
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 1

Synchronous Serial Interface

Introduction

This chapter will introduce you to the capabilities of the Synchronous Serial Interface (SSI) . The

lab uses an Olimex 8x8 LED BoosterPack to explore programming the SPI portion of the SSI. In

order to do the lab you will need to purchase the BoosterPack and make some modification to it.

Agenda

Features...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

11 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Chapter Topics

Synchronous Serial Interface ..11-1

Chapter Topics ...11-2

Features and Block Diagram ...11-3

Interrupts and µDMA Operation ...11-4

Signal Formats ...11-5

Lab 11: SPI Bus and the Olimex LED BoosterPack ..11-7
Objective..11-7
Procedure ...11-8

 Features and Block Diagram

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 3

Features and Block Diagram

LM4F120H5QR SSI Features

Block Diagram ...

Four SSI modules. Each with:

 Freescale SPI, MICROWIRE or TI Synchronous Serial interfaces

 Master or Slave operation

 Programmable bit clock rate and pre-scaler

 Programmable data frame size from 4 to 16-bits

 Separate Tx and Rx FIFOs (8 x16-bits)

 Interrupts and µDMA support

SSI Block Diagram

Interrupts...

Signal Pinout (n = 0 to 3) …

SSInClk: SSI Module n Clock

SSInFss: SSI Module n Frame Signal

SSInRx: SSI Module n Receive

SSInTx: SSI Module n Transmit

Note that the LM4F120H5QR pins are
extensively muxed with other signals.

The Pin Mux Utility can ease the
programming. See:

www.ti.com/stellarispinmuxutility

Interrupts and µDMA Operation

11 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Interrupts and µDMA Operation

SSI Interrupts

Operation...

Single interrupt per module, cleared automatically

Interrupt conditions:

 Transmit FIFO service (when the transmit FIFO is half full or less)

 Receive FIFO service (when the receive FIFO is half full or more)

 Receive FIFO time-out

 Receive FIFO overrun

 End of transmission

 Receive DMA transfer complete

 Transmit DMA transfer complete

Interrupts on these conditions can be enabled individually

Your handler code must check to determine the source
of the SSI interrupt and clear the flag(s)

SSI µDMA Operation

 Separate channels for Tx and Rx

 When enabled, the SSI will assert a DMA request on either channel

when the Rx or Tx FIFO can transfer data

 For Rx channel: A single transfer request is made when any data is in the

Rx FIFO. A burst transfer request is made when 4 or more items is in the Rx

FIFO.

 For Tx channel: A single transfer request is made when there is at least

one empty location in the Tx FIFO. A burst transfer request is made when 4

or more slots are empty.

Signal Formats...

1 2

 Signal Formats

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 5

Signal Formats

Freescale SPI Signal Formats

TI Signal Formats ...

 Four wire interface. Full duplex.

 SSIFss acts as chip select

 Inactive state and clock phasing are programmable via the
SPO and SPH bits (SSI_FRF_MOTO_MODE_0-3 parameter)

 SPO = 0: SSIClk low when inactive. SPO = 1: high

 SPH = 0: Data is captured on 1st SSIClk transition. SPH = 1: 2nd

SPO = 0

SPH = 0

Single

Transfer

SPO = 0

SPH = 1

Single

Transfer

TI Synchronous Serial Signal Formats

Microwire Signal Formats...

 Three wire interface

 Devices are always slaves

 SSIClk and SSIFss are forced low and SSITx is tri-stated
when the SSI is idle

Single

Transfer

Continuous

Transfer

Signal Formats

11 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Microwire Signal Formats

Lab...

 Four wire interface

 Similar to SPI, except transmission is half-duplex

 Master – Slave message passing technique

Single

Transfer

Continuous

Transfer

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 7

Lab 11: SPI Bus and the Olimex LED BoosterPack

Objective

In this lab you will use the Olimex LED BoosterPack to explore the capabilities and

programming of the SPI bus on the SSI peripheral.

Lab 11 : SPI Bus and the Olimex LED Boosterpack

 Carefully install pin-modified
Olimex BoosterPack

 Run faces program (SoftSSI)

 Carefully install proto-board
modified Olimex BoosterPack

 Create program to utilize SSI SPI

USB Emulation Connection

Agenda ...

