD025776 Rev 21

UM1718

STM32CubeMX C Code generation overview

3

Figure 134. Update of stm32f4xx_hal_conf.h file to enable selected modules

stm32f4ux_hal_conf.h |

/* #define HAL RTC MODULE ENABLED */
/* #define HAL SAT MODULE ENABLED +/
/* #define HAL SD MODULE ENABLED */
/* #define HAL MMC MODULE ENABLED +/

#define HAL SPI MODULE ENABLED
/* #define HAL TIM MODULE ENABLED +/
#define HAL UART MODULE_ENABLED

/* #define HAL USART MODULE ENABLED +/

L
/* #define HAL IRDA MODULE ENABLED +/
/* #define HAL SMARTCARD MODULE ENABLED +/
/% #define HAL WADG MODULE ENABLED +/
/* #define HAL PCD MODULE ENABLED +/
LE ENABLED */

/* #define HAL HCD MODUL

Figure 135. New groups and new files added to groups in EWARM IDE

MyF429IDiscoProject

Files s
B 7 MyF429IDiscoProject - MyF429ID... v
—8 (7 Application
= ([Doc

LB readmetd
& (O Orivers

e Cese

| La[asTMIzF423IDISCO

| &) stm32t429i_discoveny.c

| L— [stm32t429i_discoversh

@ [CRsTs

1 STM32F o HAL_Driver
eI Lib

Le fam portasim.s

L@ [Qutput

DoclD025776 Rev 21

167/276

STM32CubeMX C Code generation overview

UM1718

Figure 136. Preprocessor define statements in EWARM IDE

Options for node "test" — i
Category: " Factory Seftings |
|| Mutti-file Compilation
General Oplions -
N |static Anatysi r Dizcard Unused Fublics
Runiime Chediing | Language 1 | Language 2 | Code | Optimizations | Output | List | Preproce: < [»
Assembier
Output Converter [lignore standard include directories
::dm m Additional include directories: (one per ling)
m““‘"’ SPROJ_DIRS/./inc | (=)
SPROJ_DIRS/ [Drivers/STM32F4xx_HAL_Driver/inc =
Debugger SPROJ_DIRS/ [Drivers/STM32Fde_HAL_Driverfinc/Legacy =
Smulator = SPROJ_DIRS/ [Drvers/CMSIS/Device/ST/STM32Fdoyinclude
sigel SPROJ_DIRS/ [Drivars/CMSIS/Include -
cant Preinclude file:
CMSIS DAP]
GDE Server "Tj
IAR ROM-monitor Defined symbols: (one per line) o
I I-jetjITAGIet g?s_j;l::_z_gsmn - ;_!Ersimcsssm output to file
JLink/)-Trace . resernve gomments
Tl [USE_STM32F429_DISCO) Generate #line directives
Macraigor
PE micra [|
RDL
STAINKG
Third-Party Driver % [OK l [Cancel |
I)

168/276

DoclD025776 Rev 21

3

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

6 Tutorial 1: From pinout to project C code generation
using an STM32F4 MCU

This section describes the configuration and C code generation process. It takes as an
example a simple LED toggling application running on the STM32F4DISCOVERY board.

6.1

Creating a new STM32CubeMX Project

1. Select File > New project from the main menu bar or New project from the Welcome

page.

2. Select the MCU Selector tab and filter down the STM32 portfolio by selecting STM32F4
as 'Series', STM32F407 as 'Lines', and LQFP100 as 'Package’ (see Figure 137).

3. Select the STM32F407VGTx from the MCU list and click OK.

Figure 137. MCU selection

-
% New Project

MCU Selectur‘ Board Selector

Core
Serie

Check/Uncheck all
STM32F4

Line

Check/Uncheck all
"] sTM3zF401

7] sTM32F405/415
STM32F407/417
[sTmazr411

[sTmazr412

"] sTM32F413/423
] sTM32F427/437
[sTm32R429/439
[sTM3z2F446

[sTM3zF469/479

Package

STM32ZF417VG

High-performance foundation line, ARM Cortex-M4 core with
DSP and FPU, 1 Mbyte Flash, 168 MHz CPU, ART Accelerator,
Ethernet, FSMC, HW crypto

Q LQFP100

The STM32F415:x and STM32F417xx family is based on the high-performance ARM@Cortex®-M4 32-
bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4 core fealures a Floating
point unit (FPU) single precision which supports all ARM single-precision data-processing instructions

Unit Price for 10kU from

Productis in mass US$6.81

production

-

-

Features ” Block Diagram " Datasheet “ Docs & Ressources " Buy H Start Project
MCUs List: 4 items + 41 close items -4 Display close ...
Part Mo Reference Marketing ... UnitPrice for 10kU .. Packa.. Flash RAM IO Freq. ADC16-.. CRYP
STM32F4...|STM32F407... |Active 5.64 LQFP100 512 kBy... 192 kBy...|82 (168 ... [0 (i)
STM32F4...|STM32F407... |Active 6.57 LQFP100 1024 kB...[192 kBy...|[82 (168 ... [0 ()
STM32F4...[STM32F417... |Active 5.99 LQFP100 512 kBy... 192 kBy...|[82 (168 ... [0 1
... STM32F417... LQFP100 1024 kB... 1

3

DoclD025776 Rev 21

169/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

STM32CubeMX views are then populated with the selected MCU database (see
Figure 138).

Figure 138. Pinout view with MCUs selection

F b
& STM32CubeMX Untitled: STM32F417VGTx [

File Project Pinout Window Help
G g EHE & 07 [#Keepcurrent Signals Placement = & O] — @ 4 Find| +|®, L @ [7] Show user Label

Pinout | Clock Configuration | Configuration | Power Consumption Calcl..llahorl

Configuration -
F-MiddleWares m
. B © FATFS

% FREERTOS

J..
J..
-
J..
J..

m

o

o
ripherals
W ADC1 L5

ADC2
ADC3
CAN1
CANZ
CRC
DAC
DCMI
ETH
FSMC
1201
1202
1203

MCUs Selection | Qutput

Series Lines Mecu Package Required Peripherals

STM32F4 STM32F407/417 STM32F407VETX |LQFP 100 Mone -
STM32F4 STM32F407/417 STM32F407VGETX LOFF 100 Mone

e T e OO OO

STM3IZFMTVGTx
LQFPTOD

e = = = - -
- i - B - - B B B B B

L e M M M A A A

3

170/276 DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

Optionally, remove the MCUs Selection bottom window by deselecting Window> Outputs

sub-menu (see Figure 139).

Figure 139. Pinout view without MCUs selection window

r
% STM32CubeMX Untitled: STM32F417VGTx

e

B = rﬁ | LEU! (@} Q [¥] Keep Current Signals Placement 9 & g — o “F Find|

Show user Label

STM32F417TVGTx
LQFP100

File Project Pinout Window Help
Pinout | Clock Configuration | Configuration | Power Consumption Calculator
|Configuration ~
I:TJ---MilldleWarﬁ Tl
i [+ @& FATFS

[+l % FREERTOS

(-

[
[B =
=--Peripherals

[& ADC1

[& ADC2

[& ADC3

[+ & CANL

[& CANZ ||

[t} & CRC

[+ & DAC

[& DCMI

[} % ETH

[& FSMC

[% I2C1

[& I2C2

[& I2C3

(- & 1252

(- & 1253

[+ & TWDG

[t} & RCC

[& RNG i

3

DoclD025776 Rev 21

171/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

6.2

172/276

Configuring the MCU pinout

For a detailed description of menus, advanced actions and conflict resolutions, refer to
Section 4: STM32CubeMX User Interface and Appendix A: STM32CubeMX pin assignment
rules.

1.
2.

By default, STM32CubeMX shows the Pinout view.

By default, ["|keep Current Signals Flacement is unchecked allowing STM32CubeMX to
move the peripheral functions around and to find the optimal pin allocation, that is the
one that accommodates the maximum number of peripheral modes.

Since the MCU pin configurations must match the STM32F4DISCOVERY board,
enable ' [V]keep current signals Placement for STM32CubeMX to maintain the peripheral function
allocation (mapping) to a given pin.

This setting is saved as a user preference in order to be restored when reopening the
tool or when loading another project.

Select the required peripherals and peripheral modes:

a) Configure the GPIO to output the signal on the STM32F4DISCOVERY green LED
by right-clicking PD12 from the Chip view, then select GPIO_output:

Figure 140. GPIO pin configuration

GPIC_Cutput

b) Enable a timer to be used as timebase for toggling the LED. This is done by
selecting Internal Clock as TIM3 Clock source from the peripheral tree (see
Figure 141).

Figure 141. Timer configuration

El TIM3
----- Slave Mode :Disahle v:
----- Trigger Source :Disahle v:
----- Clock Source :Internal Clock v:
----- Channell :Disahle v:
----- Channel2 :Disahle v:
----- Channel3 :Disahle v:
----- Channel4 :Disahle v:
----- Combined Channels :Disahle v:
----- Use-ETR-as-Clearing-Source
----- XOR activation
----- [] one Pulse Mode

3

DoclD025776 Rev 21

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

c) You can also configure the RCC in order to use an external oscillator as potential
clock source (see Figure 142).

This completes the pinout configuration for this example.

Figure 142. Simple pinout configuration

¢ STM32CubeMX STM32Cube _simpleledToggle.joc STM32F4OTVGTX

File Project Pinout Window Help

B @&uw &0 2.9 [IKeep CurrentSignals Placement 9 & O — @ 4 = | =

o cA2
% CRC
% DAC
 peMI
° EH
o FSMC
° nc1
° ne2
° e
° ns2
° ns3
° WDG
® RCC

Lo Speed Clock (LSE) | Disable
[] Master Clock Ouput 1
+[] Master Clock Ouput 2
[] Audio Clock Input (125_CKIN)
 RNG
 RTC
© so1o
o spr
° s
° sp3
o svs
° M1
° M2
o M3
Slave Mode Disable
Trigger Source | Disable

Pinout | Clock Configuration | Configuration | Power Consumption Calculator|

~High Speed Clock (HSE) [BYPASS Clock Source =

I

STM32ZF407VGTX
L@FP100

Note:

loading ST Discovery board configuration from the Board selector tab.

6.3

1.

Saving the project

click H to save the project.
When saving for the first time, select a destination folder and filename for the project.

The .ioc extension is added automatically to indicate this is an STM32CubeMX

configuration file.

Figure 143. Save Project As window

Starting with STM32CubeMX 4.2, the user can skKip the pinout configuration by directly

r

% Save Project As...

Sawve in:

| STM3ZCube_simpleLedToggle

- @ STM32Cube_simpleledToggle.ioc

it
Recent
Items

Desktop

ll ‘
My
Documents
7Y

Computer

=

Network

Q! File name:

ISTM32Cube_simpleLedToggle.iog]

Files of type: :STM32CubeMX project Files (.ioc)

Cancel

2.

3

Click ¥ to save the project under a different name or location.

DoclD025776 Rev 21

173/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

6.4

6.5

174/276

Generating the report

Reports can be generated at any time during the configuration:
1. Click - to generate .pdf and .txt reports.

If a project file has not been created yet, a warning prompts the user to save the project
first and requests a project name and a destination folder (see Figure 144). An .ioc file
is then generated for the project along with a .pdf and .txt reports with the same name.

Answering “No” will require to provide a name and location for the report only.

A confirmation message is displayed when the operation has been successful (see
Figure 145).

Figure 144. Generate Project Report - New project creation

Generate Project Report d Y &J

The project name is generally used as report name, but no project is currently saved.
If the project is not created now, you will be asked for a report file name

Would you like to create a project first ?

Yes || No H Cancel I |

y—

Figure 145. Generate Project Report - Project successfully created

'0' Reports (Pdf and Text) are successfully generated under C:/STM32Cube_simpleLedToggle

| Open Folder | l Close ‘

2. Open the .pdf report using Adobe Reader or the .ixt report using your favorite text
editor. The reports summarize all the settings and MCU configuration performed for the
project.

Configuring the MCU Clock tree

The following sequence describes how to configure the clocks required by the application
based on an STM32F4 MCU.

STM32CubeMX automatically generates the system, CPU and AHB/APB bus frequencies
from the clock sources and prescalers selected by the user. Wrong settings are detected
and highlighted in red through a dynamic validation of minimum and maximum conditions.
Useful tooltips provide a detailed description of the actions to undertake when the settings
are unavailable or wrong. User frequency selection can influence some peripheral
parameters (e.g. UART baud rate limitation).

STM32CubeMX uses the clock settings defined in the Clock tree view to generate the
initialization C code for each peripheral clock. Clock settings are performed in the generated
C code as part of RCC initialization within the project main.c and in stm32f4xx_hal_conf.h
(HSE, HSI and External clock values expressed in Hertz).

3

DoclD025776 Rev 21

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

Follow the sequence below to configure the MCU clock tree:
1. Click the Clock Configuration tab to display the clock tree (see Figure 146).

The internal (HSI, LSI), system (SYSCLK) and peripheral clock frequency fields cannot
be edited. The system and peripheral clocks can be adjusted by selecting a clock
source, and optionally by using the PLL, prescalers and multipliers.

Figure 146. Clock tree view

T sTh32CubeMX U R =]

File Project Clock Configuration Window Help
BEoWg &9 2Pl

S T W

Clock Configuration | configuration | Pawer Consumption Calculator | DB Editor |

C Clock Mux

— 32

32

Ta RTC (KHz)

To IWDG (KHz)

System Clock Mux

PLL Source Mux
HSI

Lo

}- /16 v+ {x192]
HSE | - 1
%le |

Input frequency
™ *N

SYSOLK (MHz)

AME Prestaler HOLK(MHZ) | APBI Prascaler
Ll e WENS e

16 |Ethernet PTP clock (MHz)
HCLK to AHB bus, core,
bl
/8 'Tn(hn:zxgysmmtimer[ﬂllz
FCLK Cortex dock (MHz)

Main PLL

48 |48MHz clocks (MHz)

125 source Mux

puzsak [

MCO2 source Mux

SYSOLK

| gLLLZSCIK

o)
J—» 96 |125 clocks (MHz)
Brdock |

3

DoclD025776 Rev 21

175/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

176/276

First select the clock source (HSE, HSI or PLLCLK) that will drive the system clock of
the microcontroller.

In the example taken for the tutorial, select HSI to use the internal 16 MHz clock (see
Figure 147).

Figure 147. HSI clock enabled

System Clock Mux

SYSCLK (MHz)
HSE il

el 16

PLLCLK
L

§ -+"

-

To use an external clock source (HSE or LSE), the RCC peripheral shall be configured
in the Pinout view since pins will be used to connect the external clock crystals (see
Figure 148).

Figure 148. HSE clock source disabled

| ‘..
}
1 o
£ J

— Ll
i "HSE O5C" is not available
d Tao enzble go back to IPRCC in Pinout Tab’

Other clock configuration options for the STM32F4DISCOVERY board would have
been:

— To select the external HSE source and enter 8 in the HSE input frequency box
since an 8 MHz crystal is connected on the discovery board:

Figure 149. HSE clock source enabled

Input frequency

— To select the external PLL clock source and the HSI or HSE as the PLL input clock
source.

Figure 150. External PLL clock source enabled

PLL Source Mux
HSI o
L L]

HSE
- I M

3

DoclD025776 Rev 21

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

Note:

6.6

6.6.1

Note:

3

3. Keep the core and peripheral clocks to 16 MHz using HSI, no PLL and no prescaling.
Optionally, further adjust the system and peripheral clocks using PLL, prescalers and
multipliers:

Other clock sources independent from the system clock can be configured as follows:

— USB OTG FS, Random Number Generator and SDIO clocks are driven by an
independent output of the PLL.

— 12S peripherals come with their own internal clock (PLLI2S), alternatively derived
by an independent external clock source.

— USB OTG HS and Ethernet Clocks are derived from an external source.

4. Optionally, configure the prescaler for the Microcontroller Clock Output (MCO) pins that
allow to output two clocks to the external circuit.

5. Click i to save the project.
6. Go to the Configuration tab to proceed with the project configuration.

Configuring the MCU initialization parameters

Reminder

The C code generated by STM32CubeMX covers the initialization of the MCU
peripherals and middlewares using the STM32Cube firmware libraries.

Initial conditions

Select the Configuration tab to display the configuration view (see Figure 151).

Peripherals and middleware modes without influence on the pinout can be disabled or
enabled in the Peripheral and Middleware Tree pane. The modes that impact the pin
assignments can only be selected through the Pinout tab.

In the main panel, tooltips and warning messages are displayed when peripherals are not
properly configured (see Section 4: STM32CubeMX User Interface for details).

The RCC peripheral initialization will use the parameter configuration done in this view as
well as the configuration done in the Clock tree view (clock source, frequencies, prescaler
values, etc...).

DoclD025776 Rev 21 1771276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

Figure 151. Configuration view

N
& STM32CubeMX Untitled®: STM32FA07VGTx [ESREEE

File Project Window Help
FEeesw 85 +-mp ¢
[Pinout | clock Configuration | Configuration | Power Consumption Calculator | OB Editor
IConfiguration
=-MiddleWares
- & FATFS
B [[] User-defined
- & FREERTOS
' [[] Enabled

E-Peripherals Middlewares
5 & CRC

i [] Activated
£ & IWDG

‘e [F] Activated

(| &8 RCC

‘- High Speed Clock (HSE):BYPASS Clock Source
=}~ % RNG

7] Activated DMA Q+
B & TIM3

i Clock Source :Internal Clock. T —°\"o
O & TIME

[[] Activated

P
l TIM3 -“{9@

|

[(o= -

0One Pulse Mode P
RECY

- & TIM7

&[] Activated

: One Pulse Mode
- & WWDG

L [[] Activated

6.6.2 Configuring the peripherals

Each peripheral instance corresponds to a dedicated button in the main panel.

Some peripheral modes have no configurable parameters as illustrated below:

Figure 152. Case of Peripheral and Middleware without configuration parameters

Q RNG Configuration u

_& Warning: This IP has no supported configuration parameters.

3

178/276 DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

Follow the steps below to proceed with peripheral configuration:
1. Click the peripheral button to open the corresponding configuration window.

In our example,

a) Click TIM3 to open the timer configuration window.

Figure 153. Timer 3 configuration window

-
@ TIM3 Configuration

==

o' Parameter Settings | o/7 User Constants | o/’ NVIC Settings | </’ DMA Settings

Configure the below parameters :

Search : L

Counter Mode

Internal Clock Division (CKD)
= Trigger Output (TRGC) Parameters

Master /Slave Mode

Trigger Event Selection

[l Counter Settings

Counter Period (AutoReload Register - 16 bits value) 0

Up

Mo Division

Disable (no sync between this TIM (Master) and its Slaves
Reset (UG bit from TIMx_EGR)

Prescaler (PSC - 16 bits value)

Prescaler must be between 0 and 65 535.

[Apply] [Ok] [Cancel

3

DoclD025776 Rev 21 179/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

UM1718

180/276

b) With a 16 MHz APB clock (Clock tree view), set the prescaler to 16000 and the

counter period to 1000 to make the LED blink every millisecond.

Figure 154. Timer 3 configuration

[|
TIM3 Configuration @
o Parameter Settings | o/7 User Constants | &/ NVIC Settings | </ DMA Settings|
Configure the below parameters :
Search : L
[l Counter Settings
Prescaler (P5C - 16 bits value) 16000
Counter Mode Up
I Counter Period (AutoReload Register - 16 bits value) 0
Internal Clock Division (CKD) Mo Division
= Trigger Output (TRGO) Parameters
Master /Slave Mode Disable (no sync between this TIM (Master) and its Slaves
Trigger Event Selection Reset (UG bit from TIMx_EGR)
Prescaler (PSC - 16 bits value)
Prescaler must be between 0 and 65 535.
[Apply] [Ok] [Cancel

Optionally and when available, select:

— The NVIC Settings tab to display the NVIC configuration and enable interruptions

for this peripheral.

— The DMA Settings tab to display the DMA configuration and to configure DMA

transfers for this peripheral.

In the tutorial example, the DMA is not used and the GPIO settings remain

unchanged. The interrupt is enabled as shown in Figure 155.

— The GPIO Settings tab to display the GPIO configuration and to configure the

GPIOs for this peripheral.
— Insert an item:

— The User Constants tab to specify constants to be used in the project.

Modify and click Apply or OK to save your modifications.

DoclD025776 Rev 21

3

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

6.6.3

3

Figure 155. Enabling Timer 3 interrupt

TIM3 Configuration &J

/7 Parameter Settings | o/ User Constants | o NVIC Settings | </ DMA Setﬁngs|

Interrupt Table Enabled Preemption Priority Sub Priority
ITIM3 global interrupt | |I |I

Configuring the GPIOs

The user can adjust all pin configurations from this window. A small icon along with a tooltip
indicates the configuration status.

Figure 156. GPIO configuration color scheme and tooltip

GPIO =
o

—————
GPIO: General Purpose Input Qutput
ThisIP is correctly configured. You can generate code using current valu

Follow the sequence below to configure the GPIOS:

1. Click the GPIO button in the Configuration view to open the Pin Configuration
window below.

2. The first tab shows the pins that have been assigned a GPIO mode but not for a
dedicated peripheral and middleware. Select a Pin Name to open the configuration for
that pin.

In the tutorial example, select PD12 and configure it in output push-pull mode to drive
the STM32F4DISCOVERY LED (see Figure 157).

DoclD025776 Rev 21 181/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

Figure 157. GPIO mode configuration

-

=
@ Pin Configuration ﬁ

GPIO

Search Signals
cearch (CrH+F) [] Show only Modified Fins

=
Pin Name Signal on Pin GPIO mode GPIO Pull-up/Pu... Maximum outpu... User Label Modified

Cuty 0 and no 0 04 d ¥l

PD 14 Configuration :

GPIO mode
GPIO Pull-up /Pull-down Mo pull-up and no pull-down -
Maximum output speed Low -

User Label

.Duh:ut Push Full -

LD4 [Green Led]

[¥] Group By IP | Aoy | [ok | [cancel

6.6.4

Note:

182/276

3. Click Apply then Ok to close the window.

Configuring the DMAs

This is not required for the example taken for the tutorial.

It is recommended to use DMA transfers to offload the CPU. The DMA Configuration
window provides a fast and easy way to configure the DMAs (see Figure 158).

1. Add a new DMA request and select among a list of possible configurations.

2. Select among the available streams.

3. Select the Direction: Memory to Peripheral or Peripheral to Memory.

4. Select a Priority.

Configuring the DMA for a given peripheral and middleware can also be performed using
the Peripheral and Middleware configuration window.

3

DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU
Figure 158. DMA Parameters configuration window
r |
DMA Configuration ﬂ
DMAL | DMA2 | MemToMem|
DMA Request Stream Direction Priarity
I2C1_RX DMA1 Stream 0 Peripheral To Memaor Low
\Select 3
i 2C1_TX
TIM3_CH4/UP
Add] [Delete
DMA Request Settings
Peripheral Memory
Mode Normal - Increment Add...
Use Fifo Thres... |Half Full - Data Width Byte - Byte -
Burst Size Single - Single -
’ Apply] [Ok] [Cancel
6.6.5 Configuring the middleware

3

This is not required for the example taken for the tutorial.

If a peripheral is required for a middleware mode, the peripheral must be configured in the
Pinout view for the middleware mode to become available. A tooltip can guide the user as

illustrated in the FatFs example below:

Figure 159. FatFs disabled

tpnﬁguratinn
-MiddleWares B
- & FATFS

e External SRAM

»

-.. [] 5D Card
i-—- [] USB Disk

LY USE Disk Dissbled:
Active only with USB Host (class MSC) middleware

A

-

-

o WO OO e PO o

-

DoclD025776 Rev 21

183/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

1. Configure the USB peripheral from the Pinout view.

Figure 160. USB Host configuration

- & USB_OTG_FS
: :-Mode[Host_DnIy -
[Activate_soF

------ [Activate_vBUS

2. Select MSC_FS class from USB Host middleware.
3. Select the checkbox to enable FatFs USB mode in the tree panel.

Figure 161. FatFs over USB mode enabled

f;]---l“ljdllle“'arﬁ
5 & FATFS
- ----- External SDRAM
----- External SRAM
- ----- SD Card
----- USE Disk
- [7] user-defined
[+~ % FREERTOS
(-
(-
- W USB_HOST
E----Class for HS IP |Disable
E----Class for FS IP [Mass Storage Host Class -

4. Select the Configuration view. FatFs and USB buttons are then displayed.

Figure 162. Configuration view with FatFs and USB enabled

o

: =)
CwE) | Cma]

l FATFS 1= H USB_HOST <= l

3

184/276 DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

5. FatFs and USB using default settings are already marked as configured * . Click
FatFs and USB buttons to display default configuration settings. You can also change
them by following the guidelines provided at the bottom of the window.

Figure 163. FatFs peripheral instances
@ FATFS Configuration ﬂ‘

i</ TPs instances! o/’ Set Defines

Configure the below parameters :

=] USBH
USEH instance USB Host MSC FS

Apply | [ok | [cancel |

Figure 164. FatFs define statements

N
% FATFS Configuration ﬁ
«/ IPs instances| =/ Set Deﬁn95|

Configure the below parameters :

-

[=| Function Parameters

FS_TINY Disabled
FS_READOMLY (Read-only mode) Disabled
S Mz (Mnmaton ey [
USE_STRFUNC (Use String Functions) Enabled with LF -> CRLF conversion
USE_MKFS Enabled
USE_FORWARD Disabled
USE_LABEL Disabled
USE_FASTSEEK Enabled

Locale and Namespace Parameters
Physical Drive Parameters
System Parameters

FS_MINIMIZE (Minimization level)

_F5_MINIMIZE

Parameter Description:

The FS_MINIMIZE option defines minimization level to remove some functions.

0: Full function.

1: f_stat, f_getfree, f_unlink, f_mkdir, f_chmod, f_truncate, f_utime and f_rename are removed.
2: f_opendir and f_readdir are removed in addition to 1.

3: f_Iseek is removed in addition to 2.

Apply] [Ok] [Cancel

3

DoclD025776 Rev 21 185/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

UM1718

6.7

6.7.1

186/276

Generating a complete C project

Setting project options

Default project settings can be adjusted prior to C code generation as described in

Figure 165.

1. Select Settings from the Project menu to open the Project settings window.
2. Select the Project Tab and choose a Project name, location and a toolchain to

generate the project (see Figure 165).

Figure 165. Project Settings and toolchain choice

-

% Project Settings

)

Project | Code Generator | Advanced Settings

Project Settings
Project Name
STM32Cube_SimpleLedToggle

Project Location

Toolchain Folder Location
C:\5TM32CubeMx_Projects\Projects\STM32Cube_SimpleLedToqgle,

Toolchain [/ IDE

Generate Under Root

Makefile
Other Toolchains (GPDSC)
Mcu and Firmware Package

Mcu Reference
STM32F42772GTx

Firmware Package Name and Version

STM32Cube FW_F4 V1.16.0

Use Default Firmware Location
C:/Users/STM32Cube/Repository/STM32Cube_FW_F4 V1.16.0 Browse

C:\STM32CubeMX_Projects\Projects),

Ok] [Cancel

DoclD025776 Rev 21

3

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

3. Select the Code Generator tab to choose various C code generation options:

The library files copied to Projects folder.
C code regeneration (e.g. what is kept or backed up during C code regeneration).

HAL specific action (e.g. set all free pins as analog 1/Os to reduce MCU power
consumption).

In the tutorial example, select the settings as displayed in the figure below and click

OK.

Note: A dialog window appears when the firmware package is missing. Go to next section for
explanation on how to download the firmware package.

Figure 166. Project Settings menu - Code Generator tab

Project Settings

S

Code Generator | Advanced Settings

STM32Cube Firmware Library Package
(") Copy all used libraries into the project folder

(") Copy only the necessary library files

(@ Add necessary library files as reference in the toolchain project configuration file

Generated files

HAL Settings

[] Generate peripheral initialization as a pair of '.cf.h' files per IP
[] Backup previously generated files when re-generating
Keep User Code when re-generating

Delete previously generated files when not re-generated

Set all free pins as analog (to optimize the power consumption)

[] Enable Full Assert

Template Settings

Select a template to generate customized code Settings...

Ok] [Cancel

3

DoclD025776 Rev 21 187/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

6.7.2 Downloading firmware package and generating the C code

1. Click “= to generate the C code.

During C code generation, STM32CubeMX copies files from the relevant STM32Cube
firmware package into the project folder so that the project can be compiled. When
generating a project for the first time, the firmware package is not available on the user
PC and a warning message is displayed:

Figure 167. Missing firmware package warning message
Project Manager Settings [ﬁ,l

The Firmware Package (STM32Cube FW_F ¥V1.11.0) or one of its dependencies required by the Project is not available in your STM32CubeMX Repository.
Do you want to download this now 7

N

2. STM32CubeMX offers to download the relevant firmware package or to go on. Click
Download to obtain a complete project, that is a project ready to be used in the
selected IDE.

By clicking Continue, only /nc and Src folders will be created, holding STM32CubeMX
generated initialization files. The necessary firmware and middleware libraries will have
to be copied manually to obtain a complete project.

If the download fails, the below error message is displayed:

Figure 168. Error during download

Problem during Download and/or Unzip ﬁ

.: v) Error during Access to HTTP Server.
Please check Proxy settings under 'Help = Updater Settings = Connection Parameters'.

To solve this issue, execute the next two steps. Skip them otherwise.

3

188/276 DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

3. Select Help > Updater settings menu and adjust the connection parameters to match
your network configuration.

Figure 169. Updater settings for download

Updater Settings ﬁ

| Updater Settings| Connection Parameters

Proxy Server Type
1) No Proxy

() Use System Proxy Parameters

I (@) Manual Configuration of Proxy Server I

Manual Configuration of Proxy Server

Froxy HTTP do.it.mycompany.com Port | 8080

I Authentification I
Require Authentification

User Loggin JohnDoe

Password |essssssssssss

[A& Check Connection]

’ oK] [Cancel]

4. Click Check connection. The check mark turns green once the connection is
established.

3

DoclD025776 Rev 21 189/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

Figure 170. Updater settings with connection

Updater Settings ﬁ
Updater Settings| Connection Parameters|

Proxy Server Type
1) No Proxy

7

Use System Proxy Parameters

I (@) Manual Configuration of Proxy Server I

Manual Configuration of Proxy Server

Proxy HTTP | do.it. mycompany.com Port (8080

I Authentification I
Require Authentification

User Loggin | JohnDoe

Password | eesssssssssese

[/" Check Connection]

’ OK] i cancel

5. Once the connection is functional, click to generate the C code. The C code
generation process starts and progress is displayed as illustrated in the next figures.

Figure 171. Downloading the firmware package

Download selected Firmware & Software lihj

Download File stm32cube_fw_f4_v080.zip
. 2.9 MBytes / 54.8 MBytes

Download and Unzip selected Files

3

190/276 DoclD025776 Rev 21

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

Figure 172. Unzipping the firmware package

Download selected Firmware & Software ﬁ

Unzip File : stm32cube_fw_f4 v082.zip
[

Download and Unzip selected Files OK
|

6. Finally, a confirmation message is displayed to indicate that the C code generation has
been successful.

Figure 173. C code generation completion message

- B
Code Generation ﬁ

The Code is successfully generated under C:/STM32CubeMX_Projects/STM32Cube_simpleLedToggle

COpen Folder] | Open Projectél ’ Close

3

DoclD025776 Rev 21 191/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

UM1718

Caution:

192/276

7.

Click Open Folder to display the generated project contents or click Open Project to
open the project directly in your IDE. Then proceed with Section 6.8.

Figure 174. C code generation output folder

"I: ‘ @
@uﬂ « STM3.. » STM32Cube Si.. » v |4 [l SearchsT Simpleled.. P
File Edit View Tools Help
Organize ~ -/ Open Include in library v » = - I e
4 | STM32Cube_SimpleLedToggle “* Name N B
Drivers)
Drivers
Inc
| Inc
Middlewares i =
i | Middlewares F
Projects =
| . Projects
Src
Src I
= STM32Cube_SimpleLedToggleioc ~
Ll | il }
Projects Date modified: 2/3/2014 10:05 AM

§ rile 1older |J

The generated project contains:

The STM32CubeMX .ioc project file located in the root folder. It contains the project
user configuration and settings generated through STM32CubeMX user interface.

The Drivers and Middlewares folders hold copies of the firmware package files relevant
for the user configuration.

The Projects folder contains IDE specific folders with all the files required for the project
development and debug within the IDE.

The Inc and Src folders contain STM32CubeMX generated files for middleware,
peripheral and GPIO initialization, including the main.c file. The STM32CubeMX
generated files contain user-dedicated sections allowing to insert user-defined C code.

C code written within the user sections is preserved at next C code generation, while C code
written outside these sections is overwritten.

User C code will be lost if user sections are moved or if user sections delimiters are
renamed.

3

DoclD025776 Rev 21

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

6.8

3

Building and updating the C code project

This example explains how to use the generated initialization C code and complete the
project, within IAR EWARM toolchain, to have the LED blink according to the TIM3

frequency.

A folder is available for the toolchains selected for C code generation: the project can be
generated for more than one toolchain by choosing a different toolchain from the Project
Settings menu and clicking Generate code once again.
1. Open the project directly in the IDE toolchain by clicking Open Project from the dialog
window or by double-clicking the relevant IDE file available in the toolchain folder under
STM32CubeMX generated project directory (see Figure 173).

Figure 175. C code generation output: Projects folder

& S - | = ﬁ
~ L « 3 ube_simpleLedToggle » - 1.
(o) STM32Cub pleLedTogagl +5 ol

File Edit View Tools Help
Organize = Include in library = Share with = Burn Mew folder g | I@.l
- 5TM32Cube_simpleLedToggle % Mame .
Drivers :
Drivers
EWARM
EWARM
Inc
, Inc
MDK-ARM N
MDK-ARM
J Src ||
Src
SWaSTM32
SW45TM32
TrueSTUDIO
TrueSTUDIO
|| .mxproject
® 5TM32Cube_simpleLledToggleioc |
3 | 5TM32Cube_simpleLedToggle.td |
" 5TM32Cube_simpleLedToggle_Configuration.pdf
=i il b
11 items
DocID025776 Rev 21 193/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

UM1718

194/276

2.

As an example, select .eww file to load the project in the IAR EWARM IDE.

Figure 176. C code generation for EWARM

= [

G-

b 5TM32Cube_simpleLedToggle » EWARM »

+ [42 |[Searchew.. o

:/6 IAR IDE Workspace

File Edit View Tools Help
Organize v g@' Open « Burn MNew folder = « [@.
9 S
5TM32Cube_simpleledToggle = Name Date modified
Drivers . "
) settings 7/28/2015 2:44
. EWARM . ,
: 5TM32Cube_simpleLedToggle Configura... 2015 2:44
. Inc ——— e
| 4] Project.ewan 2015 2:39
MDE-ARM ; - -
5 | STM32Cube_simpleLedToggle.ewd 1/28/2015 2:39
y Src
|| STM32Cube_simpleLedToggle.ewp 7/28/2015 2:39
SWASTM32 ; L
| strn32f4070e_flash.icf 7/16/2015 5:52
. TrueSTUDIO :
| stm32f407:0_sram.icf 7/16/2015 5:52
+ | . | 3
i Project.eww Date modified: 7/28/2015 2:39 PM Date created: 7/28/2015 2:39 PM

Size: 169 bytes

DoclD025776 Rev 21

3

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

3. Select the main.c file to open in editor.

Figure 177. STM32CubeMX generated project open in IAR IDE

& Project - IAR Embedded Waorkbench IDE =NAEE X

File Edit View Project Tools Window Help

==y ==y | o o | - "mEe &P |BEDEGE 2|2

Workspace x L fl «x
S5TM32Cube_simpleledT ogale Configuration A /% Includes f
Eileg) #include "stm32f4xx _hal.h"

/* USER CODE BEGIN Includes */

B STM32Cube_simpleLedToggle... v /* USER CODE END Includes #/

8 03 Application

| CIEWARM /* Private wvariables

| Letuser TIM HandleTypeDef htim3;

| main.c /+# USER CODE BEGIN BV +/

| st 32fde_hal_msp.c /* Private variables

| stmaefdor_itc /* USER CODE END FV #/

[Drivers

3 Dutput /* Private function prototypes

wvoid SystemClock_Config(wvoid):
static void ME_GPIO Init (woid);
static void ME_TIM3_Init(void); |
/* USER CODE BEGIN FFF +*/ I
/* USER CODE END PFF */

m

/* USER CODE BEGIN 0 */ b
/* USER CODE END 0 */
int main(void)
B {
/* USER CODE BEGIN 1 #/
/* USER CODE END 1 *=/
/* MCU Configuration
/* Reset of all peripherals, Initiaslizes the Flash interface and the 5y
HAL Init();
/* Configure the system clock *#/
SystemClock_Config():
/* Initialize all configured peripherals *#/
MX_GPIO Init();
MX_TIM3 Init();:
/% USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE +*/
while (1)
B
/* USER CODE END WHILE +#/
/* USER CODE BEGIN 3 #/
rol
/* USER CODE END 3 #/

I | S5TM32Cube_simpleledToggle

[Ready Ln51, Coll System NL

The htim3 structure handler, system clock, GPIO and TIM3 initialization functions are
defined. The initialization functions are called in the main.c. For now the user C code
sections are empty.

3

DoclD025776 Rev 21 195/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

UM1718

4. Inthe IAR IDE, right-click the project name and select Options.

Figure 178. IAR options

’STMSECUbe_SimpIeLedTDggIe Caonfiguration vl

& [Application
= [Drivers
& C1Example
L@ (3 Output

Files ii £ DB

=fa|STM32Cube_SimpleLedToggle..| v | |

x

x

x

5. Click the ST-LINK category and make sure SWD is selected to communicate with the

STM32F4DISCOVERY board. Click OK.

Figure 179. SWD connection

r

Options for node "STM32Cube_SimpleLedToggle™

=5

Category:

General Options >
CfC++ Compiler

Assembler ST-LINK

Factony Settings

Output Converter

Custom Build Rese

Build Actions INormaI

Linker
Debugger Interface Clock setup
Simulator
Angel
CMSIS DAP
GDB Server
IAR ROM-manitor
Tjet/TTAGjet
JHink/-Trace
T1 Stellaris

Macraigor

‘._:_.'JTAG CPU clock

111

SWO clock

PE micra
RDIL

720 MHz

[Auto

2000 kHz

STLINK

Third-Party Driver
T1 XD5100/200 N

ok ||

Cancel

196/276 DoclD025776 Rev 21

3

UM1718 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

6. Select Project > Rebuild all. Check if the project building has succeeded.

Figure 180. Project building log

Messages

st 32fdxe_hal_tim.c

st 32fdx_hal_tim_ex.c
st 32fdw_itc

st 32fdxe_|_sdmmc.c
system_stm32{dc
Linking

Taotal number of errars: 0
Total number of warnings: 0

7. Add user C code in the dedicated user sections only.
Note: The main while(1) loop is placed in a user section.
For example:
a) Edit the main.c file.
b) To start timer 3, update User Section 2 with the following C code:

Figure 181. User Section 2

HAL Init{):

/* Configure the system clock */
SystemClock Config():

J#% Initialize all configured peripherals #/
MX GPIO Init{):

MX TIM3 Init{):

/* USER CODE BEGIN 2 */
HAL TIM Base Start IT (shtim3)}:
/* USER CODE END 2 */

/% Infinite loop */

/* USER CODE BESIN WHILE #/
while (1}

{

c) Then, add the following C code in User Section 4:

Figure 182. User Section 4

AF USER CODE BEGIN 4 +/7

wvoid HAL_TIM PeriodElapsedCallback (TIM HandleTypeDef *htim)
{

if | htim->Instance == htim3.Instance)

{

HAL GPIO _TogglePin(GPIOD, GPIO_FPIN 1Z):

}
¥
A% USER CODE END 4 =7

3

DoclD025776 Rev 21 197/276

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU UM1718

10.

This C code implements the weak callback function defined in the HAL timer driver
(stm32f4xx_hal_tim.h) to toggle the GPIO pin driving the green LED when the
timer counter period has elapsed.

Rebuild and program your board using |2 .. Make sure the SWD ST-LINK option is
checked as a Project options otherwise board programming will fail.

-

Launch the program using = | The green LED on the STM32F4DISCOVERY board
will blink every second.

To change the MCU configuration, go back to STM32CubeMX user interface,
implement the changes and regenerate the C code. The project will be updated,
preserving the C code in the user sections if || Keep Current Signals Placement option in
Project Settings is enabled.

6.9 Switching to another MCU

STM32CubeMX allows loading a project configuration on an MCU of the same Series.

Proceed as follows:

1.
2.

198/276

Select File > New Project.

Select an MCU belonging to the same Series. As an example, you can select the
STM32F429ZITx that is the core MCU of the 32F429IDISCOVERY board.

Select File > Import project. In the Import project window, browse to the .ioc file to
load. A message warns you that the currently selected MCU (STM32F429ZITx) differs
from the one specified in the .ioc file (STM32F407VGTx). Several import options are
proposed (see Figure 183).

Click the Try Import button and check the import status to verify if the import
succeeded (see Figure 184).

Click OK to really import the project. An output tab is then displayed to report the import
results.

The green LED on 32F429IDISCOVERY board is connected to PG13: CTRL+ right
click PD12 and drag and drop it on PG13.

Select Project > Settings to configure the new project name and folder location. Click
Generate icon to save the project and generate the code.

Select Open the project from the dialog window, update the user sections with the

user code, making sure to update the GPIO settings for PG13. Build the project and
flash the board. Launch the program and check that LED blinks once per second.

3

DoclD025776 Rev 21

UM1718

Tutorial 1: From pinout to project C code generation using an STM32F4 MCU

3

Figure 183. Import Project menu

S

Import Project

Imported Project
2 \STM32CubeMy_Projects\4_10_UMYSTM32Cube_simpleLedToggle\STM32Cube_simpleLedToggle.ioc [I]

Import MY Settings

Import PCC settings

Import Finout/Clock Configuration/Configuration Settings

(@ Automatic Import
() Manual Import
Import Pinning Status
Import Peripherals Configuration

Peripheral List

NVIC
RCC
TIM3
GPIO
Try Import Show View -Pinout -]
Import Status

Import Analysis: C:\5TM32CubeMX Projectsi4 10 UM\STM32Cube simpl¢

W

I T 3
Figure 184. Project Import status
Try Import Show View :Pinout v:
Im\pnrt Status
Inport Try :

m

Inporting Pinout
Inporting IP configurations
Inport project completed

DoclD025776 Rev 21 199/276

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

7 Tutorial 2 - Example of FatFs on an SD card using
STM324291-EVAL evaluation board

The tutorial consists in creating and writing to a file on the STM32429I-EVAL1 SD card using
the FatFs file system middleware.

To generate a project and run tutorial 2, follow the sequence below:
1. Launch STM32CubeMX.

2. Select File > New Project. The Project window opens.

3. Click the Board Selector Tab to display the list of ST boards.

4. Select EvalBoard as type of Board and STM32F4 as Series to filter down the list.

5. Leave the option Initialize all peripherals with their default mode unchecked so that

the code is generated only for the peripherals used by the application.

6. Select the STM32429I-EVAL board and click OK. The Pinout view is loaded, matching
the MCU pinout configuration on the evaluation board (see Figure 185).

Figure 185. Board selection

r ~
% MNew Project @
MCU Selector | Board Selectar
Board Filter
Vendor : Type of Board : MCU Series :
:STMicroeIechonics - :EvaIBoard - :5TM32F4 -
[] mnitialize all IP with their default Mode
Peripheral Selection Boards List: 5 Items
Peripherals Mo Max Type Reference MCU
@ |Accelerometer |} EvalBoard |5TM324DG-EVAL STM32F4071G
J EvalBoard STM3241G-EVAL STM32F4171G
@ |Audio Line In [&] alBoard 429]-EVA SN
@ |Audio Line Out |:| EvalBoard STM324391-EVAL2 STM32F439NT I
@ [Button 1) EvalBoard STM32946E-EVAL STM32F4496ZE
@|CAN 0 N
@|Camera]
) Ol
@ |Digital /0 0 i
@ [Eeprom [}
@ Ethernet] |
Flash Memary 1}
@ |Graphic Lcd Display [l
o I
@rDa]
@ |Joystick [0
) (]
@ |Led 1]
) 0
Memory Card]
@ Micro 0
@ |Potentiometer]
P]
@Rs-232 0
| @ 0
@ |SRAM/SDRAM 1]
@ |Speaker [l
2 I
D (&
@[use 0
| - - T — — — - -

200/276 DoclD025776 Rev 21 ‘Yl

UM1718

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

3

7. From the Peripheral tree on the left, expand the SDIO peripheral and select the SD 4
bits wide bus (see Figure 186).

Figure 186. SDIO peripheral configuration

-

=&\ SDIO
~-Mode 5D 4 bits Wide bus -

8. Under the Middlewares category, check “SD Card” as FatFs mode (see Figure 187).

Figure 187. FatFs mode configuration

Configuration
I-MiddleWares
. B+ ® FATFS

External SDRAM
: External SRAM
- [] 5D Card
‘ IJSE Disk
[User-defined

9. Configure the clocks as follows:
a) Select the RCC peripheral from the Pinout view (see Figure 188).

Figure 188. RCC peripheral configuration

=4\ RCC
' E----High Speed Clock (HSE) 'Crystalfl:eramic Resonator -
g----Luw Speed Clock (LSE) |Disable v

L || Master Clock Output 1

DoclD025776 Rev 21 201/276

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718
b) Configure the clock tree from the clock tab (see Figure 189).
Figure 189. Clock tree view
e System Clock Mux
-|SI.
= HSE SYSCLK (MHz) AHB Prescaler HCLK (MHz)
’ - -~ 168 =1 168 =
PLL Sourm Mux P‘.__Eﬁ - o
HSI . A
1 & —= Enable CSS
Input frequency - s25 X336 « f2 o
~~-vﬂ«.’:1} HSE %55 - | F N [/P
Main PLL Q

10. In the Project Settings menu, specify the project name and destination folder. Then,
select the EWARM IDE toolchain.

Figure 190. Project Settings menu - Code Generator tab

e

@ Project Settings

===

Project | Code Generator

Project Settings
Project Name
fatfs_sd_test

Project Location

Toolchain Folder Location

Toolchain [IDE
EWARM

Mcu and Firmware Package

Mcu Reference
STM32F429MNIHx

STM32Cube FW_F4V1.8.0

C:\sT™ 32CubEM3{_P‘rojects‘|ETM 32F429NI-5TM32F429I-EVAL L

C:\STM32CubeMy,_Projects\STM32F429NI-5TM32F4251-EVAL 1\fatfs_sd_test)

Firmware Package Mame and Version

Browse

Use latest available version

ok]

Cancel

202/276

DoclD025776 Rev 21

3

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

11. Click Ok. Then, on the toolbar menu, click ,-I}

to generate the project.

12. Upon code generation completion, click Open Project in the Code Generation dialog
window (see Figure 191). This opens the project directly in the IDE.