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Procedure

Hardware

1. If you want to do this lab, you’re going to need a BoosterPack with a SPI connection. I

chose the Olimex 8x8 LED BoosterPack:

(https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-

B00STERPACK/).

This BoosterPack is also available from Mouser Electronics

(http://www.mouser.com/new/olimex/olimexLED8x8/)

The LED BoosterPack is cheap and fun, but there are two issues with it out of the box.

The first is that it has male Molex pins rather than Molex female connectors. You can get

two of these

(http://www.mouser.com/ProductDetail/FCI/66951-

010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtO

EC39jD0m1rF2xGE%3d) and solder them directly to the

male pins. This way you can import, build and run the

“faces” program located at
C:\StellarisWare\boards\ek-lm4f120xl-

boost-olimex-8x8

This program is pretty cool but it has one little issue, which

brings us back to the second problem with the Olimex

BoosterPack. The pin-out on the Olimex BoosterPack does

not match with any of the SSI module pin-sets on the

Stellaris LaunchPad board (it actually matches an early

version of the MSP430 LaunchPad).

So the author of the “faces” program did what any good engineer would do, they made it

work … with a software SPI port (SoftSSI). The programming of SoftSSI is virtually the

same as programming the actual hardware, but for the purposes of this lab, that’s not

good enough.

2. So we need to connect the pins on the Olimex BoosterPack to the female headers that will

mount on top of the LaunchPad board. Any small perf-board will do, but Joe’s Bytes

(http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html) has a nice proto-

board that fits perfectly. I soldered the female headers on one side of the board in one

direction and the Olimex BoosterPack on the other side with a 90 degree turn.

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/
http://www.mouser.com/new/olimex/olimexLED8x8/
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://www.mouser.com/ProductDetail/FCI/66951-010LF/?qs=sGAEpiMZZMs%252bGHln7q6pmxAVkKtOEC39jD0m1rF2xGE%3d
http://joesbytes.com/10-ti-msp430-launchpad-mini-proto-board.html

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 9

3. Comparing the Olimex BoosterPack schematic found at

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-

B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf to the

Stellaris LaunchPad schematic, I came up with the following connections for the proto-

board (There are a number of possible solutions here). Bear in mind that the correct way

to number the BoosterPack pins is 1 to 10 from the top of the board to the bottom.

Olimex

Header

Pin

Olimex

Function

 LaunchPad

Header Pin

LM4F120H5QR

Pin Name

Pin

Function

J1-7 SR_SCK J2-10 PA2 SSI0CLK

J1-6 SR_LATCH J2-9 PA3 SSI0Fss

J2-7 SR_DATA_IN J1-8 PA5 SSI0Tx

J1-2 A_IN J2-3 PE0 AIN3

J1-3 BUZ_PIN1 J1-9 PA6 GPIO

J1-4 BUZ_PIN2 J1-10 PA7 GPIO

J2-1 Ground J2-1 Ground -

J1-1 Vcc J1-1 Vcc -

4. While you’ve got the Olimex BoosterPack schematic out, take a look at the circuit.

You’ll see that the board is pretty simple; 16-bits of shift register, a Darlington seven

transistor array (for drive strength) plus one more single transistor to make 8 and the 8x8

LED array. In order for the LEDs to light properly, the upper byte of the 16-bit word

must be the bit-reversed version of the lower byte. That will be done in software.

Since this lab concerns the SPI port, we’re going to ignore the connections for the mic

and buzzer.

Faces Code

5. If you have one of the Olimex BoosterPacks and have connected the female headers to it,

carefully connect it to your LaunchPad board. In Code Composer, import the faces

project from C:\StellarisWare\boards\ek-lm4f120xl-boost-olimex-8x8
into your workspace. Build, load and run the project. Poke around in the code if you like,

but we’ll go into detail building Lab11 that uses the SSI peripheral instead of the SoftSSI.

When you’re done, close the faces project.