Figure 191. C code generation completion message

=
% Code Generation

==

Open Folder] EOpen Projectél [Close

The Code is successfully generated under C:/STM32CubelMX_Projects/STM32F429NI-5TM32F4291-EVALL /fatfs_sd_test

13. In the IDE, check that heap and stack sizes are sufficient: right click the project name
and select Options, then select Linker. Check Override default to use the icf file from

STM32CubeMX generated project folder. Adjust the heap and stack sizes (see

Figure 192).

Figure 192. IDE workspace

Options for node "fatfs_sd_test”

B

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Conwverter
Custom Build
Build Actions
Debugger
Simulator
Angel
CMSIS DAP
GDE Server
IAR. ROM-monitor
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LINK
Third-Party Driver
TLXDS

Factary Settings

Config |Lib|T:|r'_.' I Input |Optirnization5 IM\ranced I Cutput I List I o 12

Linker corfiguration file
Overmide defautt
SPROJ_DIRS \stm32f425%0:_flash icf

Corfiguration file symbol definttions: fone per line)

]

Linker configuration file editor

CSTACK 0300

HEAP 0x400

Vector Table | Memary Regions | Stack/Heap Sizes

Save] [Cancel

3

DoclD025776 Rev 21

203/276

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

UM1718

Note: When using the MDK-ARM toolchain, go to the Application/MDK-ARM folder and double-

click the startup_xx.s file to edit and adjust the heap and stack sizes there.
14. Go to the Application/User folder. Double-click the main.c file and edit it.

15. The tutorial consists in creating and writing to a file on the evaluation board SD card

using the FatFs file system middleware:
a) At startup all LEDs are OFF.

b) The red LED is turned ON to indicate that an error occurred (FatFs initialization,

file read/write access errors..).

c) Theorange LED is turned ON to indicate that the FatFs link has been successfully

mounted on the SD driver.

d) The blue LED is turned ON to indicate that the file has been successfully written to

the SD Card.

e) The green LED is turned ON to indicate that the file has been successfully read

from file the SD Card.
16. For use case implementation, update main.c with the following code:

a) Insert main.c private variables in a dedicated user code section:
/* USER CODE BEGIN PV */

/* Private variables -—-——————===————————— */
FATFS SDFatFs; /* File system object for SD card logical drive */

FIL MyFile; /* File object */
const char wtext[] = "Hello World!";
const uint8_ t imagel bmp[] = {

0x42,0x4d, 0x36,0x84,0x03,0x00,0x00,0x00,0x00,0x00,0x36,0x00,0x00,0x00,
0x28,0x00,0x00,0x00,0x40,0x01,0x00,0x00,0x£f0,0x00,0x00,0x00,0x01,0x00,
0x18,0x00, 0x00,0x00,0x00,0x00,0x00,0x84,0x03,0x00,0x00,0x00,0x00,0x00,
0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x29,0x74,
0x51, 0x0e, 0x63,0x30,0x04,0x4c,0x1d,0x0f, 0x56,0x25,0x11,0x79,0x41,0x1f,
0x85,0x6f,0x25,0x79,0x7e,0x27,0x72,0x72,0x0b, 0x50,0x43,0x00,0x44,0x15,
0x00,0x4b, 0x0£f, 0x00, Ox4a,0x15,0x07,0x50,0x16,0x03,0x54,0x22,0x23,0x70,
0x65,0x30,0x82,0x6d,0x0f, 0x6c,0x3e,0x22,0x80,0x5d,0x23,0x8b,0x5b, 0x26};

/* USER CODE END PV */
b) Insert main functional local variables:

int main (void)

{

/* USER CODE BEGIN 1 */

FRESULT res; /* FatFs function common result code */

uint32_t byteswritten, bytesread; /* File write/read counts */
char rtext[256]; /* File read buffer */
/* USER CODE END 1 */

/* MCU Configuration-------—--—--—————————————————— - */

/* Reset of all peripherals, Initializes the Flash interface and the

Systick. */
HAL Init();

204/276 DoclD025776 Rev 21

3

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

c) Insert user code in the main function, after initialization calls and before the while
loop, to perform actual read/write from/to the SD card:

int main (void)

{

MX_FATFS_Init();

/* USER CODE BEGIN 2 */
/*##-0- Turn all LEDs off (red, green, orange and blue) */
HAL GPIO WritePin(GPIOG, (GPIO PIN 10 | GPIO PIN 6 | GPIO PIN 7 |
GPIO PIN 12), GPIO PIN SET);
/*##-1- FatFS: Link the SD disk I/O driver ##########*/
if (retSD == 0) {
/* success: set the orange LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 7, GPIO PIN RESET);
/*##-2- Register the file system object to the FatFs module ###*/

if (f mount (&SDFatFs, (TCHAR const*)SD Path, 0) != FR OK) {
/* FatFs Initialization Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {

/*##-3- Create a FAT file system (format) on the logical drive#*/
/* WARNING: Formatting the uSD card will delete all content on the
device */
if (f mkfs ((TCHAR const*)SD Path, 0, 0) != FR OK) {
/* FatFs Format Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1)
} else {
/*##-4- Create & Open a new text file object with write access#*/
if (f open(&MyFile, "Hello.txt", FA CREATE ALWAYS | FA WRITE) !=
FR_OK) {
/* 'Hello.txt' file Open for write Error : set the red LED on */
HAL GPIO WritePin(GPIOG, GPIO PIN 10, GPIO PIN RESET);

while (1) ;
} else {
/*##-5- Write data to the text file #####HFHH#HFHFHSHEFLE/
res = f write(&MyFile, wtext, sizeof (wtext), (void

*) &byteswritten) ;
if ((byteswritten == 0) || (res != FR OK)) {
/* 'Hello.txt' file Write or EOF Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {
/*##-6- Successful open/write : set the blue LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 12, GPIO PIN RESET);
f close(&MyFile);
/*##-7- Open the text file object with read access #*/
if(f open(&MyFile, "Hello.txt", FA READ) != FR OK) {
/* '"Hello.txt' file Open for read Error : set the red LED on */

DoclD025776 Rev 21 205/276

3

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {

/*##-8- Read data from the text file #########*/
res = f read(&MyFile, rtext, sizeof (wtext), &bytesread);
if ((strcmp (rtext,wtext) !=0) || (res != FR OK)) {

/* 'Hello.txt' file Read or EOF Error : set the red LED on */
HAL_GPIO WritePin(GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1)

} else {
/* Successful read : set the green LED On */
HAL GPIO WritePin (GPIOG, GPIO PIN 6, GPIO PIN RESET);
/*##-9- Close the open text file ######H#FHF#HFHFHE>/
f close(&MyFile);
BB BEES
/*#4#-10- Unlink the micro SD disk I/O driver #########*/
FATFS_UnLinkDriver(SD_Path);

/* USER CODE END 2 */
/* Infinite loop */

/* USER CODE BEGIN WHILE */
while (1)

206/276 DoclD025776 Rev 21

3

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

8

8.1

Note:

3

Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption
and more

Tutorial overview

This tutorial focuses on STM32CubeMX Power Consumption Calculator (Power
Consumption Calculator) feature and its benefits to evaluate the impacts of power-saving
techniques on a given application sequence.

The key considerations to reduce a given application power consumption are:

e Reducing the operating voltage

e Reducing the time spent in energy consuming modes

It is up to the developer to select a configuration that gives the best compromise
between low-power consumption and performance.

e Maximizing the time spent in non-active and low-power modes
e Using the optimal clock configuration

The core should always operate at relatively good speed, since reducing the operating
frequency can increase energy consumption if the microcontroller has to remain for a
long time in an active operating mode to perform a given operation.

e Enabling only the peripherals relevant for the current application state and clock-gating
the others

e When relevant, using the peripherals with low-power features (e.g. waking up the
microcontroller with the 12C)

e Minimizing the number of state transitions
e Optimizing memory accesses during code execution
— Prefer code execution from RAM to Flash memory
— When relevant, consider aligning CPU frequency with Flash memory operating
frequency for zero wait states.

The following tutorial shows how the STM32CubeMX Power Consumption Calculator
feature can help to tune an application to minimize its power consumption and extend the
battery life.

The Power Consumption Calculator does not account for I/O dynamic current consumption
and external board components that can also affect current consumption. For this purpose,
an “additional consumption” field is provided for the user to specify such consumption value.

DoclD025776 Rev 21 207/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

8.2 Application example description

The application is designed using the NUCLEO-L476RG board based on a
STM32L476RGTx device and supplied by a 2.4 V battery.

The main purpose of this application is to perform ADC measurements and transfer the
conversion results over UART. It uses:

e Multiple low-power modes: Low-power run, Low-power sleep, Sleep, Stop and Standby
e Multiple peripherals: USART, DMA, Timer, COMP, DAC and RTC

— The RTC is used to run a calendar and to wake up the CPU from Standby when a
specified time has elapsed.

— The DMA transfers ADC measurements from ADC to memory
— The USART is used in conjunction with the DMA to send/receive data via the
virtual COM port and to wake up the CPU from Stop mode.

The process to optimize such complex application is to start describing first a functional only
sequence then to introduce, on a step by step basis, the low-power features provided by the
STM32L476RG microcontroller.

8.3 Using the Power Consumption Calculator

8.3.1 Creating a power sequence

Follow the steps below to create the sequence (see Figure 193):
1. Launch STM32CubeMX.
2. Click new project and select the Nucleo-L476RG board from the Board tab.

3. Click the Power Consumption Calculator tab to select the Power Consumption
Calculator view. A first sequence is then created as a reference.

4. Adapt it to minimize the overall current consumption. To do this:

a) Select2.4V Vpp power supply. This value can be adjusted on a step by step basis
(see Figure 194).

b) Select the Li-MnO2 (CR2032) battery. This step is optional. The battery type can
be changed later on (see Figure 194).

3

208/276 DoclD025776 Rev 21

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Figure 193. Power Consumption Calculation example

N
© STM32CubeMX L4_testioc™; STM32L476RGTx NUCLEQ-L476RG . . . ‘ vy 5 bt =)
File Project Power Window Help

GoRUER &G s @9 $
[Pinout | clod Configuration | Configuration | Power Consumption Calcuiator |
4 |r5tep Sequence Transitions Chedker
Microcontroller Selected () | P - A 1 ¥ ~ | { E E] 2 [Fon 1
Series STM32L4 Sequence Table
Line STM32L4x6 Step Mode ... RangefScale Memory ... ClockC... SrcFreq Periphe... Add.C... StepC... Duration DMIPS Voltag... TaMax Category
McU STM32L476RGTx
Datasheet 025976_Rev3 1 RUN 2.4 |Rangei-High FLASH/A... |... HSE 24.0MHz |ADC1:fs... [0 mA 9.36mA [1ms 30.0 Battery [103.99 |Datasheet | o
2 STANDBY 2.4 |NoRange nfa ...|lSIRTC [37.0kHz [RTC* 0 mA 046 pA [1ms 0.0 Battery 105 Datasheet ||
= 3 WU_FROM_ST... |2.4 [NoRange nfa ...|MSIFAST |4.0 MHz 0 mA 1.7 mA 20.1ps 0.0 Battery 104.82 Datasheet
Parameter Selection "'_‘) 4 RUN 2.4 |Range1-High FLASH/A... |...HSE 16.0MHz RTC 0 mA 216mA [1ms 20.0 Battery 104.77 Datasheet
5 RUN 2.4 [Range2-Medium FLASHJA... |... HSE 16.0 MHz |ADC1:fs... |0 mA 1.92mA [1ms 20.0 Battery |104.79 Datasheet
Ambient Temp... [25 - & SLEEP 2.4 |Range2-Medium [ON ... HSE 16,0 MHz |ADC1:fs... |0 mA 703.2pA (1ms 0.0 Battery 104,92 Datasheet | &
Vdd Power Su.., | 2.4 - 7 RUN 2.4 Range2-Medium [FLASH/A... |...HSE 16.0MHz |DMALR... [0mA 192mA [Ims 20,0 Battery 104.79 Datasheet
8 STOP1 2.4 |NoRange nfa ...|ALLCLO... [0 Hz USART1* [0 mA 6.65pA [1ms 0.0 Battery 105 InD5Ta...
9 WU_FROM_ST... |2.4 |NoRange nfa .|HSI16 16.0 MHz 0 mA 1.62mA |5.3ps 0.0 Battery 104.83 Datasheet
Rattery Selactson) 10 RUN 2.4 [Range2 Medium |FLASH/A... |...|HSE 16.0MHz RTCUSA...[0mA 183mA |ims 20.0 Battery |104.3 Datasheet | —
- 1 STAMNDEY 2.4 INoRange nfa .. LSIRTC 137.0kHz RTC* 0 mA 0460A ims 0.0 Battery |105 Datasheet | ™
Pt
Battery LiMnO2(CR2D... Flat: All Stzps
|| series 1= Consumption Profile by Step
Ml nPparale 1=
T
Capadity 225.0 mAh Z .5 L RUN
Self Discharge 0.12 %/manth :'
Nominal Voltage 3.0V E 50
2= LRUN SIRUN TIRUN 10:RUN
Max Cont Curr...3.0 mA ; 3 wsTav l : l ’ 5 wsium
B:SLEEP
Max Pulse Cur... 15.0mA 225 2:STAND l 8:5TOP1 1LSTANDEY
S L 1
¢ 1 | ' |
Information Not ® e
niarmation Hetes = 00 05 10 15 20 25 30 35 40 45 50 55 60 &5 70 75 &0 85 90
— Time (ms)
Help ®
==1Idd by Step == Average Current|
Sequence Time / Ta Max 9ms /103.99 °C Average Consumption 1.99 mA
Baitery Life Estimation 4 days, 18 howrs (Battery compatibility not garanteed with defined step(s)) Average DMIPS 22.0 DMIPS
= — = =

3

DoclD025776 Rev 21 209/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Figure 194. Vpp and battery selection menu

Microcontroller Selected

Series: STM32L4

Line: STM32L4x6
MCL: STM32L476RGTx
Datasheet: 025975 _Rev3

Parameter Selection

Ambient Temperature (°C): j25
Vdd Power Supply (V): :2.4
Battery Selection
Select i
Battery: Li-MnO2{CR2032)
In Series:
In Parallel:
Capacity: 225.0 mah
Self Discharge: 0.12 %/month
MNominal Voltage: 6.0V
Max Cont Current: 3.0 mA
Max Pulse Current: 15.0 mA

L1 ILH IR] IL3

5. Enable the Transition checker to ensure the sequence is valid (see Figure 194). This
option allows verifying that the sequence respects the allowed transitions implemented
within the STM32L476RG.

6. Click the Add button to add steps that match the sequence described in Figure 194.
— By default the steps last 1 ms each, except for the wakeup transitions that are

preset using the transition times specified in the product datasheet (see

Figure 195).

— Some peripherals for which consumption is unavailable or negligible are
highlighted with *’ (see Figure 195).
Figure 195. Sequence table

Sequence Table
Step Mode . Range/Scale Memory . Clock C... SrcFreq Periphe... Add. C,.. StepC,,, Duraton DMIPS Voltag... TaMax Category
1 RUN 2.4 |Range1-High FLASH/A... |...|HSE 24,0MHz |ADCL:fe... 0 mA 0.36mA |ims 30.0 Battery [103.99 [Datasheet | .
2 STANDBY 2.4 NoRange nfa .. lSIRTC |37.0kHz RTC* 0 mA D.%6uA |[1ms 0.0 Battery 105 Datasheet
3 [WU_FROM_ST... [2.4 |NoRange n/a | MSTFAST |a.0MHz | oma [17ma " [20.1ps 0.0 Battery [104.82 Datasheet |
4 RUN 2.4 Range 1-High FLASH/A... |...|HSE 16,0 MHz RTC 0 mA 2.16 mA 1ms 200 Battery 104.77 Datasheet
5 RUN 2.4 Range2-Medium |FLASH/A... |...HSE [16.0MHz |ADCL:fs... OmA [192mA [1ms 20.0 Battery |104.79 [Datasheet |
[_SLEEP 2.4 _Raﬂge?_-Medium _ON HSE _16.0 MHz _ADC 1ifs... _D mA _703.2|.|A 1ms 0.0 Battery _104.92 _Datasheet | =
7 RN 2.4 Range2-Medium FLASH/A... |...HSE 16,0 MHz DMA1R... OmA 1.92mA 1ms 20.0 Battery 104.79 Datasheet
8 STOP1 2.4 |NoRange Inja ... |ALL CLO... [0 Hz USART1® 0mA l6.650A |1ms 0.0 Battery |105 InDS Ta...
9 [WU_FROM_ST... 2.4 NoRange In/a [As1zs [16.0MHz | oma [L62mA [6.3ps [0.0 Battery |104.83 |Datasheet |
10 RUN 2.4 Range2-Medium FLASH/A... |...HSE 16.0MHz RTC USA... 0 mA 189mA |ims 20.0 Battery |104.8 Datasheet
11 [STANDEY 2.4 INoRange Infa LSTRTC [37.0kHz _RTC* oma D.46uA [ims 0.0 Battery 105 [Datasheet | ~

210/276

DoclD025776 Rev 21

S74

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

7.

Click the Save button to save the sequence as SequenceOne.

The application consumption profile is the generated. It shows that the overall sequence
consumes an average of 2.01 mA for 9 ms, and the battery lifetime is only 4 days (see
Figure 196).

Figure 196. sequence results before optimization

rResults Charts

Consumption Profile by Step

& '1\hum

g
—_7
<
E6
c
2 5
a
=
24
c
[=]
= ARUN S:RUN 7:RUN 10:RUN

3:WU FFOM_STANDEY ’ ’ SAWU_EROM_STOP1
. Wl o
a:s§EEP
1 sk s astoet 11:STANDEY
e «
0
0.0 0.5 1.0 1L 2.0 25 3.0 245 4.0 4.5 5.0 ELE 6.0 8.5 7.0 T 2.0 85 9.0
Time (ms)
=== Tdd by Step == Average CLu'rent|
rResults Summary
Sequence Time/ TaMax 9ms/104.0°C Average Consumption 2.01 mA
Battery Life Estimation 4 days & 13 hours (Battery compatibility not garanteed with defined step(s}) Average DMIPS 22.0 DMIPS
8.3.2 Optimizing application power consumption

3

Let us now take several actions to optimize the overall consumption and the battery lifetime.
These actions are performed on step 1, 4, 5, 6, 7, 8 and 10.

The next figures show on the left the original step and on the right the step updated with
several optimization actions.

Step 1 (Run)

Findings

All peripherals are enabled although the application requires only the RTC.

Actions

— Lower the operating frequency.

— Enable solely the RTC peripheral.

— To reduce the average current consumption, reduce the time spent in this mode.
Results

The current is reduced from 9.05 mA to 2.16 mA (see Figure 197).

DoclD025776 Rev 21 211/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Figure 197. Step 1 optimization

o Edit Step S o i step Co
) r)
§ L0 § L0
Power Memory Peripherals - Power Memary [OPOARTT =
B £]--— OPAMP1
Power Mode: RUN ——-ADC1 Power Mode: RUN = 1%
---- ADCZ : - [Low_Power
Power Range: Rangel-High P Power Range: \Rangs 1-High - - [] Hormal
Memory Fetch Type: FLASH/ART/Cache AHB_APB1_Bridge = Memory Fetch Type: FLASH/ART [Cache - E--— OPAMP2
A r = 7] Low_Power
X AHB_APB2_Bridge X [CLow_
vdd: 24 vdd: 24 A .. [F] wormal
Voltage Source: Battery L Voltage Source: Battery - [C] PvD/BOR
- [F] PWR
Clocks Clocks ~[C] QuADSPT
CPU Frequency: 24,0 MHz CPU Frequency: 16.0 MHz =
Interpalation ranges Interpolation ranges D SAI1
User choice (Hz): User chaice (Hz): [sar2
. - [[] SPMMC1
Clock Configuration: HSE Clock Configuration: |HsE | -Esen i
Clock Source Freguency: 24,0 MHz Clock Source Frequency: 16,0 MHz - [[]sp12
- [F] SP13
Optional Setting: Optional Settings [T] swerry
--- SYS-VREFBUF/COMP1
Step Duration: 1 ms (steu Duration: 0.1 ms -) L
N === SYS-VREFBUF/COMP2 W
Additional Consumption: 0 mA Additional Consumption: 0 mA - - [TIM1
[TIM2
Results Results - [7] TIM3
Step Consumption: | 9.05 mA Step Consumption: | 2.16 mA - [C]TIMa m
[TIMs
Without Peripherals: |3.18 mA Without Peripherals: | 2. 16 mA [TMe
Peripherals Part: 5.87mA (A: 296.25 pA -D: 5.57mA) Peripherals Part: O pA (A: O pA -D: 0 pa) - [TIMz7
[TIMe
Ta Max ("C): 104.02 - Ta Max (°C): 104.77 _ b
r [3
Warnings Warnings
The step consumption is higher than the max continuous
current (3 mA) of the battery selection.
Cancel

212/276

Step 4 (Run, RTC)

e Action:

Reduce the time spent in this mode to 0.1 ms.

DoclD025776 Rev 21

3

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Step 5 (Run, ADC, DMA, RTC)

e Actions
— Change to Low-power run mode.
— Lower the operating frequency.
e Results
The current consumption is reduced from 6.17 mA to 271 pA (see Figure 198).

Figure 198. Step 5 optimization

& Edit Step x| g Step 5
4 o 9 S0
Power/Memory ~ T DRRZ - Power Memory | in BT HEETLLR '
, - —_— Fw P’ AN [] oUT1-Buffer_ON-Worst_cc
‘ower Mode: 7 i LOWPOWER, -
J GPIOA ROl = 7] OUT2-Buffer_OFF-Middle_¢
Power Range: _REHQEH'UQ"‘ | GPIOB Power Range: MNoRange - [] ouUT2-Buffer_ON-Middle_ci
r 1 GPIOC = -
Memory Fetch Type: FLASH/ART/Cache hd Memory Fetch Type: FLASH/ART Cache - B2 mafterd O Wags o
. . GPIOD ~[| DFSDM |
vdd: 2.4 - GPIOH I [|| veid: 24 - [bMAL
Voltage Source: |Battery = 2L Voltage Source: Battery - --[] DMAZ
1202 [FLASH E
Clocks — Clocks [CFw
) } . [7] IWDG - [] GPIOA
CPU Frequency: | 16.0 MHz o) — 0 (cpu Frequency: e L4
Interpalation ranges LPTIML Interpolation ranges [[] eP10C
LPTIM2 = Tux
User choice (Hz): User choice (H2):] GP1IOD
L - LPUART1 -] GPIOH
Clock Configuration: |HSE o) ---- OPAMP1 Clock Configuration: MsI - [1ac1
Clack Source Frequency: 16.0 MHz - ---- OPAMP2 Clock Source Frequency: 2.0 MHz - [12€2
PVD/BOR - [[] 1263
PWR
Optional Setting: Optional Settings [mame
) QUADSPT B --- LD
Step Duration: 1 ms - RNG Step Duration: 1 L. [Booster_OFF
Additional Consumption: o mA v RTC Additional Consumption: o mA v ' [[] Booster ON
SAT1 w [I7] LPTIML
Results s Results [Tz
SDMMC1 LPUART1
Step Consumption: | 6.17 mA O
SPI1 ~--- OPAMP1
Without Peripherals: | 2,16 mA SPI2 Without Peripherals: | 271 pA
Peripherals Part: 4.01mA (A: 296.25pA -D: 3.72mA) £48) Peripherals Part: OpA (A: OpA -D: OpA)
- [¥] sSwPMIL
TaMax ("C): 104.33 - SY5-VREFBUF/COMP1 Ta Max (*0): 104.97 ; S
Warnings Warning:
The step consumption is higher than the max continuous
current (3 mA) of the battery selection.
Cancel Cancel
A d

3

DoclD025776 Rev 21 213/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Step 6 (Sleep, DMA, ADC,RTC)

e Actions
— Switch to Lower-power sleep mode (BAM mode)
— Reduce the operating frequency to 2 MHz.
e Results
The current consumption is reduced from 703 pA to 93 YA (see Figure 199).

Figure 199. Step 6 optimization

r e
o Edit Step =] o i step [
))
§ <02 # L0
Power /Memory L= b R Power Memory TR -
CRC B fs_5_Msps
Power Mode: SLEEP - D [iner Mode: LOWPOWER _SLEEP -) D
J —-- DAC1 L =) |5--- anc3
Power Range: Range2-Medium - - D DFSDM T Power Range: NoRange - - D fs_10_ksps
Flash Status: on = LD Flash Status: on = ;Ofs 1 Meps
= -[7] pMA2 . ; w [[] fs_5_Msps E
vdd: 24] -[[] FLASH L vdd: = T || ~[]anB_aPB1_Bridge
Valtage Source: Battery - Crw Voltage Source: Battery - [C] AHB_APB2_Bridge
-] GPIOA - [7] Bus-Matrix
Clocks - se10m || | clodks pElcany
[7] ePIOC [F] €re
Bus Frequency: 16.0 MHz = Bus Frequency:
. -[7] GPIOD ---- DAC1
Interpalation ranges -[] aP1IOH Interpolation ranges -~ [[] ouT1+0UT2-Buffer_OFF-M
User choice (Hz): L= User choice (HaJ: TR T (]
s -[F12€2 = = - [] OUT1+0UT2-Buffer_ON-W:
Clock Configuration: HSE - -Fnc Clock Configuration: MSI - .. [] OUT1-Buffer_OFF-Middle_c
Clock Source Frequency: 16.0 MHz - [[]wpe Clock Source Frequency: 2.0 MHz - - [[] ouT1-Buffer_ON-Middle_ci
== LCD +- 7] OUT1-Buffer_ON-Worst_cc
Optional Setting: -] ey Optional Settings - || 0UT2-Buffer_OFF-Middle_c
[[] LpTIMZ - [[] 0UT2-Buffer_ON-Middle_c
Step Duration: 1 ms Step Duration: 1 ms -
) -[7] LPUART1 | - [] OUT2-Buffer_ON-Worst_cc
Additional Consumption: [] mA - ==~ OPAMP1 Additional Consumption:] mA - | DFSDM
--- OPAMP2 [pMAL
Results -[7] pvD/BOR Results -] pmaz
-] PR - [FLASH
Step Consumption: | 703.2 pA o [Step Consumption: | 93.4 pA J 0o
[7] QuUADSPI 7] P
Without Peripherals: |589 pA -] RHG Without Peripherals: 93.4 pA - [GPIOA
Peripherals Part: 114.2pA (A: 16.6 pA -D: 97.6 pA) - [vIRTC Peripherals Part: OpA (A:0pA-D:0pA) - || GPIOB
[7] sar1 [7] GPIOC
Ta Max (°C): 104.92 men - TaMax (°C): 104.99 e -
< i} » < i] »
Warnings Warnings
= =

3

214/276 DoclD025776 Rev 21

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Step 7 (Run, DMA, RTC, USART)

e Actions
— Switch to Lower-power run mode.
— Use the power-efficient LPUART peripheral.
— Reduce the operating frequency to 1 MHz using the interpolation feature.
e Results
The current consumption is reduced from 1.92 pA to 42 pA (see Figure 200).
Figure 200. Step 7 optimization
r n
© EditStep | o it step =%
H S0 G L0
Power Memory - [] RG ~ Pawer/Memary [CTOFSDM e
; r = || - [pma1
Power Mode: RUN RTC Power Made: LOWPOWER _RUN -
r [sAT1 N L ||~ omaz2
Power Range: Range2-Medium D Power Range: NoRange - D FLASH
- [7] sar2
Memory Fetch Type: FLASH{ART/Cache [] sDMMCL Memory Fetch Type: FLASH/ART/Cache - -
: -] sP11 . . - [GPIOA
Vdd: 24 Vdd: 2.4 - [er10B
- - [sp12 L -
Voltage Source: Battery Fses Woltage Source: Battery - - [] GPIOC
- [7] GPIOD
- [7] SWPMIL o
EEEs - SYS-VREFBUF/COMP1 Clocks E GPIOH i
- = ~|| - F12e1
CPU Frequency: 16.0MHz --- 5YS-VREFBUF/COMP2 CPU Frequency: User-defined =] =
Interpolation ranges g UL Interpolation ranges 100.0 kHz — 2.0 MHz - [[12c3
- [TIM2
User choice (Hz):] TIM3 [User choice (Hz): 100000) - [[] oG
; - - --- LCD =
Clock Configuration: |HsE g ::: Clock Configuration: |MsL - T er OFF 1
Clock Source Frequency: 16.0 MHz [Te Clock Source Frequency: 100.0 kHz - -~ || Booster_ON
s [LPTIML
Optional Settings - [[] Tims — Optional Settings LPTIMZ
. 1 || f+ @ LPuARTL b
Step Duration: 1 ms |:| TIM15 Step Duration: 1 ms -
O L / - OPAMPL
Additional Consumption:] mA Additional Consumption: [mA - - [[] Low_Power
-~ [[] TIM17 ~
s L[] Hormal
Results iz |l 1] resuits ==~ OPAMP2
7] uARTS L [7] Normal
Without Peripherals: | 1.81mA Without Peripherals: | 41.8 A [PvD/BOR
- [¥] USART1
Peripherals Part: 105.6 pA (A: 0 pA -D: 105.6 pA) - [usarT2 L Peripherals Part: 0.26 pA (A: O pA -D: 0.26 pA) [C] pwr
-] QUADSPI
TaMax ("C): 104.79 [[] usART3 - Ta Max (°C): 105 o -
< i » < m v
Warnings Warnings
Cancel Cancel
L "

3

DoclD025776 Rev 21

215/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Step 8 (Stop 0, USART)

e Actions:
— Switch to Stop1 low-power mode.
— Use the power-efficient LPUART peripheral.
e Results
The current consumption is reduced from 110 pA to 6.65 pA (see Figure 201).

Figure 201. Step 8 optimization

r "
© Edit Step =] o eaitsep a (>
& J0 9. Jv02
Power Memary T LTCUTE_ngi_SpE ~ Pawer/Memory Peripherals A
COMP_High_Speed-St -) |+
Power Mode: STOPO - 0 Power Mode: STOP1 DACE
; . - [7] coMP_tigh_Speed-St - [OUTL+0UT2-Buffer_0
Power Range: NoRange - - [[] COMP_Medium_Powe BveEaes |MoRange ad [7] OUT1+0UT2-Buffer_o
Memory Fetch Type: [nia v [7] coMP_Medium_Powe Memory Fetch Type: Infa - [*] ouT1-Buffer_on-Midd
Ve [24 = 1 g con P—"':"'“—Pm vid: 2.4 = [T OUT1-Buffer_ON-Wors
: : - [[] cOMP_Medium_Powe 7] OUT2-Buffer_ON-Midd
Voltage Source: Batter: - Voltage Source: Batter: - -
g (Y J [COMP_Medium_Powe & ¥ | [OuT2-Buffer_on-wors
- [7] COMP_Medium_Powe [chroa=
ock —
Clocks - [7] COMP_Medium_Powe c) - [F GProB*
CPU Frequency: [0Hz - [T] coMP_Medium_Powe CPU Frequency: 0Hz = . [GrioCc*
Interpolation ranges - [CJ COMP_OFF_VREFBUF_ Interpolation ranges [rrop=
User choice (Hz) | DESUTETET User choice (Hz) g LG
ser choice (Hz): (Ha):
tz) L | [COMP_OFF_VREFBUF_: l L [e
Clock Configuration: |ALL CLOCKS OFF - - [7] COMP_Ultra_Low_Pov Clock Configuration: |ALL CLOCKS OFF - B zzc2=
. : {
Clock Source Frequency: | 0Hz - <[] comp_ultra_Low_Pov Clock Source Frequency: 0Hz = - [0 L263*
[] COMP_Ultra_Low_Pov - [WG
Optional Settings 1 g il e [Optional Settings O o=
. - [[] COMP_Ultra_Low_Pov - [LPTIL*
: - Step Duration: 1 =
Step Duration: 1 ms : D COMP_Ultra_Low_Pov— p Duration ms e
Additional Consumption: |0 mA - [COMP_ultra_Low_Pov Additional Consumption: |0 mA -
- [[] coMP_ultra_Low_Pov|
Results [tearrs= Resuits
= E
Step Consumption: | 110 pA [T tamrs (Sbe:l Consumption: | 6.65 pA)
I Without Peripherals: | 110 pA [usarr2" I Without Peripherals: 6.65 pA
PeripheralsPart: |0 pA (A: 0 pA -D: 0 pA) - [F] usARTZ* Peripherals Part: OpA (A: O pA -D: 0 pA)
—
TaMax (0 104.99 - [0 UsE_076_F5* =l 7amax (o 105 -
<] v G
Warnings Warnings
=n]| = |
L a

3

216/276 DoclD025776 Rev 21

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Step 10 (RTC, USART)

. Actions

— Use the power-efficient LPUART peripheral.
— Reduce the operating frequency to 1 MHz.

. Results

The current consumption is reduced from 1.89 mA to 234 pA (see Figure 202).
The example given in Figure 203 shows an average current consumption reduction of

155 pA.

Figure 202. Step 10 optimization

r N
& Edit Step =T o caiswp .|
S0 # S0
Power Memory " [] COMP_OFF_VREFBUF_ON_1 ~ | | [PowerMemory [epioB a
Power Mode: RUN - [[] COMP_Ultra_Low_Power- Power Mode: [RUN [eproc
- [[] COMP_ultra_Low_Power-$: -] GPIOD
Power Range: Range2-Medium H Power Range: Range 2-Medium
- [[] COMP_Ultra_Low_Power-¢ : [GPIOH
Memory Fetch Type: FLASH/ART/Cache i [7] COMP_Ultra_Low_Power-$ Memary Fetch Type: FLASH/ART [Cache [[12C1
Ved: 24 [] coMP_ultra_Low_Power-5 Ved 24 - [C] 12€2
- [[] COMP_Ultra_Low_Power-$: [1263
Voltage Source: Battery 7] COMP_Ultra_Low_Power-< Voltage Source: Battery [WG =
.. [COMP_ultra_Low_Power-§ --- LCD
Clocks [TIM1 Clocks +- [] Booster_OFF L
CPU Frequency: 16.0 MHz -[C] TIM2 (CPU Frequency: [LOMHz - [[] Booster_on
] TIM3 - [LPTIM1
Interpolation ranges Interpolation ranges
[T4 - [LPTIM2 L3
User choice (Hz): -] TIMS. User choice (Hz): LPUART1
Clock Configuration: HSE - Tme Clock Configuration: HSE Rl EREEL
[1Mz . - [] Low_Power
Clock Source Frequency: 16.0 MHz [l TMe Clock Source Frequency: 1.0 MHz . [Mormat
-[C] TM1s El---- OPAMP2
Optional Setting: [TIM16 Optional Settings - [7] Low_Power
Step Duration: 1 ms -[C] TIM17 Step Duration: 1 ms - [[] mormal
-[ETs [] rvD/BOR
Additional Consumption: 0 mA Additional Consumption: 0 mA
[]Ts€ ~[] PWR
-[[] vART4 — [[] quapser
Results -] uARTS Results [raie
Step Consumption: | 1.89 mA USART1 (Sbep Consumption: | 234.2 pA - [¥] RTC
- £ SAI11
Without Peripherals: |1.81mA [[usarT2 Without Peripherals: 232 pA O
-[7] usART3 [[] sa12
Peripherals Part: 84.8 pA (A: D pA - D: 84,8 pA) [] USB_OTG_FS Peripherals Part: 2.2pA (A: OpA -D: 2.2 pA) - [F] spMMCL
Ta Max ("0 1048 - [[] wwoa - TaMax (°C): 104.97 [C] sp11 -
< | 1 | » < | n | »
Warnings Warnings

3

DoclD025776 Rev 21

217/276

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

See Figure 203 for the sequence overall results: 7 ms duration, about 2 month battery life,
and an average current consumption of 165.25 pA.

Use the compare button to compare the current results to the original ones saved as
SequenceOne.pcs.

Figure 203. Power sequence results after optimizations

rResults Charts

Consumption Profile by Step

2,25
2.00 " :RUN '\BMLLNROM_STANDBY

—_ Q:WU_FROM_STOP1
1.75

1.50

1.00

Consumption (mA
o -
= I
w wn

O
o
u
a

S:LOWPOWER_RUN 10:RUN
B:LOWPOWER_SLEE}::LOWPOWER_RUN BT ./ 11:STANDBY

2:5TRNEE 1 A ﬂ_l N\

i = i I hl

o
i
i

0.00

=4
o

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Time (ms)

== Tdd by Step === Average CLu'rent|

-Results Summary

Sequence Time/ TaMax 7 ms /10477 °C Average Consumption 155.62 pA
Battery Life Estimation 2 months & 2 hours Average DMIPS 2.46 DMIPS
218/276 DoclD025776 Rev 21 Kys

UM1718

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

9

9.1

9.2

3

Tutorial 4 - Example of UART communications with
a STM32L053xx Nucleo board

This tutorial aims at demonstrating how to use STM32CubeMX to create a UART serial
communication application for a NUCLEO-L053R8 board.

A Windows PC is required for the example. The ST-Link USB connector is used both for
serial data communications, and firmware downloading and debugging on the MCU. A
Type-A to mini-B USB cable must be connected between the board and the computer. The
USART?2 peripheral uses PA2 and PA3 pins, which are wired to the ST-Link connector. In
addition, USART2 is selected to communicate with the PC via the ST-Link Virtual COM Port.
A serial communication client, such as Tera Term, needs to be installed on the PC to display
the messages received from the board over the virtual communication Port.

Tutorial overview

Tutorial 4 will take you through the following steps:
1. Selection of the NUCLEO-L053R8 board from the New Project menu.

2. Selection of the required features (debug, USART, timer) from the Pinout view:
peripheral operating modes as well as assignment of relevant signals on pins.

3. Configuration of the MCU clock tree from the Clock Configuration view.
4. Configuration of the peripheral parameters from the Configuration view

5. Configuration of the project settings in the Project Settings menu and generation of the
project (initialization code only).

6. Project update with the user application code corresponding to the UART
communication example.

7. Compilation, and execution of the project on the board.
Configuration of Tera Term software as serial communication client on the PC.
9. The results are displayed on the PC.

©

Creating a new STM32CubeMX project and
selecting the Nucleo board

To do this, follow the sequence below:

1. Select File > New project from the main menu bar. This opens the New Project
window.

2. Go to the Board selector tab and filter on STM32L0 Series.

3. Select NUCLEO-L053R8 and click OK to load the board within the STM32CubeMX
user interface (see Figure 204).

DoclD025776 Rev 21 219/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

UM1718

220/276

Figure 204. Selecting NUCLEO_L053R8 board

-
% NewProject = © & & Wesa ’
MCU Selector | Board Selector |
Board Filter
Vendor : Type of Board : MCU Series ©
STMicroelectranics - v [smM320 v

[] Initialize all IP with their default Mode

Peripherals/Connectors Selection Boards List: 6 Items
Peripherals /Connectors Nb Max Type Reference MCcu
> B | |Nuceo32 [NUCLEO1031K6 |STM32L03 1K6Tx
) | Nudeo32 INUCLEQ-L011K4 ISTM32L011K4Tx
5 (=] deot4 040 21 053RS
]] Nudeo64 INUCLEO-LO73RZ ISTM32L073RZTx
@ Button 0 Discovery ISTM32L0538DISCOVERY ISTM32L053C8Tx
F) EvalBoard ISTM32L073Z-EVAL ISTM32L073VZTx
F) O
P [
@ [Digital 1/0 0
@ Eeprom [
F) O =
> E
2 O
@[IrDA [
@ Joystick [
@ |Lcd Display (Graphics)]
@ |Lcd Display (Segemnt)]
@lLed 0
2 [
@ Memory Card [}
) L3
) O
0 O
@|Rs-232 0
2]
2 -

[Lox][onal]

DoclD025776 Rev 21

3

UM1718

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

9.3

3

Selecting the features from the Pinout view
1. Select Debug Serial Wire under SYS (see Figure 205).

Figure 205. Selecting debug pins

e —

-
o STM32CubeMX Untitied"; STM32L053R8Tx NUCLEO-LOS3RE - =] E) [
-

File Project Pinout Window Help

G B HE & O [JKeepCurrent Signals Placement @ & (] == @ <= Find v | &y O = [¥]ShowuserLabel : (7] P &

Pinout | Clock Configuration | C: ion | Power Consumption Calculator

CRC g
DAC

121

1202

1252

IWDG —
LD

LPTIM1

LPUART1

e

-8

_
o

=
- g-8-g--g

mn

&

I
I
&
o
o
o
o
o
&
o
o
I\ RIC
o
o
4

m

[System Wake-Up 1

-~ VREFINT_ADC Connection | Disable

Power Voltage Detector In Disable =

! Timebase Source | SysTick -
- & TIM2
[o TIM6
[# & TIM21

b
‘Q
i
i

2. Select Internal Clock as clock source under TIM2 peripheral (see Figure 206).

Figure 206. Selecting TIM2 clock source

r - =6 g
& STM32CubeMX Untitled*: STM32L053R8Tx NUCLEO-L053R8 [L
oy
File Project Pinout Window Help
G BEE @& O [@keepCurentSignals Placement 9 & [= @ <= Find v [y ©y = [V]ShowuserLabel : (7| P | $
Pinout ‘ Clock Configuration | Configuration I Power Consumption Calculator
% RCC =
[#- ® RNG
4\ RTC
[& SPIL
|| e s ¥
24\ SYs -
=3 Y a il |]
- [¥] Debug Serial Wire g HEEREE
| =l il
- [] System Wake-Up 1 81 [Blue AstButton] [LAER)
B acc_oscn N [piadyl ™
i r Rec_oscz out [peis gl
\-.VREFINT_ADC Connection | Disable = acc.oscn (o)
- Power Voltage Detector In | Disable - Roc.oscour
" Timebase Source .SvsT}ck -
&% TIM2
+-Slave Mode Disable x|
+~Trigger Source Disable !5
iClock Source | Internal Clock -
+-Channel1 | Disa|Disable
\-Channel2 Disa et T
Chamnels Disal g
Cnamnets DSleTaa through Remap
i--Channel4 | Disable = | o 19
& .
+~Combined Channels | Disable - ; a“
i--Use ETR as Clearing Source | Disable k
XOR activation
" [one Pulse Mode x

DoclD025776 Rev 21

221/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

UM1718

222/276

3. Select the Asynchronous mode for the USART2 peripheral (see Figure 207).

Figure 207. Selecting asynchronous mode for USART2

@ STM32CubeMX Untitled*: STM32L053R8Tx NUCLEO-LO53R8

File Project Pinout Window Help

v | ® 4y = [V]Show userLabel | (7

B & B Uy @3 Q [¥] Keep Current Signals Placement 4 ¢ (] — @ < Find

¥

Pinout ‘ Clock Canfiguration I Configuration I Power C .ralmlamr‘

- VREFINT_ADC Connection [Disable v

i--Power Voltage Detector In | Disable v-‘
Timebase Source LSvsTick vf

B & TIM2

| Slave Mode f‘Disabie

-~Trigger Source | Disable

. -~Clock Source ?Inhema[Clock

- channel1 Disable

Channel2 | Disable

-Channel3 | Disable
Channel4 Disable

- Combined Channels Disable
- Ty T
--{Jse ETR as Clearing Source ;Dl;ab\e

v
4

v
==

Ao e[]9

]

_| XOR activation

- [7] One Pulse Mode
G- & TIM6

- & TIM21

- & TIM22

&4\ TSC

t- & USART1

B+ & USART2

m

-~Mode | Asynchronous -
\-Hardw[Disable

4. Check that the signals are properly assigned on pins (see Figure 208):
— 8SYS_SWDIO on PA13
— TCKonPA14
— USART_TX on PA2
— USART_RX on PA3

Figure 208. Checking pin assignment

2
@ STM32CubeMX Untitled*: STM32L073RZTx NUCLEO-LO73RZ

- [E=E=x)

File Project Pinout Window Help

Bl MUl & O @kepcurentsgnasPlaczment 9 o O — @ < Find o (| @ [@]showuserLabel | (7 B 0§

Pinout | Clack C jon | ¢ jon | Power G son Calculator

[#- & CRC ke
[DAC
o 121
o 122
@ oe
° 1252
@ WDG
I &ew
@ LPTIML
& LPUARTL B1[Blue PushButtan]
RCC_OSC32.IN
-0/ RCC RCC_OSC32_0UT
@ RNG Mco
[4 RTC
@ SPI1
o SPI2
-4 5YSs
& TIM2
o TIM3
[& TIM6
o TIM7
o TIM21
(5 & TIM22
A4, TsC <
[& USART1]
= & USART2 ;
Mode [Asynchronous -
Hardware Flow Control (R5232) Disable -
] Hardware Flow Control (R5485)

II i 5 IISARTA. =

i

§
g
£

DoclD025776 Rev 21

3

UM1718 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

94 Configuring the MCU clock tree from the Clock Configuration
view

1. Go to the Clock Configuration tab and leave the configuration untouched, in order to
use the MSI as input clock and an HCLK of 2.097 MHz (see Figure 209).

Figure 209. Configuring the MCU clock tree

f % STM32CubeMX Untitled*: STM32L073RZTx NUCLEO-1073RZ - @ﬂlg‘
File Project Clock Configuration Window Help
BeRER GO 44200 WP
[Prout | Clock C G Pawer C on Calculator

RTC/LCD Source Mux
LED (KHz)

HSE HSE_RTC —» 3
SIE >
Input frequency 2057 | CK_PWR (MHz)
i - 37 RTC (KHz)

2097 | FCLK (MHz)

e ¢ S5
37 iz a
097
| ISIRC A4 HCLK(HHZ)
—8| Enable
7 TWDG (KHz) i 'omexsyseemnm

-
32 Mk s APB1 peripheral d =
Svgeml‘jlackﬂux L) 2097 peripheral

Msi

) RET o T
HSI 16 MHz ma:
HSE | 2097 lewl j1 - -—m Bl -wuzpﬁ heral d
" e / [2 Jal s [s v

o SYSOLK(MHz) AHB Prescaler HOLK (MHz)
} uax] > X1 Apuzumerrjo:ks
PLL Source Mux | ’ * USART1 Source Mux
HSE [™ o ™~
= Enabie GSS)
iz v °

bt I3 X3 v - m
nst I
i1 vie—»@ | VCOpt *PuMd | /PUDiv I12C1 Source Mux) 16 | 2057 | USART1CLK (MHz]
TR 3 48M Source Mux — —
N »© 1sE
/2 =) —
PLL 2 ™e
2 USBCLK (MHz) HSI 16
s | "™ - 2.09: 12C1CLK (MHz)
‘ . J— LPTIM Source Mux
RC 48 MHz > 24 RNGCLK (MHz) —0, s
HSI 16
16 ADC (MHz)
LPUART Source Mux LSE #2097 |LPTIMCLK (MHZ) _
MO Snumre b —_—
]

nr J »

3

DoclD025776 Rev 21 223/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board uUmM1718

9.5 Configuring the peripheral parameters from the
Configuration view
1. From the Configuration tab, click USART2 to open the peripheral Parameter Settings

window and set the baud rate to 9600. Make sure the Data direction is set to “Receive
and Transmit” (see Figure 210).

2. Click OK to apply the changes and close the window.

Figure 210. Configuring USART2 parameters

' B
% USART2 Configuration St

o/ Parameter Settings {| o/ User Constants | o/ NVIC Settings | «// GPIO Settings | </ DMA Settings |

Configure the below parameters :

Search :| Search (Crtl+F v &
[= Basic Parameters
Baud Rate 3600 Bits/s
Word Length 8 Bits (including Parity)
I Parity None 1
Stop Bits 1
[= Advanced Parameters
Data Direction Receive and Transmit
| Over Sampling 16 Samples
I Single Sample Disable
[= Advanced Features
Auto Baudrate Disable
TX Pin Active Level Inversion Disable
RX Pin Active Level Inversion Disable
Data Inversion Disable
TX and RX Pins Swapping Disable
Overrun Enable
DMA on RX Error Enable
MSB First Disable
[Apply } I Ok } l Cancel
. 4
224/276 DoclD025776 Rev 21 Kys

UM1718

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

3

3.

Click TIM2 and change the prescaler to 16000, the Word Length to 8 bits and the
Counter Period to 1000 (see Figure 211).

Figure 211. Configuring TIM2 parameters

% TIM2 Configuration

: —

«f Parameter Settings | o/? User Constants | o7 NVIC Settings | o/ DMA Settings |

Configure the below parameters :

Internal Clock Division (CKD) Mo Division
[= Trigger Output (TRGO) Parameters
Master /Slave Mode

Trigger Event Selection

Disable (no sync between this TIM (Master) and its Slaves
Reset (UG bit from TIMx_EGR)

Search :| Search (Citl+F) v &
=] Counter Settings

Prescaler (PSC - 16 bits value) 16000

Counter Mode Up

Counter Period (AutoReload Register - 16 bits valu. .. plalul| >

Counter Period (AutoReload Register - 16 bits value)
Period must be between 0 and 65 535.

[Apply] [Ok] [Cancel

DoclD025776 Rev 21

225/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

UM1718

226/276

4.

Enable TIM2 global interrupt from the NVIC Settings tab (see Figure 212).

Figure 212. Enabling TIM2 interrupt

-
@& TIM2 Configuration

| o/ Parameter Settings | o/ User Constants | &/ NVIC Settings | /7 DMA Settings

Interrupt Table

globa = p

Enabled Preemption Priority

v

[tomy] |

Ck

] [Cancel

DoclD025776 Rev 21

3

UM1718

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

9.6

3

Configuring the project settings and generating the project

In the Project Settings menu, specify the project name, destination folder, and select
the EWARM IDE toolchain (see Figure 213).

Figure 213. Project Settings menu

Project Settings

==

Project | Code Generator | Advanced Settings

Project Settings

Project Mame
Mudleo_L073_UART_Comm

Project Location
C:\STM32CubeMX_Projects\Tutoriel

Toolchain Folder Location

C:\STM32CubeMX_Projects\Tutoriel\Nucleo_LO73_UART_Comm

Toolchain [IDE
EWARM v Generate Under Root
Linker Settings
Minimum Heap Size 0x200
Minimum Stack Size 0x400

Mcu and Firmware Package

Mcu Reference
STM32L073RZTx

Firmware Package Name and Version
STM32Cube FW_LO V1.7.0

Ok

Cancel

If the Firmware package version is not already available on the user PC, a progress

window opens to show the firmware package download progress.

DoclD025776 Rev 21

227/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board uUmM1718

2. Inthe Code Generator tab, configure the code to be generated as shown in
Figure 214, and click OK to generate the code.

Figure 214. Generating the code
f Project Settings &J‘

- Code Generator | Advanced Settings

5TM32Cube Firmware Library Package

() Copy all used libraries into the project folderi

(@ Copy only the necessary library files

() Add necessary library files as reference in the toolchain project configuration file

Generated files
[] Generate peripheral initialization as a pair of *.c/.h’ files per peripherals I
[] Backup previously generated files when re-generating
Keep User Code when re-generating

Delete previously generated files when not re-generated

HAL Settings
Set all free pins as analog (to optimize the power consumption)
[Enable Full Assert

Template Settings

Select a template to generate customized code Settings...

Ok I [Cancel

9.7 Updating the project with the user application code

Add the user code as follows:

/* USER CODE BEGIN 0 */

#include "stdio.h"

#include "string.h"

/* Buffer used for transmission and number of transmissions */
char aTxBuffer[1024];

int nbtime=1;

/* USER CODE END 0 */

3

228/276 DoclD025776 Rev 21

UM1718

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board

9.8

9.9

3

Within the main function, start the timer event generation function as follows:
/* USER CODE BEGIN 2 */
/* Start Timer event generation */
HAL_TIM Base_Start_IT(&htim2) ;
/* USER CODE END 2 */

/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback (TIM_HandleTypeDef *htim) {
sprintf (aTxBuffer, "STM32CubeMX rocks %d times \t", ++nbtime);

HAL_UART_Transmit (&huart2, (uint8_t *) aTxBuffer, strlen(aTxBuffer),

}
/* USER CODE END 4 */

Compiling and running the project

1. Compile the project within your favorite IDE.
2. Download it to the board.
3. Run the program.

5000) ;

Configuring Tera Term software as serial communication

client on the PC

1. On the computer, check the virtual communication port used by ST Microelectronics

from the Device Manager window (see Figure 215).

Figure 215. Checking the communication port

r
&4 Device Manager —

File Action View Help

&= | T H=E &

.8 Microsoft Virtual WiFi Miniport Adapter #2
I Portable Devices
4 75 Ports (COM & LPT)
.. 73" Communications Port (COML)
L..Y3¥ ECP Printer Port (LPT1)
'? STMicroelectronics STLink Virtual COM Port (COM17)
» |2} Processors
[Security Devices
. 7% Sensors

m

DoclD025776 Rev 21

229/276

Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board UM1718

230/276

2. To configure Tera Term to listen to the relevant virtual communication port, adjust the
parameters to match the USART2 parameter configuration on the MCU (see
Figure 216).
Figure 216. Setting Tera Term port parameters
Tera Term: Serial port setup lig-l
! Port: COM17 | ‘T‘ |
Baud rate: 9600 -
Data: |B bit - ‘ Cancel ‘
Parity: ‘ none -")
Stop: 1 bit - | Help
Flow control: ‘rnonc ',‘
Transmit delay
0 msecjchar 0 msec/line
3. The Tera Term window displays a message coming from the board at a period of a few

seconds (see Figure 217).

Figure 217. Setting Tera Term port parameters

- :
% COM17 - Tera Term VT = | B |t

File Edit Setup Control Window Help

rocks 6 times STM32CubeMd rocks 7 times
STM32CubeM® rocks ? times STM32CubeMX
STM32CubeMB rocks 11 times 8TM32CubeM® rocks 12 times

3

DoclD025776 Rev 21

UM1718

Tutorial 5: exporting current project configuration to a compatible MCU

10

3

Tutorial 5: exporting current project configuration to

a compatible MCU

When List pinout compatible MCUs is selected from the Pinout menu, STM32CubeMX
retrieves the list of the MCUs which are compatible with the current project configuration,
and offers to export the current configuration to the newly selected compatible MCU.

This tutorial shows how to display the list of compatible MCUs and export your current

project configuration to a compatible MCU:

1. Load an existing project, or create and save a new project:

Figure 218. Existing or new project pinout

STM32CubeMX Test.ioc: STM32F031F6Px

File Project Pinout Window Help
0 RUE &5

Pinout | Clock Configuration | Canﬁgumuanl Power Consumption Calculator

- . -

I

~ MiddleWares

| H-o FATFS

i H FREERTOS
—Peripherals

L i ADC

CRC

I2C1

i+

(T}

1251

IWDG
RCC

| High Speed Clock (HSE) | BYPASS Cloc... =
RTC

S O T Y =

{I}

Activate Clock Source
Activate Calendar
Internal Alarm A
Tamper 2

SPI1

SYS

TIM1

TIM2

TIM3

TIM14

O e e O < Y

"¢ Disable x|

-

11

RCC_OSC_IN

USARTI_TX |JC%
USART1_RX [

2. Go to the Pinout menu and select List Pinout Compatible MCUs. The Pinout
compatible window pops up (see Figure 219 and Figure 220).

If needed, modify the search criteria and the filter options and restart the search

process by clicking the Search button.

The row color shading and the Comments column indicate the level of matching:

— Bright green indicates an exact match: the MCU is fully compatible with the current
project (see Figure 220 for an example).

— Light green indicates a partial match with hardware compatibility: the hardware
compatibility can be ensured but some pin names could not be preserved. Hover
the mouse over the desired MCU to display an explanatory tooltip (see Figure 219

for an example).

DoclD025776 Rev 21

231/276

Tutorial 5: exporting current project configuration to a compatible MCU UM1718

232/276

— Yellow indicates a partial match without hardware compatibility: not all signals can
be assigned to the exact same pin location and a remapping will be required.
Hover the mouse over the desired MCU to display an explanatory tooltip (see
Figure 220 for an example).

Figure 219. List of pinout compatible MCUs - partial match
with hardware compatibility

-_— Y
% Pinout Compatible Dialog M
MCUs Filters MCUs List: 105 Items
{S Lo n MCU Package Flash Ram Signals to remap Comments
STM32F0 v -
- - STM32F072CBUx |[UFQFPN48 [128 16 0 HW compatible -
Famﬂes < . STM32FD48C6UX |UFQFPN48 |32 5 0 HW compatible
All v ——— . o
: ' {USART1_RX at the same Position pin(43), PinName changes from PA10 to PB7 I,n—I;
<t oo = - oo =
Search Options STM32F091CBTX |LQFP48 128 32 0 HW compatible i
Ignore Pinning Status |STM32F091CCTx |LQFP48 256 32 0 HW compatible
Ignare Powrer Pins STM32F051C4Ux UFQFFN48 16 8 0 HwW compatible
) STM32F042C6Ux [UFQFPN48 (32 6 0 HW compatible
Ignore System Pins |sTM32F098CCUX |UFQFPN48 |256 32 0 HW compatible
STM32F098CCTx [LQFP48 256 32 0 HW compatible
. Search | STM32F051C6Ux |UFQFPN48 |32 8 0 HW compatible
e STM32F038C6Tx |LQFP48 32 4 0 HW compatible
STM32F030C8Tx |LQFP48 64 8 0 HW compatible L.
STMIAIENSACAL by LIENEPNAR IRA. a n HAAL ikl
toad weus .. (T S oK, import] [close |

Figure 220. List of Pinout compatible MCUs - exact and partial match

%' Pinout Compatible Dialog . u
MCUs Filters MCUs List: 6 Items
S;:Irles : 1 MCU Package Flash Ram Signals to remap Comments
-
h -
Packages:
\TSSOP20 v
) STM32F042F6Px [TSSOP20 |32 6 2 Need HW change
Search Options STM32F070F6Px [TSSOP20 |32 6 2 Need HW change
Ignore Pinning Status |STM32F042F4Px |[TSSOP20 16 6 2 Need HW change
Ignore Power Pins
Ignore System Pins
Load Mcus... NN st OK, Import | | Close |

3

DoclD025776 Rev 21

UM1718 Tutorial 5: exporting current project configuration to a compatible MCU

3. Then, select an MCU to import the current configuration to, and click OK, Import:

Figure 221. Selecting a compatible MCU and importing the configuration

% Pinout Compatible Dialog u

MCUs Filters MCUs List: 6 Items

MCU Package Flash Ram Signals to remap Comments
hd

Packages : 'STM32F031F4PX TSSOP20 16 4 0 Full Compatible

TSSOP20 ~
STM32F04 Need HW change

Search Options STM32F070F6PX |[TSSOF20 |32 6 o Need HW change
Ignore Pinning Status |STM32F042F4Px |[TSSOP20 16 6 2 Need HW change

Ignore Power Fins
Ignore System Pins

No PinName change, no Position change

L Y
toad mcus... [N o (oK, Import || Close

The configuration is now available for the selected MCU:

Figure 222. Configuration imported to the selected compatible MCU

% STM32CubeMX Untitled*: STM32F031F4Px @I@u
File Project Pinout Window Help

RER &g

Flﬂﬂut‘ dockmnfiguranonl C nﬁguration| Power C ption Calcul
lc_onﬁguralion
=i Mmiddlewares i
| [l ¢ FATFS

“ FREERTOS
=} Peripherals

[H % ADC
@ CRC RCC_OSC_IN
jriot
1251

>

1

B USART1_TX
§ e TIML USART1_RX
[

MCUs seiecnonl Output Compatible MCUs ‘

MCU Package Flash Ram Signals to remap Comments

L]
@ STM32F031F4Px TSS0OP20 Full Compatible
L

> (=]

STM32F042F6Px ' TSSOP20 Need HW change

STM EN70EAP> QP20 Need HW chanae

3

DoclD025776 Rev 21 233/276

Tutorial 5: exporting current project configuration to a compatible MCU UM1718

4. To see the list of compatible MCUs at any time, select Outputs under the Window
menu.

To load the current configuration to another compatible MCU, double-click the list of
compatible MCUs.

5. To remove some constraints on the search criteria, several solutions are possible:
— Select the Ignore Pinning Status checkbox to ignore pin status (locked pins).
— Select the Ignore Power Pins checkbox not to take into account the power pins.

— Select the Ignore System Pins not take into account the system pins. Hover the
mouse over the checkbox to display a tooltip that lists the system pins available on
the current MCU.

3

234/276 DoclD025776 Rev 21

UM1718 FAQ

11 FAQ

11.1 On the Pinout configuration pane, why does STM32CubeMX
move some functions when | add a new peripheral mode?

You may have deselected || keep current Signals Placement . In this case, the tool performs an
automatic remapping to optimize your placement.

11.2 How can | manually force a function remapping?

You should use the Manual Remapping feature.

11.3 Why are some pins highlighted in yellow or in light green in
the Chip view? Why cannot | change the function of some
pins (when | click some pins, nothing happens)?

These pins are specific pins (such as power supply or BOOT) which are not available as
peripheral signals.

1.4 Why do | get the error “Java 7 update 45’ when installing
‘Java 7 update 45’ or a more recent version of the JRE?

The problem generally occurs on 64-bit Windows operating system, when several versions
of Java are installed on your computer and the 64-bit Java installation is too old.

During STM32CubeMX installation, the computer searches for a 64-bit installation of Java.

e If oneis found, the ‘Java 7 update 45’ minimum version prerequisite is checked. If the
installed version is older, an error is displayed to request the upgrade.
o If no 64-bit installation is found, STM32CubeMX searches for a 32-bit installation. If one

is found and the version is too old, the ‘Java 7 update 45’ error is displayed. The user
must update the installation to solve the issue.

To avoid this issue from occurring, it is recommended to perform one of the following
actions:

1. Remove all Java installations and reinstall only one version (32 or 64 bits) (Java 7
update 45 or more recent).

2. Keep 32-bit and 64-bit installations but make sure that the 64-bit version is at least
Java 7 update 45.

Note: Some users (Java developers for example) may need to check the PC environment
variables defining hard-coded Java paths (e.g. JAVA_HOME or PATH) and update them so
that they point to the latest Java installation.

On Windows 7 you can check your Java installation using the Control Panel. To do this,
double-click £ v icon from Control Panel\All Control Panel to open the Java settings
window (see Figure 223):

3

DoclD025776 Rev 21 235/276

FAQ

UM1718

11.5

236/276

Figure 223. Java Control Panel

- . - ——
|£:| Java Control Panel = B3

General | 13va | Security ' Advanced

View and mansge Java Runtime versions and settings for Java

applications and applets.
[view.. | '
» d L l -
| £ Java Runtime Environment Settings ﬁ
L.Jser-.-Sr.;tem
|
Platform Product Location Path Runtime ... En.. | |
| 1.7.0_45 Thitp:fiava.... EOProgram Files\davaire?y..] v
o) |
L

- . ;

— |
e — M

You can also enter java —version’ as an MS-DOS command to check the version of your
latest Java installation (the Java program called here is a copy of the program installed
under C:\Windows\System32):

java version “1.7.0_45"
Java (TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot (TM) 64-Bit Server VM (build 24.45-b08, mixed mode)

Why does the RTC multiplexer remain inactive on the Clock
tree view?

To enable the RTC multiplexer, the user shall enable the RTC peripheral in the Pinout view
as indicated in below:

Figure 224. Pinout view - Enabling the RTC

3

DoclD025776 Rev 21

UM1718

FAQ

11.6

11.7

3

How can | select LSE and HSE as clock source and
change the frequency?

The LSE and HSE clocks become active once the RCC is configured as such in the Pinout
view. See Figure 225 for an example.

Figure 225. Pinout view - Enabling LSE and HSE clocks

R
High Speed Clock (HSE) CrystalfiCera
Low Spead Clock (LSE) CrystalfCers

Ed B 0 el ™ ey B

The clock source frequency can then be edited and the external source selected:

Figure 226. Pinout view - Setting LSE/HSE clock frequency

L s ol

Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them

is already configured as an output?

STM32CubeMX implements the restriction documented in the reference manuals as a
footnote in table Output Voltage characteristics:

“PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only
sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output
mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and
these I/Os must not be used as a current source (e.g. to drive a LED).”

DoclD025776 Rev 21 237/276

STM32CubeMX pin assignment rules UM1718

Appendix A STM32CubeMX pin assignment rules

AA1

238/276

The following pin assignment rules are implemented in STM32CubeMX:

Rule 1:
Rule 2:
Rule 3:
Rule 4:
Rule 5:
Rule 6:
Rule 7:
Rule 8:
Rule 9:

Block consistency

Block inter-dependency

One block = one peripheral mode

Block remapping (only for STM32F 10x)

Function remapping

Block shifting (only for STM32F10x)

Setting or clearing a peripheral mode

Mapping a function individually (if Keep Current Placement is unchecked)
GPIO signals mapping

Block consistency

When setting a pin signal (provided there is no ambiguity about the corresponding
peripheral mode), all the pins/signals required for this mode are mapped and pins are
shown in green (otherwise the configured pin is shown in orange).

When clearing a pin signal, all the pins/signals required for this mode are unmapped
simultaneously and the pins turn back to gray.

Example of block mapping with a STM32F107x MCU

If the user assigns 12C1_SMBA function to PB5, then STM32CubeMX configures pins and
modes as follows:

[2C1_SCL and I12C1_SDA signals are mapped to the PB6 and PB7 pins, respectively
(see Figure 227).

I12C1 peripheral mode is set to SMBus-Alert mode.

3

DoclD025776 Rev 21

UM1718 STM32CubeMX pin assignment rules

Figure 227. Block mapping

d - » - - - — O

o STM32CubeMX Untitied™ STM32FIOTVBTx . o o O P————— [E=REE >
File Project Pinout Window Help

Bed & (_‘3} Q [] Keep Current Signals Placement & (J — @ < Find - S\ 4 =y [¥|Show user Label @ 7/ -

Finout | Clock Configuration | Configuration | Power Consumption Calr:ulatorl

B & 1201 -

. .12C [SMBus-Alert-mode —

é % 1252

~Mode | Half-Duplex Slave -
Master Clock Output

1253

IWDG

RCC

RTC

SPI1

i--Mode | Disable v

Hardware NS5 Signal

-
e OO DO e OO = X
LT o g 4 i .
- Se

{Tt

SPI3
sYS
TIM1
TIM2
M3
TIM4
TIMS
TIMG
TIM7
UART4
UARTS Y

m

STM32F107VBTx
LQFP100

ﬂmmmmﬁmmﬁﬁmﬁ
L R
@ @SSPSR

Example of block remapping with a STM32F107x MCU

If the user assigns GPIO_Output to PB6, STM32CubeMX automatically disables 12C1
SMBus-Alert peripheral mode from the peripheral tree view and updates the other 12C1 pins
(PB5 and PB7) as follows:

e If they are unpinned, the pin configuration is reset (pin grayed out).

e If they are pinned, the peripheral signal assigned to the pins is kept and the pins are
highlighted in orange since they no longer match a peripheral mode (see Figure 228).

3

DoclD025776 Rev 21 239/276

STM32CubeMX pin assignment rules UM1718

Figure 228. Block remapping

1
& STM32CubeMX Untitled™: STM32FL07VETx) e — M— - o o
File Project Pinout Window Help

ﬁ_ H & @ O [Keep Current Signals Placement 9 & (] = @ < Find w [® (4 =[] Show user Label | (? -

Pinout | Clock Configuration | Configuration | Power C on Calcul

-~

£ % CAN1
- [[] Master Mode
£ % caN2
[] Slave Mode
- ® CRC
“ DAC
=% ETH
- Mode Disable -
63 T2C1

g -'Disdie vl

put

2C1_SMBA

3
g

ol ela] elal el sl ol al ol el l 2l 2

PB6

T

Mode lDlsable - l
Master Clock Output
1253

@

& -
e e 0 o
A

B % SPI1
- Mode |Disable -
. SPEHardwarE NSS Signal AR
4o SPI3 LQFP100
b) ovs
#- o TIM1
& & TIM2 L9
o TIM3
[+ & TIM4
- & TIMS
F- & TIM6
- & TIM7 -4
For STM32CubeMX to find an alternative solution for the 12C peripheral mode, the user will
need to unpin 12C1 pins and select the 12C1 mode from the peripheral tree view (see
Figure 229 and Figure 230).
240/276 DoclD025776 Rev 21 ‘Yl

UM1718 STM32CubeMX pin assignment rules

Figure 229. Block remapping - example 1

R ——
o STM32CubeMX Untitled®: STM32F107VETx . - e — (= s
e o S— —

File Project Pinout Window Help
B & H & (Q;S [7] Keep Current Signals Placement o S—°+Fnd
Pinout | Clock Configuration | Configuration | Power Consumption Calaulator

\ 4 [¥] Show user Label : (7] -

-

IT} @ CAN1
| L [Master Mode
-+ & CANZ
. [slave Mode
.@ o CRC
4 5 onc
il = o em

o Disable v
| { B8 DG

-12¢ [Disable -

1352 ,

Mode Disable -]
Master Clock Output

1253

IWDG

RCC

RTC

SPI1

i~Mode Disable -

Hardware NSS Signal

m

- &t
@ @9 0 9

I}

STM32F107VBTx

. LQFP100

e
°

i

3

DoclD025776 Rev 21 241/276

STM32CubeMX pin assignment rules UM1718
Figure 230. Block remapping - example 2
& STM32CubeMX Untitled®: I B
File Project Pinout Window Help
B HE - & O [[JkeepcurentSignalsPiacement @ o 7 — @ 4 Fnd - |, 4 = [¥]ShowuserLabel @ (2| i
Pinout ‘ Clock Configuration | Configuration | Power Consumption Cdu.lnhr‘
= & CANL . 2.
 [7] Master Mode 59 53
o o can BE EE
: || Slave Mode 3
foac IERRR: : AR« : ARARRREARRRRRRE
W & DAC DD
:T»_L\‘ ETH %
M| . -Mode isabie . =l
%' & I2C1 m
|1 sBus-lertmode Jv]
o oo ns2 [pess.]
" Wiede Diable =
Master Clock Output m
¢ o mss
i i : ::::)G 3
| 3 o RTC Rt |
J i~Mode [D\sable -
Hardware NSS Signal % STM32F107VBTx
j . ?Imz [vssa | LQFP100
B o SYs
3 ® TIM1 [vooa
- TIM2 B e
- & TIM3 PAL
W6 TIMA [z |
o i el e R E R R
- & TIM7 ~
A.2 Block inter-dependency
On the Chip view, the same signal can appear as an alternate function for multiple pins.
However it can be mapped only once.
As a consequence, for STM32F1 MCUs, two blocks of pins cannot be selected
simultaneously for the same peripheral mode: when a block/signal from a block is selected,
the alternate blocks are cleared.
Example of block remapping of SPI in full-duplex master mode with a
STM32F107x MCU
If SPI1 full-duplex master mode is selected from the tree view, by default the corresponding
SPI signals are assigned to PB3, PB4 and PB5 pins (see Figure 231).
If the user assigns to PA6 the SPI1_MISO function currently assigned to PB4,
STM32CubeMX clears the PB4 pin from the SPI1_MISO function, as well as all the other
pins configured for this block, and moves the corresponding SPI11 functions to the relevant
pins in the same block as the PB4 pin (see Figure 232).
(by pressing CTRL and clicking PB4 to show PAG alternate function in blue, then drag and
drop the signal to pin PAG)
242/276 DoclD025776 Rev 21 Kys

UM1718 STM32CubeMX pin assignment rules

Figure 231. Block inter-dependency - SPI signals assigned to PB3/4/5

& STM32CubeMX Untitled*: STM32F107VBTx E@u
File Project Pinout Window Help

G | & & L [[KeepcCurrentSignals Placement & [— @ < Find vl
Pinout | Clock Configuration | Configuration | Power Consumption Calculator |
& CAN1 -
& & CAN2
@ CRC
t & DAC
t & ETH
8-\ 12C1
B 5 1252

+ '\ [V] Show user Label

7 P

PI1_MISO
PI1_SCHK

PI1_MOST

o allalalala (s

L

% 1253 —
@ IWDG
% RCC
%
o

-l

RTC

SPI1
[] Hardware NS5 Signal
- & SPI2
[% SPI3
-/ sYs
- % TIM1

o TIM2
o TIM3
@ TIM4
SARIMS LQFP100
@ TIM6
@ TIM7
+ % UART4
L]
[]
®
o
L]

m

2F107VBTx

P W
L

UARTS
USART1
USART2
USART3
USB_OTG_FS I
| Gl o WG

-
-

3

DoclD025776 Rev 21 243/276

STM32CubeMX pin assignment rules

UM1718

Figure 232. Block inter-dependency - SPI1_MISO function assigned to PA6

-
% STM32CubeMX Untitled*: STM32F107VBTx

e

File Project Pinout Window Help

G | & @ O [7)keep CurrentSignals Flacement « ¢

S—@+ms -

=, [¥] show user Label

Pinout | clock Configuration | Configuration | Power Consumption Calculator

CAN1 -
CANZ2

CRC

DAC

ETH

I12C1

1252

1253 A
IWDG

RCC

RTC

SPT1

-Mode |Ful-Duplex Master -
- [7] Hardware NS5 Signal

SP12

SPI3

SYsS

TIM1

TIM2

TIM3

TIM4

TIMS

TIM6

TIM7

UART4

UARTS

USART1

USART2

USART3

USB_OTG_FS —

[

R

B

53] @
o9 90 e a0 ofe e

s

o O O O O - . 0
2 9 2 D DD DDDDDDDDDD

E

STM32F107VBTx
LQFP100

'S TIds

W TIds

W TIdS

244/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX pin assignment rules

A3

One block = one peripheral mode

When a block of pins is fully configured in the Chip view (shown in green), the related
peripheral mode is automatically set in the Peripherals tree.

Example of STM32F107x MCU

Assigning the 12C1_SMBA function to PB5 automatically configures 12C1 peripheral in
SMBus-Alert mode (see Peripheral tree in Figure 233).

Figure 233. One block = one peripheral mode - 12C1_SMBA function assigned to PB5

-
@ STM32CubeMX Untitled*: STM32F107VBTx

File Project Pinout Window Help

0o | & & O [Keep Current Signals Placement @ & [= @ <= Find v %, (4 =\ [] Show userLabel = (7| >

Pinout | dlock Configuration | Configuration | Power Consumption Calauator

- & CAN1

% CAnN2
% CRC
% DAC
% ETH

-

FEEN 12C1_SDA

B.
2= 12C1 sCL

250 12C1_SMBA

=1zl SIS
ERRRERE .

PB4
PE3

@

BB
% a3 a2 £

E--E--E--E--8

e
i

& 12Q1

- Mode |Disable >
; Master Clock Output

% 1253

& IWDG

@ RCC
@ RTC
% SPI1

i-Mode |Disable -

Hardware NSS Signal

o SPI2
% SPI3
% 5YS

@ TIM1
& TIM2
& TIM3
& TIM4
& TIM5
& TIM6
e TIM7

% UART4
i+~ & UARTS
% USART1

*.12C | sMBus-Alert-mode

0
> o

m

STM32F107VBTx
LQFP100

pc7 |
=
Po15 |
Pois |
P13 |
P12 |
P |
Pos |
Pos |
Pe14 |
Pats |
pev2 |

======

A4

3

Block remapping (STM32F10x only)

To configure a peripheral mode, STM32CubeMX selects a block of pins and assigns each
mode signal to a pin in this block. In doing so, it looks for the first free block to which the
mode can be mapped.

When setting a peripheral mode, if at least one pin in the default block is already used,
STM32CubeMX tries to find an alternate block. If none can be found, it either selects the
functions in a different sequence, or unchecks [keep Current Signals Flacement , and remaps alll
the blocks to find a solution.

DoclD025776 Rev 21 245/276

STM32CubeMX pin assignment rules UM1718

A5

246/276

Example

STM32CubeMX remaps USART3 hardware-flow-control mode to the (PD8-PD9-PD11-
PD12) block, because PB14 of USARTS3 default block is already allocated to the
SPI2_MISO function (see Figure 234).

Figure 234. Block remapping - example 2

USARTS ATS
USART3 CTS

LSARTS AX
USARTI TX
P12 OS]
SP2_MISD
P2 30K

Function remapping

To configure a peripheral mode, STM32CubeMX assigns each signal of the mode to a pin.
In doing so, it will look for the first free pin the signal can be mapped to.

Example using STM32F415x

When configuring USART3 for the Synchronous mode, STM32CubeMX discovered that the
default PB10 pin for USART3_TX signal was already used by SPI. It thus remapped it to
PDS8 (see Figure 235).

Figure 235. Function remapping example

USART3_TX

USART3_CK

dd
ad

== =] -

1

HDS ZIds [N

¥d Eldwsn

3

DoclD025776 Rev 21

UM1718

STM32CubeMX pin assignment rules

A.6

3

Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked)

If a block cannot be mapped and there are no free alternate solutions, STM32CubeMX tries
to free the pins by remapping all the peripheral modes impacted by the shared pin.

Example

With the Keep current signal placement enabled, if USART3 synchronous mode is set first,
the Asynchronous default block (PB10-PB11) is mapped and Ethernet becomes unavailable
(shown in red) (see Figure 236).

Unchecking [~ keep current Signals Flacement allows STM32CubeMX shifting blocks around
and freeing a block for the Ethernet MIl mode. (see Figure 237).

Figure 236. Block shifting not applied

-
& STM32CubeMX Untitled™; STM32F107VBTx [E=REER S
a

File Project Pinout Window Help

-~
EocdE 45 | k}ééiﬁ"(fi.iFr'éHf"S"i;q"HéIEﬁl‘éiﬁéﬁiéﬁﬁ-} o= O =@ < Find w | =, 4 = [¥] Show user Label
Finout | Clock Configuration I Configuration | Power Consumption Ca\culainrl
i @ ADC1 s
k- B ADC2
i & CAM1
k- B CAN2
- & CRC
t- & DAC
-9 ETH
E-"-:DISEME -
- & 1201
H-69 1252
i & 1253
k- & IWDG
- & RCC
- W RTC
@ SPI1
- W SPI2
% SPI3
- @ SYS

/L STM32F107VBTx p [

O : LQFP100
@ TIM3 o

i
=)
i
=)
i
=)
i
=)
t % TIM4
=)
i
=)
i
=)
)
i}

m

@ TIM5
- B TIMG

@ TIM7
- UART4

=8 USART3_CK

% UARTS
- USART1
% USART2

(g s
1
¥ ELHWS
e ELdVS

DoclD025776 Rev 21 247/276

STM32CubeMX pin assignment rules

UM1718

A.7

A.8

A9

248/276

Figure 237. Block shifting applied

e e e e

File Project Pinout Window Heln
RoWR & Co6 it © O — @ +

PFinout | Clock Configuration I Configuration I Power Consumption Ca\culaborl

k- & ADCL -

k- & ADC2

£ & CAN1

k- & CAN2

i & CRC

- & DAC

= % ETH P
- Mode :Disahle -

- I2C1
@ 1252
@ I253
@ IWDG
@ RCC

@ RTC

@ SPI1
@ SPI2
% SPI3
% SYys

® M STM32F107VBTx

o TIM2 B LQFP100
% TIM3

@ TIM4
% TIM5
@ TIM&
% TIM7
@ UART4
% UARTS
% USART1
% USART2

v | =, 4 =, [¥]Show user Label

r
l=feflao| e el o+ I o+ - -
alalala ala o o o o o

CJ

m

=8 USART3_CK

X1 ELAYS

o ELAYS

Setting and clearing a peripheral mode

The Peripherals panel and the Chip view are linked: when a peripheral mode is set or
cleared, the corresponding pin functions are set or cleared.

Mapping a function individually

When STM32CubeMX needs a pin that has already been assigned manually to a function
(no peripheral mode set), it can move this function to another pin, only if
[] keep Current Signals Flacement iS unchecked and the function is not pinned (no pin icon).

GPIO signals mapping

I/0 signals (GPIO_Input, GPIO_Output, GPIO_Analog) can be assigned to pins either
manually through the Chip view or automatically through the Pinout menu. Such pins can
no longer be assigned automatically to another signal: STM32CubeMX signal automatic
placement does not take into account this pin anymore since it does not shift I/0 signals to
other pins.

The pin can still be manually assigned to another signal or to a reset state.

3

DoclD025776 Rev 21

UM1718

STM32CubeMX C code generation design choices and limitations

Appendix B STM32CubeMX C code generation design

B.1

Note:

B.2

3

choices and limitations

This section summarizes STM32CubeMX design choices and limitations.

STM32CubeMX generated C code and user sections

The C code generated by STM32CubeMX provides user sections as illustrated below. They
allow user C code to be inserted and preserved at next C code generation.

User sections shall neither be moved nor renamed. Only the user sections defined by
STM32CubeMX are preserved. User created sections will be ignored and lost at next C
code generation.

/* USER CODE BEGIN 0 */
(..)
/* USER CODE END 0 */
STM32CubeMX may generate C code in some user sections. It will be up to the user to

clean the parts that may become obsolete in this section. For example, the while(1) loop in
the main function is placed inside a user section as illustrated below:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

STM32CubeMX design choices for peripheral initialization

STM32CubeMX generates peripheral _Init functions that can be easily identified thanks to
the MX_ prefix:

static void MX_GPIO_Init (void);

static void MX <Peripheral Instance Name>_TInit (void);

static void MX_I2S2 Init(void);

An MX_<peripheral instance name>_Init function exists for each peripheral instance
selected by the user (e.g, MX_[12S2_Init). It performs the initialization of the relevant handle

structure (e.g, &hi2s2 for I12S second instance) that is required for HAL driver initialization
(e.g., HAL I2S_Init) and the actual call to this function:

void MX_TI2S2 Init (void)

{

hi2s2.Instance = SPI2;
hi2s2.Init.Mode = I2S_MODE_MASTER_TX;
hi2g2.Init.Standard = I2S_STANDARD_PHILLIPS;

DoclD025776 Rev 21 249/276

STM32CubeMX C code generation design choices and limitations UM1718

B.3

B.3.1

250/276

hi2s2.Init.DataFormat = I2S_DATAFORMAT 16B;
hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_192K;
hi2s2.Init.CPOL = I2S_CPOL_LOW;
hi2s2.Init.ClockSource = I2S_CLOCK_PLL;
hi2s2.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_ENABLE;
HAL_I2S_Init (&hi2s2);
}
By default, the peripheral initialization is done in main.c. If the peripheral is used by a

middleware mode, the peripheral initialization can be done in the middleware corresponding
.c file.

Customized HAL_<Peripheral Name>_MSsplnit() functions are created in the
stm32f4xx_hal_msp.c file to configure the low-level hardware (GPIO, CLOCK) for the
selected peripherals.

STM32CubeMX design choices and limitations for
middleware initialization

Overview

STM32CubeMX does not support C user code insertion in Middleware stack native files
although stacks such as LwIP might require it in some use cases.

STM32CubeMX generates middleware Init functions that can be easily identified thanks to
the MX_ prefix:

MX_LWIP_Init(); // defined in lwip.h file
MX_USB_HOST_Init(); // defined in usb_host.h file
MX_FATFS_Init(); // defined in fatfs.h file

Note however the following exceptions:

e No /nit function is generated for FreeRTOS unless the user chooses, from the Project
settings window, to generate /nit functions as pairs of .c/.h files. Instead, a
StartDefaultTask function is defined in the main.c file and CMSIS-RTOS native function
(osKernelStart) is called in the main function.

o If FreeRTOS is enabled, the Init functions for the other middlewares in use are called
from the StartDefaultTask function in the main.c file.
Example:

void StartDefaultTask(void const * argument)

{

/* init code for FATFS */
MX_FATFS_Init();

/* init code for LWIP */
MX_LWIP_Init();

/* init code for USB_HOST */
MX_USB_HOST_Init () ;

/* USER CODE BEGIN 5 */

/* Infinite loop */

3

DoclD025776 Rev 21

UM1718

STM32CubeMX C code generation design choices and limitations

B.3.2

B.3.3

B.3.4

3

for(;;)
{
osDelay (1) ;
}
/* USER CODE END 5 */
}

USB Host

USB peripheral initialization is performed within the middleware initialization C code in the
usbh_conf.c file, while USB stack initialization is done within the usb_host.c file.

When using the USB Host middleware, the user is responsible for implementing the
USBH_UserProcess callback function in the generated usb_host.c file.

From STM32CubeMX user interface, the user can select to register one class or all classes
if the application requires switching dynamically between classes.

USB Device

USB peripheral initialization is performed within the middleware initialization C code in the
usbd_conf.c file, while USB stack initialization is done within the usb_device.c file.

USB VID, PID and String standard descriptors are configured via STM32CubeMX user
interface and available in the usbd_desc.c generated file. Other standard descriptors
(configuration, interface) are hard-coded in the same file preventing support for USB
composite devices.

When using the USB Device middleware, the user is responsible for implementing the
functions in the usbd_<classname>_if.c class interface file for all device classes (e.g.,
usbd_storage_if.c).

USB MTP and CCID classes are not supported.

FatFs

FatFs is a generic FAT/exFAT file system solution well suited for small embedded systems.
FatFs configuration is available in ffconf.h generated file.

The initialization of the SDIO peripheral for the FatFs SD Card mode and of the FMC
peripheral for the FatFs External SDRAM and External SRAM modes are kept in the main.c
file.

Some files need to be modified by the user to match user board specificities (BSP in
STM32Cube embedded software package can be used as example):

e bsp _driver_sd.c/.h generated files when using FatFs SD Card mode

e bsp_driver_sram.c/.h generated files when using FatFs External SRAM mode

e bsp _driver_sdram.c/.h generated files when using FatFs External SDRAM mode.
Multi-drive FatFs is supported, which means that multiple logical drives can be used by the
application (External SDRAM, External SRAM, SD Card, USB Disk, User defined). However

support for multiple instances of a given logical drive is not available (e.g. FatFs using two
instances of USB hosts or several RAM disks).

DoclD025776 Rev 21 251/276

STM32CubeMX C code generation design choices and limitations

UM1718

NOR and NAND Flash memory are not supported. In this case, the user shall select the
FatFs user-defined mode and update the user_diskio.c driver file generated to implement
the interface between the middleware and the selected peripheral.

B.3.5 FreeRTOS

FreeRTOS is a free real-time embedded operating system well suited for microcontrollers.
FreeRTOS configuration is available in FreeRTOSConfig.h generated file.

When FreeRTOS is enabled, all other selected middleware modes (e.g., LwIP, FatFs, USB)
will be initialized within the same FreeRTOS thread in the main.c file.

When GENERATE_RUN_TIME_STATS, CHECK_FOR_STACK_OVERFLOW,
USE_IDLE_HOOK, USE_TICK_HOOK and USE_MALLOC_FAILED_HOOK parameters
are activated, STM32CubeMX generates freertos.c file with empty functions that the user
shall implement. This is highlighted by the tooltip (see Figure 238).

Figure 238. FreeRTOS HOOK functions to be completed by user

N
@ FREERTOS Configuration =5

"\‘ff? Config parameters | q’q Indude parameters | q’q User Constants | Q?Tasks and Queues | Q:’?Tlmers and Semaphores | q/) FreeRTOS Heap Usage|

Configure the following parameters:

Search : | Search [Cril+F) - &
= Versions -
CMSIS-RTOS version 1.02 I
FreeRTOS version 8.2.3
Kernel settings
=l Hook function related definitions
USE_IDLE_HOOK Disabled
USE_MALLOC_FAILED HOCK Dizabled
CHECK_FOR._STACK_OVERFLOW Disabled
=] Run time and task stats gathering related definitions
USE_TRACE_FACILITY Enabled
GEMERATE_RUM_TIME_STATS Disabled
[= Co-routine related definitions Il
USE_CO_ROUTIMES Dizabled
MAY_CO_ROUTINE_PRIORITIES 2
= Software timer definitions
USE_TIMERS Enabled

USE_TICK_HOOK

configlSE_TICK_HOOK

Parameter Description:

The tick hook function is & hook (or callbadk) function that, if defined and configured, will be called during each tick interrupt.

-if USE_TICK_HOOK is set to 1 (Enabled) then the application must define a tick hook function: void vApplicationTickHook({void).

-if USE_TICK HOOK is set to 0 (Disabled) then the tick hook function will not be called, even if one is defined.
Note{when set to 1, an empty function is generated in the freertos.c file (to be completed by the user)

[Apply] [Ok] [Cancel

252/276 DoclD025776 Rev 21

3

UM1718

STM32CubeMX C code generation design choices and limitations

B.3.6

3

LwiIP

LwlIP is a small independent implementation of the TCP/IP protocol suite: its reduced RAM
usage makes it suitable for use in embedded systems with tens of kilobytes of free RAM.

LwlIP initialization function is defined in Iwip.c, while LwIP configuration is available in
Iwipopts.h generated file.

STM32CubeMX supports LwIP over Ethernet only. The Ethernet peripheral initialization is
done within the middleware initialization C code.

STM32CubeMX does not support user C code insertion in stack native files. However, some
LwlIP use cases require modifying stack native files (e.g., cc.h, mib2.c): user modifications
shall be backed up since they will be lost at next STM32CubeMX generation.

Starting with LwIP release 1.5, STM32CubeMX LwlIP supports IPv6 (see Figure 240).

DHCP must be disabled, to configure a static IP address.

Figure 239. LwIP 1.4.1 configuration

LWIP Configuration Iﬁ1
| o Statistics I o Checksum I Q/} Debug I Q/) User Constants
o/ General Settings /" Key Options o/ PerfiChecks
Configure the below parameters
Search : | Search {CriHF) Wi
= LwIP Version -
LwIP Version (Version of LwIP sup... 1.4.1 I
[=] DHCP Option
|| LWIP_DHCP (DHCP Module) Enabled I
[=] RTOS Settings L
WITH_RTOS (Use FREERTOS ** ... Disabled r
[=] Protocols Options
LWIP_ICMP {ICMP Module Activati... Enabled
LWIP_IGMP {IGMP Module) Disabled A
LWIP_DMS (DMS Module) Disabled
LWIP_LUDP (UDP Module) Enabled
MEME MILIM LINP BrR (Mumber of 4 i
[Apply] [Ok] [Cancel
h

DoclD025776 Rev 21 253/276

STM32CubeMX C code generation design choices and limitations UM1718
Figure 240. LwIP 1.5 configuration
f LWIP Configuraticn Iﬁ‘
|. o/ PerffChecks I o/ Statistics I Q{?Checksum I Q/ﬁDebug Qf‘ﬁUser Constants

o/ General Settings

| Q’?Keyopﬁons | Q:{?IPVG |

o/ HTTPD | o/ snmp | o sTP

Configure the below parameters :

Search :| Search (Crtl+F) L

=] LwIP Version

= DHCP Option
LWIP_DHCP {DHCP Module)
[=] RTOS Settings

= Protocols Options
LWIP_ICMP (ICMP Module Activation)
LWIP_IGMP (IGMP Module)
LWIP_DNS {DNS Module)
LWIP_UDP {UDP Module)

LWIP_TCP {TCP Module)

LwIP Version (Version of LwIP supported b...

WITH_RTOS {(Use FREERTOS ** CubeMX ...

MEMP_NUM_UDP_PCB (Number of UDP Co...

1.5.0_RC0O_201580211

Enabled

Disabled

Enabled
Disabled
Disabled
Enabled
4

Enabled

~

m

[emty | |

Ok

] [Cancel]

b

STM32CubeMX generated C code will report compilation errors when specific parameters
are enabled (disabled by default). The user must fix the issues with a stack patch
(downloaded from Internet) or user C code. The following parameters generate an error:

e MEM_USE_POOLS: user C code to be added either in Iwipopts.h or in cc.h (stack file).

e PPP_SUPPORT, PPPOE_SUPPORT: user C code required

e MEMP_SEPARATE_POOLS with MEMP_OVERFLOW_CHECK > 0: a stack patch

required

e MEM_LIBC_MALLOC & RTOS enabled: stack patch required

e LWIP_EVENT_API: stack patch required

In STM32CubeMX, the user must enable FreeRTOS in order to use LwIP with the netconn
and sockets APIs. These APIs require the use of threads and consequently of an operating
system. Without FreeRTOS, only the LwIP event-driven raw API can be used.

254/276

DoclD025776 Rev 21

3

UM1718

STM32CubeMX C code generation design choices and limitations

B.3.7

3

Libjpeg

Libjpeg is a widely used C-library that allows reading and writing JPEG files. It is delivered
within STM32CubeF7, STM32CubeH7, STM32CubeF2 and STM32CubeF4 embedded
software packages.

STM32CubeMX generates the following files, whose content can be configured by the user
through STM32CubeMX user interface:

libjpeg.c/.h

The MX_LIBJPEG Init() initialization function is generated within the libjpeg.c file. It is
empty. It is up to the user to enter in the user sections the code and the calls to the
libjpeg functions required for the application.

jdata_conf.c

This file is generated only when FatFs is selected as data stream management type.
jdata_conf.h

The content of this file is adjusted according to the datastream management type
selected.

jconfig.h

This file is generated by STM32CubeMX. but cannot be configured.

jmorecfg.h

Some but not all the define statements contained in this file can be modified through
the STM32CubeMX libjpeg configuration menu.

DoclD025776 Rev 21 255/276

STM32CubeMX C code generation design choices and limitations UM1718

Figure 241. Libjpeg configuration window

» LIBIPEG Configuration i |
«f Config parameters | o/ User Constants

Configure the below parameters :

Search :| Search (Crif+F) v o Show Advanced Parameters

(= Version -
LIBJPEG version 8d F
= MW configuration
FREERTOS Enabled
=] General Settings
Use FREERTOS Memory Allocator Disabled
[=| JPEG basic settings

BITS_IN_ISAMFLE 8 bits P
MAX_COMPONENTS 12
JCOEF short
= JPEG encoder and decoder commaon ca...
DCT_ISLOW_SUFPORTED Enabled
DCT_IFAST_SUPPORTED Enabled
DCT_FLOAT_SUPPORTED Enabled

= JPEG encoder options
C_ARITH_CODING_SUPPORTED Enabled

C_MULTISCAN_FILES_SUPPORT... Disabled -
Data Stream management type -
LIBJPEG_F5_type
Parameter Description: -
Default Value : FatFs

| Restore Default | Apply || Ok || Cancel

3

256/276 DoclD025776 Rev 21

UM1718 STM32 microcontrollers naming conventions

Appendix C STM32 microcontrollers naming conventions

STM32 microcontroller part numbers are codified following the below naming conventions:
e Device subfamilies
The higher the number, the more features available.

For example STM32LO0 line includes STM32L051, L052, L053, L061, L062, L063
subfamilies where STM32L06x part numbers come with AES while STM32L05x do not.

The last digit indicates the level of features. In the above example:
— 1 =Access line
- 2=with USB
— 3 =with USB and LCD.
e Pin counts
— F=20pins
- G=28pins
- K=32pins
— T =36pins
— S =44pins
— C=48pins
— R =64 pins (or 66 pins)
- M=280pins
— 0=90pins
— V=100 pins
— Q=132 pins (e. g. STM32L162QDH®6)
- Z=144
- 1=176 (+25)
— B =208 pins (e. g.: STM32F429BIT6)
— N=216 pins
e Flash memory sizes
— 4 =16 Kbytes of Flash memory
— 6 =32 Kbytes of Flash memory
— 8 =64 Kbytes of Flash memory
— B =128 Kbytes of Flash memory
— C =256 Kbytes of Flash memory
— D = 384 Kbytes of Flash memory
— E =512 Kbytes of Flash memory
— F =768 Kbytes of Flash memory
— G =1024 Kbytes of Flash memory
— 1 =2048 Kbytes of Flash memory
e Packages
- B=SDIP
- H=BGA

3

DoclD025776 Rev 21 257/276

STM32 microcontrollers naming conventions UM1718

- M=SO0

- P=TSSOP
- T=LQFP

- U=VFQFPN
- Y=WLCSP

Figure 242 shows an example of STM32 microcontroller part numbering scheme.

Figure 242. STM32 microcontroller part numbering scheme

Example: STM32 F 439V 1| T 6 xxx

Device family
S5TM32 = ARM-based 32-bit microcontroller

Product type
F = general-purpose

Device subfamily

437= STM32F437xx, USB OTG FS/HS, camera interface,
Ethemet, cryptographic acceleration

439= STM32F439xx, USB OTG FS/HS, camera interface,
Ethemet, LCD-TFT, cryptographic acceleration

Pin count

V=100 pins
Z =144 pins
A =169 pins
| =176 pins
B = 208 pins
N =216 pins

Flash memory size
G = 1024 Kbytes of Flash memory
| = 2048 Kbytes of Flash memory

Package
T=LAQFP
H=BGA
Y = WLCSP

Temperature range
6 = Industrial temperature range, —40 to 85 °C.
7 = Industrial temperature range, —40 to 105 *C.

Options
xx¢ = programmed parts
TR = tape and reel

3

258/276 DoclD025776 Rev 21

UM1718 STM32 microcontrollers power consumption parameters

Appendix D STM32 microcontrollers power consumption
parameters

This section provides an overview on how to use STM32CubeMX Power Consumption
Calculator.

Microcontroller power consumption depends on chip size, supply voltage, clock frequency
and operating mode. Embedded applications can optimize STM32 MCU power
consumption by reducing the clock frequency when fast processing is not required and
choosing the optimal operating mode and voltage range to run from. A description of STM32
power modes and voltage range is provided below.

DA Power modes

STM32 MCUs support different power modes (refer to STM32 MCU datasheets for full
details).

D11 STM32L1 Series

STM32L1 microcontrollers feature up to 6 power modes, including 5 low-power modes:
¢ Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU
runs up to 32 MHz and the voltage regulator is enabled.

e Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/event occurs.

e Low- power run mode
This mode uses the multispeed internal (MSI) RC oscillator set to the minimum clock
frequency (131 kHz) and the internal regulator in low-power mode. The clock frequency
and the number of enabled peripherals are limited.

e Low-power sleep mode
This mode is achieved by entering Sleep mode. The internal voltage regulator is in low-
power mode. The clock frequency and the number of enabled peripherals are limited. A
typical example would be a timer running at 32 kHz.

When the wakeup is triggered by an event or an interrupt, the system returns to the
Run mode with the regulator ON.

e Stop mode

This mode achieves the lowest power consumption while retaining RAM and register
contents. Clocks are stopped. The real-time clock (RTC) an be backed up by using
LSE/LSI at 32 kHz/37 kHz. The number of enabled peripherals is limited. The voltage
regulator is in low-power mode.
The device can be woken up from Stop mode by any of the EXTI lines.

e Standby mode
This mode achieves the lowest power consumption. The internal voltage regulator is

switched off so that the entire Voorg domain is powered off. Clocks are stopped and
the real-time clock (RTC) can be preserved up by using LSE/LSI at 32 kHz/37 kHz.

3

DoclD025776 Rev 21 259/276

STM32 microcontrollers power consumption parameters UmM1718

Note:

D.1.2

260/276

RAM and register contents are lost except for the registers in the Standby circuitry. The
number of enabled peripherals is even more limited than in Stop mode.

The device exits Standby mode upon reset, rising edge on one of the three WKUP pins,
or if an RTC event occurs (if the RTC is ON).

When exiting Stop or Standby modes to enter the Run mode, STM32L1 MCUs go through a
state where the MSI oscillator is used as clock source. This transition can have a significant
impact on the global power consumption. For this reason, the Power Consumption
Calculator introduces two transition steps: WU_FROM_STOP and WU_FROM_STANDBY.
During these steps, the clock is automatically configured to MSI.

STM32F4 Series

STM32F4 microcontrollers feature a total of 5 power modes, including 4 low-power modes:

Run mode

This is the default mode at power-on or after a system reset. It offers the highest
performance using HSE/HSI clock sources. The CPU can run at the maximum
frequency depending on the selected power scale.

Sleep mode

Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/even occurs. The clock source is the clock that was set before
entering Sleep mode.

Stop mode

This mode achieves a very low power consumption using the RC oscillator as clock
source. All clocks in the 1.2 V domain are stopped as well as CPU and peripherals.
PLL, HSI RC and HSE crystal oscillators are disabled. The content of registers and
internal SRAM are kept.

The voltage regulator can be put either in normal Main regulator mode (MR) or in Low-
power regulator mode (LPR). Selecting the regulator in low-power regulator mode
increases the wakeup time.

The Flash memory can be put either in Stop mode to achieve a fast wakeup time or in
Deep power-down to obtain a lower consumption with a slow wakeup time.
The Stop mode features two sub-modes:
— Stop in Normal mode (default mode)
In this mode, the 1.2 V domain is preserved in nominal leakage mode and the
minimum V12 voltage is 1.08 V.
— Stop in Under-drive mode
In this mode, the 1.2 V domain is preserved in reduced leakage mode and V12
voltage is less than 1.08 V. The regulator (in Main or Low-power mode) is in

under-drive or low-voltage mode. The Flash memory must be in Deep-power-
down mode. The wakeup time is about 100 ys higher than in normal mode.

Standby mode

This mode achieves very low power consumption with the RC oscillator as a clock
source. The internal voltage regulator is switched off so that the entire 1.2 V domain is
powered off: CPU and peripherals are stopped. The PLL, the HSI RC and the HSE
crystal oscillators are disabled. SRAM and register contents are lost except for
registers in the backup domain and the 4-byte backup SRAM when selected. Only RTC
and LSE oscillator blocks are powered. The device exits Standby mode when an

DoclD025776 Rev 21 ‘Yl

UM1718

STM32 microcontrollers power consumption parameters

D.1.3

3

external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC
alarm/ wakeup/ tamper/time stamp event occurs.

e Vpar Operation

It allows to significantly reduced power consumption compared to the Standby mode.
This mode is available when the Vgar pin powering the Backup domain is connected to
an optional standby voltage supplied by a battery or by another source. The Vgar
domain is preserved (RTC registers, RTC backup register and backup SRAM) and
RTC and LSE oscillator blocks powered. The main difference compared to the Standby
mode is external interrupts and RTC alarm/events do not exit the device from Vgar
operation. Increasing Vpp to reach the minimum threshold does.

STM32L0 Series

STM32L0 microcontrollers feature up to 8 power modes, including 7 low-power modes to
achieve the best compromise between low-power consumption, short startup time and
available wakeup sources:

¢ Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU can
run up to 32 MHz and the voltage regulator is enabled.

e Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and only the CPU is stopped. All peripherals continue to operate and can wake up the
CPU when an interrupt/event occurs.

e Low-power run mode
This mode uses the internal regulator in low-power mode and the multispeed internal
(MSI) RC oscillator set to the minimum clock frequency (131 kHz). In Low-power run
mode, the clock frequency and the number of enabled peripherals are both limited.

e Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode. Both the clock frequency and the number of enabled peripherals are
limited. Event or interrupt can revert the system to Run mode with regulator on.

e Stop mode with RTC

The Stop mode achieves the lowest power consumption with, while retaining the RAM,
register contents and real time clock. The voltage regulator is in low-power mode. LSE
or LSl is still running. All clocks in the Voore domain are stopped, the PLL, MSI RC,
HSE crystal and HSI RC oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition. The device can be woken up from Stop mode
by any of the EXTlI line, in 3.5 ps, and the processor can serve the interrupt or resume
the code.

e Stop mode without RTC
This mode is identical to “Stop mode with RTC “, except for the RTC clock which is
stopped here.

e Standby mode with RTC

The Standby mode achieves the lowest power consumption with the real time clock
running. The internal voltage regulator is switched off so that the entire Voorg domain

DoclD025776 Rev 21 261/276

STM32 microcontrollers power consumption parameters UmM1718

Note:

D.2

D.21

262/276

is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSl is still running.

After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).

The device exits Standby mode in 60 pys when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),

RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

e Standby mode without RTC
This mode is identical to Standby mode with RTC, except that the RTC, LSE and LSI
clocks are stopped.

The device exits Standby mode in 60 ys when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.

The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop
mode.

Power consumption ranges

STM32 MCUs power consumption can be further optimized thanks to the dynamic voltage
scaling feature: the main internal regulator output voltage V12 that supplies the logic (CPU,
digital peripherals, SRAM and Flash memory) can be adjusted by software by selecting a
power range (STM32L1 and STM32L0) or power scale (STM32 F4).

Power consumption range definitions are provided below (refer to STM32 MCU datasheets
for full details).

STM32L1 Series feature 3 Voorg ranges

e High Performance Range 1 (Vpp range limited to 2.0-3.6 V), with the CPU running at
up to 32 MHz

The voltage regulator outputs a 1.8 V voltage (typical) as long as the Vpp input voltage
is above 2.0 V. Flash program and erase operations can be performed.

e Medium Performance Range 2 (full Vpp range), with a maximum CPU frequency of
16 MHz

At 1.5V, the Flash memory is still functional but with medium read access time. Flash
program and erase operations are still possible.

e Low Performance Range 3 (full Vop range), with a maximum CPU frequency limited to
4 MHz (generated only with the multispeed internal RC oscillator clock source)

At 1.2V, the Flash memory is still functional but with slow read access time. Flash
Program and erase operations are no longer available.

3

DoclD025776 Rev 21

UM1718 STM32 microcontrollers power consumption parameters

D.2.2 STM32F4 Series feature several Vcorg scales

The scale can be modified only when the PLL is OFF and when HSI or HSE is selected as
system clock source.

e Scale 1 (V12 voltage range limited to 1.26-1.40 V), default mode at reset
HCLK frequency range = 144 MHz to 168 MHz (180 MHz with over-drive).
This is the default mode at reset.

e Scale 2 (V12 voltage range limited to 1.20 to 1.32 V)

HCLK frequency range is up to 144 MHz (168 MHz with over-drive)

e Scale 3 (V12 voltage range limited to 1.08 to 1.20 V), default mode when exiting Stop
mode

HCLK frequency <120 MHz.

The voltage scaling is adjusted to fc k frequency as follows:
e STM32F429x/39x MCUs:
— Scale 1: up to 168 MHz (up to 180 MHz with over-drive)
— Scale 2: from 120 to 144 MHz (up to 168 MHz with over-drive)
— Scale 3: up to 120 MHz.
e STM32F401x MCUs:
No Scale 1
— Scale 2: from 60 to 84 MHz
— Scale 3: up to 60 MHz.
e STM32F40x/41x MCUs:
— Scale 1: up to 168 MHz
— Scale 2: up to 144 MHz

D.2.3 STM32L0 Series feature 3 Voorg ranges

e Range 1 (Vpp range limited to 1.71 to 3.6 V), with CPU running at a frequency up to
32 MHz

e Range 2 (full Vpp range), with a maximum CPU frequency of 16 MHz
e Range 3 (full Vpp range), with a maximum CPU frequency limited to 4.2 MHz.

3

DoclD025776 Rev 21 263/276

STM32Cube embedded software packages UM1718

Appendix E STM32Cube embedded software packages

Along with STM32CubeMX C code generator, embedded software packages are part of
STM32Cube initiative (refer to DB2164 databrief): these packages include a low-level
hardware abstraction layer (HAL) that covers the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards (see Figure 243). This set
of components is highly portable across the STM32 Series. The packages are fully
compatible with STM32CubeMX generated C code.

Figure 243. STM32Cube Embedded Software package

Application level demonstrations

—
9
=
)
s £
=S
=

5°
(]
£
=

Middleware level

HAL examples

CMSIS

HAL APIs

Hardware Abstraction Layer APIs (HAL) Board Support Package (BSP)
Utilities

Hardware

MCU Series (STM32F4, F1, F2, F3..)

Evaluation boards, discovery boards,

dedicated demonstration boards

MSv34720V2

Note:

264/276

STM32CubeF0, STM32CubeF1, STM32CubeF2, STM32CubeF3, STM32CubeF4,
STM32Cubel0 and STM32CubelL 1 embedded software packages are available on st.com.
They are based on STM32Cube release v1.1 (other Series will be introduced progressively)
and include the embedded software libraries used by STM32CubeMX for initialization C
code generation.

The user should use STM32CubeMX to generate the initialization C code and the examples
provided in the package to get started with STM32 application development.

3

DoclD025776 Rev 21

UM1718

Revision history

12

Revision history

Table 20.

Document revision history

Date

Revision

STM32CubeMX
release number

Changes

17-Feb-2014

4.1

Initial release.

04-Apr-2014

4.2

Added support for STM32CubeF2 and STM32F2 Series in cover
page, Section 2.2: Key features, Section 4.12.1: Peripherals and
Middleware Configuration window, and Appendix E: STM32Cube
embedded software packages.

Updated Section 6.1: Creating a new STM32CubeMX Project,
Section 6.2: Configuring the MCU pinout, Section 6.6: Configuring
the MCU initialization parameters.

Section “Generating GPIO initialization C code move to Section 8:
Tutorial 3- Generating GPIO initialization C code (STM32F1 Series
only) and content updated.

Added Section 11.4: Why do | get the error “Java 7 update 45’ when
installing ‘Java 7 update 45’ or a more recent version of the JRE?.

24-Apr-2014

4.3

Added support for STM32CubelL0 and STM32L0 Series in cover
page, Section 2.2: Key features, Section 2.3: Rules and limitations
and Section 4.12.1: Peripherals and Middleware Configuration
window

Added board selection in Table 3: File menu functions,

Section 4.4.3: Pinout menu and Section 4.2: New project window.
Updated Table 5: Pinout menu.

Updated Figure 98: Power Consumption Calculator default view and
added battery selection in Section 4.14.1: Building a power
consumption sequence.

Updated note in Section 4.14: Power Consumption Calculator view
Updated Section 6.1: Creating a new STM32CubeMX Project.
Added Section 11.5: Why does the RTC multiplexer remain inactive
on the Clock tree view?, Section 11.6: How can | select LSE and
HSE as clock source and change the frequency?, and Section 11.7:
Why STM32CubeMX does not allow me to configure PC13, PC14,
PC15 and PI8 as outputs when one of them is already configured as
an output?.

3

DoclD025776 Rev 21 265/276

Revision history

UM1718

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

19-jun-2014

4.4

Added support for STM32CubeF0, STM32CubeF3, STM32F0 and
STMB32F3 Series in cover page, Section 2.2: Key features,
Section 2.3: Rules and limitations,

Added board selection capability and pin locking capability in
Section 2.2: Key features, Table 2: Welcome page shortcuts,
Section 4.2: New project window, Section 4.4: Toolbar and menus,
Section 4.7: Set unused / Reset used GPIOs windows, Section 4.8:
Project Settings window, and Section 4.11: Pinout view. Added
Section 4.11.5: Pinning and labeling signals on pins.

Updated Section 4.12: Configuration view and Section 4.13: Clock
tree configuration view and Section 4.14: Power Consumption
Calculator view.

Updated Figure 25: STM32CubeMX Main window upon MCU
selection, Figure 41: Project Settings window, Figure 50: About
window, Figure 51: STM32CubeMX Pinout view, Figure 52: Chip
view, Figure 98: Power Consumption Calculator default view,
Figure 99: Battery selection, Figure 100: Building a power
consumption sequence, Figure 102: Power consumption sequence:
new step default view, Figure 110: Power Consumption Calculator
view after sequence building, Figure 111: Sequence table
management functions, Figure 88: PCC Edit Step window,

Figure 83: Power consumption sequence: new step configured
(STM32F4 example), Figure 108: ADC selected in Pinout view,
Figure 109: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout, Figure 113: Description
of the Results area, Figure 114: Peripheral power consumption
tooltip, Figure 193: Power Consumption Calculation example,
Figure 155: Sequence table and Figure 156: Power Consumption
Calculation results.

Updated Figure 64: STM32CubeMX Configuration view and
Figure 39: STM32CubeMX Configuration view - STM32F1 Series
titles.

Added STM32L1 in Section 4.14: Power Consumption Calculator
view.

Removed Figure Add a new step using the PCC panel from
Section 8.1.1: Adding a step. Removed Figure Add a new step to
the sequence from Section 4.14.2: Configuring a step in the power
sequence.

Updated Section 8.2: Reviewing results.

Updated appendix B.3.4: FatFs and Appendix D: STM32
microcontrollers power consumption parameters. Added Appendix
D.1.3: STM32L0 Series and D.2.3: STM32L0 Series feature 3
VCORE ranges.

266/276

3

DoclD025776 Rev 21

UM1718

Revision history

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

19-Sep-2014

4.5

Added support for STM32Cubel 1 Series in cover page, Section 2.2:
Key features, Section 2.3: Rules and limitations,

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added off-line updates in Section 3.5: Getting STM32Cube updates,
modified Figure 16: New library Manager window, and
Section 3.5.2: Downloading new libraries.

Updated Section 4: STM32CubeMX User Interface introduction,
Table 2: Welcome page shortcuts and Section 4.2: New project
window.

Added Figure 24: New Project window - board selector.
Updated Figure 46: Project Settings Code Generator.
Modified step 3 in Section 4.8: Project Settings window.

Updated Figure 39: STM32CubeMX Configuration view - STM32F1
Series.

Added STM32L1 in Section 4.12.1: Peripherals and Middleware
Configuration window.

Updated Figure 76: GPIO Configuration window - GPIO selection;
Section 4.12.3: GPIO Configuration window and Figure 82: DMA
MemToMem configuration.

Updated introduction of Section 4.13: Clock tree configuration view.
Updated Section 4.13.1: Clock tree configuration functions and
Section 4.13.2: Recommendations, Section 4.14: Power
Consumption Calculator view, Figure 102: Power consumption
sequence: new step default view, Figure 110: Power Consumption
Calculator view after sequence building, Figure 83: Power
consumption sequence: new step configured (STM32F4 example),
and Figure 109: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout. Added Figure 112:
Power Consumption: Peripherals Consumption Chart and updated
Figure 114: Peripheral power consumption tooltip. Updated
Section 4.14.4: Power sequence step parameters glossary.

Updated Section 5: STM32CubeMX C Code generation overview.

Updated Section 6.1: Creating a new STM32CubeMX Project and
Section 6.2: Configuring the MCU pinout.

Added Section 7: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and updated Section 8: Tutorial
3- Generating GPIO initialization C code (STM32F1 Series only).

Updated Section 4.14.2: Configuring a step in the power sequence.

3

DoclD025776 Rev 21 267/276

Revision history

UM1718

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

19-Jan-2015

4.6

Complete project generation, power consumption calculation and
clock tree configuration now available on all STM32 Series.

Updated Section 2.2: Key features and Section 2.3: Rules and
limitations.

Updated Eclipse IDEs in Section 3.1.3: Software requirements.
Updated Figure 12: Updater Settings window, Figure 16: New library
Manager window and Figure 24: New Project window - board
selector, Updated Section 4.8: Project Settings window and
Section 4.9: Update Manager windows.

Updated Figure 50: About window.

Removed Figure STM32CubeMX Configuration view -
STM32F1 Series.

Updated Table 9: STM32CubeMX Chip view - Icons and color
scheme.

Updated Section 4.12.1: Peripherals and Middleware Configuration
window.

Updated Figure 80: Adding a new DMA request and Figure 82: DMA
MemToMem configuration.

Updated Section 4.13.1: Clock tree configuration functions.
Updated Figure 99: Battery selection, Figure 100: Building a power
consumption sequence, Figure 88: PCC Edit Step window.

Added Section 5.3: Custom code generation.

Updated Figure 146: Clock tree view and Figure 151: Configuration
view.

Updated peripheral configuration sequence and Figure 153:
Timer 3 configuration window in Section 6.6.2: Configuring the
peripherals .

Removed Tutorial 3: Generating GPIO initialization C code
(STM32F1 Series only).

Updated Figure 157: GPIO mode configuration.

Updated Figure 193: Power Consumption Calculation example and
Figure 155: Sequence table.

Updated Appendix A.1: Block consistency, A.2: Block inter-
dependency and A.3: One block = one peripheral mode.

Appendix A.4: Block remapping (STM32F10x only): updated
Section : Example .

Appendix A.6: Block shifting (only for STM32F10x and when “Keep
Current Signals placement” is unchecked): updated Section :
Example

Updated Appendix A.8: Mapping a function individually .
Updated Appendix B.3.1: Overview.
Updated Appendix D.1.3: STM32L0 Series.

268/276

3

DoclD025776 Rev 21

UM1718

Revision history

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

19-Mar-2015

4.7

Section 2.2: Key features: removed Pinout initialization C code
generation for STM32F1 Series from; updated Complete project
generation.

Updated Figure 16: New library Manager window, Figure 24: New
Project window - board selector.

Updated IDE list in Section 4.8: Project Settings window and
modified Figure 41: Project Settings window.

Updated Section 4.13.1: Clock tree configuration functions. Updated
Figure 94: STM32F429xx Clock Tree configuration view.

Section 4.14: Power Consumption Calculator view: added transition
checker option. Updated Figure 98: Power Consumption Calculator
default view, Figure 99: Battery selection and Figure 100: Building a
power consumption sequence. Added Figure 104: Enabling the
transition checker option on an already configured sequence - all
transitions valid, Figure 105: Enabling the transition checker option
on an already configured sequence - at least one transition invalid
and Figure 106: Transition checker option -show log. Updated
Figure 110: Power Consumption Calculator view after sequence
building. Updated Section : Managing sequence steps, Section :
Managing the whole sequence (load, save and compare). Updated
Figure 88: PCC Edit Step window and Figure 113: Description of the
Results area.

Updated Figure 193: Power Consumption Calculation example,
Figure 155: Sequence table, Figure 156: Power Consumption
Calculation results and Figure 158: Power consumption results - IP
consumption chart.

Updated Appendix B.3.1: Overview and B.3.5: FreeRTOS.

28-May-2015

4.8

Added Section 3.2.2: Installing STM32CubeMX from command line
and Section 3.4.2: Running STM32CubeMX in command-line mode.

09-Jul-2015

4.9

Added STLM32F7 and STM32L4 microcontroller Series.

Added Import project feature. Added Import function in Table 3:
File menu functions. Added Section 4.6: Import Project window.
Updated Figure 102: Power consumption sequence: new step
default view, Figure 88: PCC Edit Step window, Figure 83: Power
consumption sequence: new step configured (STM32F4 example),
Figure 109: Power Consumption Calculator Step configuration
window: ADC enabled using import pinout and Figure 114:
Peripheral power consumption tooltip.

Updated command line to run STM32CubeMX in Section 3.4.2:
Running STM32CubeMX in command-line mode.

Updated note in Section 4.12: Configuration view.

Added new clock tree configuration functions in Section 4.13.1.
Updated Figure 159: FatFs disabled.

Modified code example in Appendix B.1: STM32CubeMX generated
C code and user sections.

Updated Appendix B.3.1: Overview.

Updated generated .h files in Appendix B.3.4: FatFs.

3

DoclD025776 Rev 21 269/276

Revision history UM1718

Table 20. Document revision history (continued)

Date Revision STM32CubeMX Changes
release number

Replace UM1742 by UM1940 in Section : Introduction.

Updated command line to run STM32CubeMX in command-line
mode in Section 3.4.2: Running STM32CubeMX in command-line
mode. Modified Table 1: Command line summary.

Updated board selection in Section 4.2: New project window.

Updated Section 4.12: Configuration view overview. Updated
Section 4.12.1: Peripherals and Middleware Configuration window,
Section 4.12.3: GPIO Configuration window and Section 4.12.4:
DMA Configuration window. Added Section 4.12.2: User Constants
configuration window.

27-Aug-2015 10 4.10 Updated Section 4.13: Clock tree configuration view and added
reserve path.

Updated Section 6.1: Creating a new STM32CubeMX Project,
Section 6.5: Configuring the MCU Clock tree, Section 6.6:
Configuring the MCU initialization parameters, Section 6.7.2:
Downloading firmware package and generating the C code,
Section 6.8: Building and updating the C code project. Added
Section 6.9: Switching to another MCU.

Updated Section 7: Tutorial 2 - Example of FatFs on an SD card
using STM32429I-EVAL evaluation board and replaced
STM32F4291-EVAL by STM324291-EVAL.

Updated Figure 16: New library Manager window and Section 3.5.5:
Checking for updates.

Character string constant supported in Section 4.12.2: User
Constants configuration window.

Updated Section 4.13: Clock tree configuration view.
16-Oct-2015 11 4.1 Updated Section 4.14: Power Consumption Calculator view.
Modified Figure 193: Power Consumption Calculation example.

Updated Section 8: Tutorial 3 - Using the Power Consumption
Calculator to optimize the embedded application consumption and
more.

Added Eclipse Mars in Section 3.1.3: Software requirements

Code generation options now supported by the Project settings
menu.

Updated Section 3.1.3: Software requirements.

Added project settings in Section 4.6: Import Project window.
Updated Figure 33: Automatic project import; modified Manual
project import step and updated Figure 34: Manual project import
and Figure 35: Import Project menu - Try import with errors; modified
third step of the import sequence.

Updated Figure 95: Clock Tree configuration view with errors.
Added mxconstants.h in Section 5.1: STM32Cube code generation
using only HAL drivers (default mode).

Updated Figure 193: Power Consumption Calculation example to
Figure 202: Step 10 optimization.

Updated Figure 203: Power sequence results after optimizations.

03-Dec-2015 12 4.12

270/276 DoclD025776 Rev 21 ‘Yl

UM1718

Revision history

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

03-Feb-2016

13

4.13

Updated Section 2.2: Key features:

— Information related to .ioc files.

— Clock tree configuration

— Automatic updates of STM32CubeMX and STM32Cube.

Updated limitation related to STM32CubeMX C code generation in
Section 2.3: Rules and limitations.

Added Linux in Section 3.1.1: Supported operating systems and
architectures. Updated Java Run Time Environment release number
in Section 3.1.3: Software requirements.

Updated Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.3.1: Downloading STM32CubeMX plug-in
installation package.

Updated Section 3.4.1: Running STM32CubeMX as standalone
application.

Updated Section 4.8: Project Settings window and Section 4.9:
Update Manager windows.

Updated Section 4.11.5: Pinning and labeling signals on pins.
Added Section 4.11.6: Setting HAL timebase source

Updated Figure 65: Configuration window tabs for GPIO, DMA and
NVIC settings (STM32F4 Series).

Added note related to GPIO configuration in output mode in
Section 4.12.3: GPIO Configuration window; updated Figure 76:
GPIO Configuration window - GPIO selection.

Modified Figure 98: Power Consumption Calculator default view,
Figure 100: Building a power consumption sequence, Figure 101:
Step management functions, Figure 104: Enabling the transition
checker option on an already configured sequence - all transitions
valid, Figure 105: Enabling the transition checker option on an
already configured sequence - at least one transition invalid.
Added import pinout button icon in Section : Importing pinout.
Added Section : Selecting/deselecting all peripherals. Modified
Figure 110: Power Consumption Calculator view after sequence
building. Updated Section : Managing the whole sequence (load,
save and compare). Updated Figure 113: Description of the Results
area and Figure 114: Peripheral power consumption tooltip.

Updated Figure 193: Power Consumption Calculation example and
Figure 195: Sequence table.

Updated Section 5.3: Custom code generation.

Updated Figure 138: Pinout view with MCUSs selection and
Figure 139: Pinout view without MCUs selection window in
Section 6.1: Creating a new STM32CubeMX Project.

Updated Section 6.6.2: Configuring the peripherals .

Updated Figure 165: Project Settings and toolchain choice and
Figure 166: Project Settings menu - Code Generator tab in

Section 6.7.1: Setting project options, and Figure 167: Missing
firmware package warning message in Section 6.7.2: Downloading
firmware package and generating the C code.

3

DoclD025776 Rev 21 271/276

Revision history

UM1718

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

15-Mar-2016

14

4.14

Upgraded STM32CubeMX released number to 4.14.0.

Added import of previously saved projects and generation of user
files from templates in Section 2.2: Key features.

Added MacOS in Section 3.1.1: Supported operating systems and
architectures, Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added command lines allowing the generation of user files from
templates in Section 3.4.2: Running STM32CubeMX in command-
line mode.

Updated new library installation sequence in Section 3.5.1: Updater
configuration.

Updated Figure 28: Pinout menus (Pinout tab selected) and

Figure 29: Pinout menus (Pinout tab not selected) in Section 4.4.3:
Pinout menu.

Modified Table 6: Window menu.

Updated Section 4.5: Output windows.

Updated Figure 41: Project Settings window and Section 4.8.1:
Project tab.

Updated Figure 61: NVIC settings when using SysTick as HAL
timebase, no FreeRTOS and Figure 62: NVIC settings when using
FreeRTOS and SysTick as HAL timebase in Section 4.11.6: Setting
HAL timebase source.

Updated Figure 67: User Constants window and Figure 68: Extract
of the generated main.h file in Section 4.12.2: User Constants
configuration window.

Section 4.12.3: GPIO Configuration window: updated Figure 77:
GPIO Configuration window - displaying GPIO settings, Figure 78:
GPIO configuration grouped by peripheral and Figure 79: Multiple
Pins Configuration.

Updated Section 4.12.5: NVIC Configuration window.

18-May-2016

15

4.15

Import project function is no more limited to MCUs of the same
Series (see Section 2.2: Key features, Section 4.4.1: File menu and
Section 4.6: Import Project window).

Updated command lines in Section 3.4.2: Running STM32CubeMX
in command-line mode.

Table 1: Command line summary: modified all examples related to
config comands as well as set dest_path <path> example.

Added caution note for Load Project menu in Table 3: File menu
functions.

Updated Generate Code menu description in Table 4: Project menu.
Updated Set unused GPIOs menu in Table 5: Pinout menu.

Added case where FreeRTOS in enabled in Section : Enabling
interruptions using the NVIC tab view.

Added Section 4.12.6: FreeRTOS middleware configuration view.
Updated Appendix B.3.5: FreeRTOS and B.3.6: LwiP.

272/276

DoclD025776 Rev 21 ‘Yl

UM1718 Revision history
Table 20. Document revision history (continued)
Date Revision STM32CubeMX Changes
release number
Replaced mxconstants.h by main.h in the whole document.
Updated Introduction, Section 3.1.1: Supported operating systems
and architectures and Section 3.1.3: Software requirements.
Added Section 3.5.3: Downloading new library patches.
Updated Load project description in Table 2: Welcome page
shortcuts.
Updated Clear Pinouts function in Table 5: Pinout menu.
Updated Section 4.8.3: Advanced Settings tab to add Low Layer
driver.
Added No check and Decimal and hexadecimal check options in
Table 11: Peripheral and Middleware Configuration window buttons
and tooltips.
Updated Section : Tasks and Queues Tab and Figure 93: FreeRTOS
23-Sep-2016 16 417 Heap usage.
Updated Figure 77: GPIO Configuration window - displaying GPIO
settings.
Replaced PCC by Power Consumption Calculator in the whole
document.
Added Section 5.2: STM32Cube code generation using Low Layer
drivers; updated Table 18: LL versus HAL: STM32CubeMX
generated source files and Table 19: LL versus HAL:
STM32CubeMX generated functions and function calls.
Updated Figure 224: Pinout view - Enabling the RTC.
Added Section 9: Tutorial 4 - Example of UART communications
with a STM32L053xx Nucleo board.
Added correspondence between STM32CubeMX release number
and document revision.
Removed Windows XP and added Windows 10 in Section 3.1.3:
Software requirements.
Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.
Added setDriver command line in Table 1: Command line summary.
Added List pinout compatible MCUs feature:
— Updated Table 5: Pinout menu.
21-Nov-2016 17 4.18 — Added Section 10: Tutorial 5: exporting current project

configuration to a compatible MCU

Added Firmware location selection option in Section 4.8.1: Project

tab and Figure 41: Project Settings window.

Added Restore Default feature:

— Updated Table 11: Peripheral and Middleware Configuration
window buttons and tooltips

— Updated Figure 69: Using constants for peripheral parameter
settings.

3

DoclD025776 Rev 21 273/276

Revision history

UM1718

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

12-Jan-2017

18

4.19

Project import no more limited to microcontrollers belonging to the
same Series: updated Introduction, Figure 33: Automatic project
import, Figure 34: Manual project import, Figure 35: Import Project
menu - Try import with errors and Figure 36: Import Project menu -
Successful import after adjustments.

Modified Appendix B.3.4: FatFs, B.3.5: FreeRTOS and B.3.6: LwiP.
Added Appendix B.3.7: Libjpeg.

02-Mar-2017

19

4.20

Table 9: STM32CubeMX Chip view - Icons and color scheme:

— Updated list of alternate function example.

— Updated example and description corresponding to function
mapping on a pin.

— Added example and description for analog signals sharing the
same pin.

Updated Figure 66: Peripheral Configuration window (STM32F4

Series), Figure 67: User Constants window, Figure 73: Deleting a

user constant used for peripheral configuration - Consequence on

peripheral configuration, Figure 74: Searching for a name in a user

constant list and Figure 75: Searching for a value in a user constant

list.

Added Section 4.14.6: SMPS feature.

Added Section 5.4: Additional settings for C project generation.

Added STM32CubeF4 to the list of packages that include Libjpeg in

Appendix B.3.7: Libjpeg.

274/276

3

DoclD025776 Rev 21

UM1718

Revision history

Table 20. Document revision history (continued)

Date

Revision

STM32CubeMX
release number

Changes

05-May-2017

20

4.21

Minor modifications in Section 1: STM32Cube overview.

Updated Figure 21: New Project window - MCU selector and

Figure 41: Project Settings window.

Updated description of Project settings in Section 4.8.1: Project tab.
Updated Figure 49: Advanced Settings window.

In Appendix B.3.7: Libjpeg, added STM32CubeF2 and
STM32CubeH?7 in the list of software packages in which Libjpeg is
embedded.

Modified Figure 243: STM32Cube Embedded Software package
look-and-feel.

06-Jul-2017

21

4.22

Added STM32H7 to the list of supported STM32 Series.

Added MCU data and documentation refresh capability in

Section 3.5: Getting STM32Cube updates and updated Figure 12:
Updater Settings window.

Added capability to identify close MCUs in Section 4.2: New project
window, updated Figure 21: New Project window - MCU selector,
added Figure 22: New Project window - MCU list with close MCUs
function and Figure 23: New Project window - MCU list showing
close MCUs., updated Figure 137: MCU selection.

Updated Figure 25: STM32CubeMX Main window upon MCU
selection.

Added Rotate clockwise/Counter clockwise and Top/Bottom view in
Table 5: Pinout menu.

Added Section 4.4.6: Social links.
Updated Figure 121: Configuring the SMPS mode for each step.

Updated Section 5.2: STM32Cube code generation using Low Layer
drivers.

Updated Figure 165: Project Settings and toolchain choice.

3

DoclD025776 Rev 21 275/276

UM1718

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics — All rights reserved

3

276/276 DoclD025776 Rev 21

	1 STM32Cube overview
	2 Getting started with STM32CubeMX
	2.1 Principles
	2.2 Key features
	2.3 Rules and limitations

	3 Installing and running STM32CubeMX
	3.1 System requirements
	3.1.1 Supported operating systems and architectures
	3.1.2 Memory prerequisites
	3.1.3 Software requirements

	3.2 Installing/uninstalling STM32CubeMX standalone version
	3.2.1 Installing STM32CubeMX standalone version
	3.2.2 Installing STM32CubeMX from command line
	Interactive mode
	Auto-install mode

	3.2.3 Uninstalling STM32CubeMX standalone version
	Uninstalling STM32CubeMX on MacOS
	Uninstalling STM32CubeMX on Linux
	Uninstalling STM32CubeMX on Windows

	3.3 Installing STM32CubeMX plug-in version
	3.3.1 Downloading STM32CubeMX plug-in installation package
	3.3.2 Installing STM32CubeMX as an Eclipse IDE plug-in
	3.3.3 Uninstalling STM32CubeMX as Eclipse IDE plug-in

	3.4 Launching STM32CubeMX
	3.4.1 Running STM32CubeMX as standalone application
	3.4.2 Running STM32CubeMX in command-line mode
	Table 1. Command line summary

	3.4.3 Running STM32CubeMX plug-in from Eclipse IDE

	3.5 Getting STM32Cube updates
	3.5.1 Updater configuration
	3.5.2 Downloading new libraries
	3.5.3 Downloading new library patches
	3.5.4 Removing libraries
	3.5.5 Checking for updates

	4 STM32CubeMX User Interface
	4.1 Welcome page
	Table 2. Welcome page shortcuts

	4.2 New project window
	4.3 Main window
	4.4 Toolbar and menus
	4.4.1 File menu
	Table 3. File menu functions

	4.4.2 Project menu
	Table 4. Project menu

	4.4.3 Pinout menu
	Table 5. Pinout menu

	4.4.4 Window menu
	Table 6. Window menu

	4.4.5 Help menu
	Table 7. Help menu

	4.4.6 Social links

	4.5 Output windows
	4.5.1 MCUs selection pane
	4.5.2 Output pane

	4.6 Import Project window
	4.7 Set unused / Reset used GPIOs windows
	4.8 Project Settings window
	4.8.1 Project tab
	4.8.2 Code Generator tab
	STM32Cube Firmware Library Package option
	Generated files options
	HAL settings options
	Custom code template options

	4.8.3 Advanced Settings tab
	Ordering initialization function calls
	Disabling calls to initialization functions
	Choosing between HAL and LL based code generation for a given peripheral instance

	4.9 Update Manager windows
	4.10 About window
	4.11 Pinout view
	4.11.1 Peripheral and Middleware tree pane
	Icons and color schemes
	Table 8. Peripheral and Middleware tree pane - icons and color scheme

	4.11.2 Chip view
	Tips and tricks
	Icons and color schemes
	Table 9. STM32CubeMX Chip view - Icons and color scheme
	Tooltips

	4.11.3 Chip view advanced actions
	Manually modifying pin assignments
	Manually remapping a function to another pin
	Manual remapping with destination pin ambiguity
	Resolving pin conflicts

	4.11.4 Keep Current Signals Placement
	Keep Current Signals Placement is unchecked
	Keep Current Signals Placement is checked
	Tip

	4.11.5 Pinning and labeling signals on pins
	4.11.6 Setting HAL timebase source
	Example of configuration using SysTick without FreeRTOS
	Example of configuration using SysTick and FreeRTOS
	Example of configuration using TIM2 as HAL timebase source

	4.12 Configuration view
	Table 10. Peripheral and middleware configuration buttons
	4.12.1 Peripherals and Middleware Configuration window
	Table 11. Peripheral and Middleware Configuration window buttons and tooltips

	4.12.2 User Constants configuration window
	Creating/editing user constants
	Deleting user constants
	Searching for user constants

	4.12.3 GPIO Configuration window
	4.12.4 DMA Configuration window
	4.12.5 NVIC Configuration window
	Enabling interruptions using the NVIC tab view
	Code generation options for interrupt handling

	4.12.6 FreeRTOS middleware configuration view
	Tasks and Queues Tab
	Timers, Mutexes and Semaphores
	FreeRTOS heap usage

	4.13 Clock tree configuration view
	4.13.1 Clock tree configuration functions
	External clock sources
	Peripheral clock configuration options
	Table 12. Clock tree view widget

	4.13.2 Recommendations
	4.13.3 STM32F43x/42x power-over drive feature
	Table 13. Voltage scaling versus power over-drive and HCLK frequency
	Table 14. Relations between power over-drive and HCLK frequency

	4.13.4 Clock tree glossary
	Table 15. Glossary

	4.14 Power Consumption Calculator view
	4.14.1 Building a power consumption sequence
	Selecting a VDD value
	Selecting a battery model (optional)
	Power sequence default view
	Managing sequence steps
	Adding a step
	Editing a step
	Moving a step
	Deleting a step
	Using the transition checker

	4.14.2 Configuring a step in the power sequence
	Using interpolation
	Importing pinout
	Selecting/deselecting all peripherals

	4.14.3 Managing user-defined power sequence and reviewing results
	Managing the whole sequence (load, save and compare)
	Managing the results charts and display options
	Overview of the Results summary area

	4.14.4 Power sequence step parameters glossary
	4.14.5 Battery glossary
	4.14.6 SMPS feature

	5 STM32CubeMX C Code generation overview
	5.1 STM32Cube code generation using only HAL drivers (default mode)
	5.2 STM32Cube code generation using Low Layer drivers
	Table 16. LL versus HAL code generation: drivers included in STM32CubeMX projects
	Table 17. LL versus HAL code generation: STM32CubeMX generated header files
	Table 18. LL versus HAL: STM32CubeMX generated source files
	Table 19. LL versus HAL: STM32CubeMX generated functions and function calls

	5.3 Custom code generation
	5.3.1 STM32CubeMX data model for FreeMarker user templates
	5.3.2 Saving and selecting user templates
	5.3.3 Custom code generation

	5.4 Additional settings for C project generation
	Possible entries and syntax
	.extSettings file example and generated outcomes
	[Groups]
	[Others]

	6 Tutorial 1: From pinout to project C code generation using an STM32F4 MCU
	6.1 Creating a new STM32CubeMX Project
	6.2 Configuring the MCU pinout
	6.3 Saving the project
	6.4 Generating the report
	6.5 Configuring the MCU Clock tree
	6.6 Configuring the MCU initialization parameters
	Reminder
	6.6.1 Initial conditions
	6.6.2 Configuring the peripherals
	6.6.3 Configuring the GPIOs
	6.6.4 Configuring the DMAs
	6.6.5 Configuring the middleware

	6.7 Generating a complete C project
	6.7.1 Setting project options
	6.7.2 Downloading firmware package and generating the C code

	6.8 Building and updating the C code project
	6.9 Switching to another MCU

	7 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board
	8 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application consumption and more
	8.1 Tutorial overview
	8.2 Application example description
	8.3 Using the Power Consumption Calculator
	8.3.1 Creating a power sequence
	8.3.2 Optimizing application power consumption
	Step 1 (Run)
	Step 4 (Run, RTC)
	Step 5 (Run, ADC, DMA, RTC)
	Step 6 (Sleep, DMA, ADC,RTC)
	Step 7 (Run, DMA, RTC, USART)
	Step 8 (Stop 0, USART)
	Step 10 (RTC, USART)

	9 Tutorial 4 - Example of UART communications with a STM32L053xx Nucleo board
	9.1 Tutorial overview
	9.2 Creating a new STM32CubeMX project and selecting the Nucleo board
	9.3 Selecting the features from the Pinout view
	9.4 Configuring the MCU clock tree from the Clock Configuration view
	9.5 Configuring the peripheral parameters from the Configuration view
	9.6 Configuring the project settings and generating the project
	9.7 Updating the project with the user application code
	9.8 Compiling and running the project
	9.9 Configuring Tera Term software as serial communication client on the PC

	10 Tutorial 5: exporting current project configuration to a compatible MCU
	11 FAQ
	11.1 On the Pinout configuration pane, why does STM32CubeMX move some functions when I add a new peripheral mode?
	11.2 How can I manually force a function remapping?
	11.3 Why are some pins highlighted in yellow or in light green in the Chip view? Why cannot I change the function of some pins (when I click some pins, nothing happens)?
	11.4 Why do I get the error “Java 7 update 45’ when installing ‘Java 7 update 45’ or a more recent version of the JRE?
	11.5 Why does the RTC multiplexer remain inactive on the Clock tree view?
	11.6 How can I select LSE and HSE as clock source and change the frequency?
	11.7 Why STM32CubeMX does not allow me to configure PC13, PC14, PC15 and PI8 as outputs when one of them is already configured as an output?

	Appendix A STM32CubeMX pin assignment rules
	A.1 Block consistency
	Example of block mapping with a STM32F107x MCU
	Example of block remapping with a STM32F107x MCU

	A.2 Block inter-dependency
	Example of block remapping of SPI in full-duplex master mode with a STM32F107x MCU

	A.3 One block = one peripheral mode
	Example of STM32F107x MCU

	A.4 Block remapping (STM32F10x only)
	Example

	A.5 Function remapping
	Example using STM32F415x

	A.6 Block shifting (only for STM32F10x and when “Keep Current Signals placement” is unchecked)
	Example

	A.7 Setting and clearing a peripheral mode
	A.8 Mapping a function individually
	A.9 GPIO signals mapping

	Appendix B STM32CubeMX C code generation design choices and limitations
	B.1 STM32CubeMX generated C code and user sections
	B.2 STM32CubeMX design choices for peripheral initialization
	B.3 STM32CubeMX design choices and limitations for middleware initialization
	B.3.1 Overview
	B.3.2 USB Host
	B.3.3 USB Device
	B.3.4 FatFs
	B.3.5 FreeRTOS
	B.3.6 LwIP
	B.3.7 Libjpeg

	Appendix C STM32 microcontrollers naming conventions
	Appendix D STM32 microcontrollers power consumption parameters
	D.1 Power modes
	D.1.1 STM32L1 Series
	D.1.2 STM32F4 Series
	D.1.3 STM32L0 Series

	D.2 Power consumption ranges
	D.2.1 STM32L1 Series feature 3 VCORE ranges
	D.2.2 STM32F4 Series feature several VCORE scales
	D.2.3 STM32L0 Series feature 3 VCORE ranges

	Appendix E STM32Cube embedded software packages
	12 Revision history
	Table 20. Document revision history