Disconnect your LaunchPad board from the USB port, carefully remove the Olimix

BoosterPack and re-connect your LaunchPad.

https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf
https://www.olimex.com/Products/MSP430/Booster/MSP430-LED8x8-B00STERPACK/resources/MSP430-LED-BOOSTERPACK-schematic.pdf

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Import Lab11

6. If you have a proto-board modified Olimex BoosterPack, carefully connect it to the

LaunchPad with the expansion pins towards the top of the LaunchPad as shown below.

You may need to bend the power measurement jumper out of the way slightly:

7. Maximize Code Composer. Import Lab11 with the settings shown below. Make sure the

Copy projects into workspace checkbox is not checked and click Finish.

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 11

8. Expand the project and open main.c for editing. Place the following includes at the top

of the file:

#include "inc/hw_memmap.h"

#include "inc/hw_ssi.h"

#include "inc/hw_types.h"

#include "driverlib/ssi.h"

#include "driverlib/gpio.h"

#include "driverlib/pin_map.h"

#include "driverlib/sysctl.h"

We’re going to need all the regular include files along with the ones that give us access to

the SSI peripheral.

9. Skip a line for spacing and add the next three lines:

#define NUM_SSI_DATA 8
const unsigned char ulDataTx[NUM_SSI_DATA] =
{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01};
unsigned short g_pusTxBuffer[16];

The “third” line is really part of the second one. This array of 8-bit numbers defines

which of the LEDs in the array will be on or off in the following fashion, where red is on

and the open circle is off. The last line defines our transmit buffer:

{A7-0, B7-0, C7-0, D7-0, E7-0, F7-0, G7-0, H7-0}

 TOP

 H G F E D C B A

7

0

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

10. Leave a line for spacing and add the following code. This code will take the 8-bit number

from the array above and bit-reverse it front to back .Then those 8-bits will be

concatenated (in the code that calls this function) with the original number to create a 16-

bit number that will be sent over the SPI port.

// Bit-wise reverses a number.

unsigned char

Reverse(unsigned char ucNumber)

{

 unsigned short ucIndex;

 unsigned short ucReversedNumber = 0;

 for(ucIndex=0; ucIndex<8; ucIndex++)

 {

 ucReversedNumber = ucReversedNumber << 1;

 ucReversedNumber |= ((1 << ucIndex) & ucNumber) >> ucIndex;

 }

 return ucReversedNumber;

}

11. Leave a line for spacing and add the template for main() below:

int main(void)

{

}

12. Insert the next two lines as the first ones in main(). We’ll need these variables for

temporary data and index purposes.

unsigned long ulindex;

unsigned long ulData;

13. Leave a line for spacing and set the clock to 50MHz as we’ve done before:

SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

14. Space down a line and add the next two lines. Since SSI0 is on GPIO port A, we’ll need

to enable both peripherals:

SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

15. Space down a line and add the following four lines. These will configure the muxing and

GPIO settings to bring the SSI functions out to the pins. Since the BoosterPack only

accepts data, we won’t program the receive pin (pin 4).

GPIOPinConfigure(GPIO_PA2_SSI0CLK);

GPIOPinConfigure(GPIO_PA3_SSI0FSS);

GPIOPinConfigure(GPIO_PA5_SSI0TX);

GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 13

16. Next we need to configure the SPI port on SSI0 for the type of operation that we want.

Given that there are two bits (SPH – clock polarity and SPO – idle state), there are four

modes (0-3). Leave a line for spacing and add the next two lines after the last. Then

double-click on SSI_FRF_MOTO_MODE_0 and press F3 to see all four definitions in

ssi.h:

SSIConfigSetExpClk(SSI0_BASE,SysCtlClockGet(),SSI_FRF_MOTO_MODE_0,SSI_MODE_MASTER,10000,16);

SSIEnable(SSI0_BASE);

The API specifies the SSI module, the clock source (this is hard wired), the mode, master

or slave, the bit rate and the data width.

17. The LED array has no latch, so the data must be continuously streamed in order for a

static image to appear. We’ll do that with a while() loop, so add a lines for spacing and

then add the while() loop below:

 while(1)

 {

 }

18. We’re going to need to step through the data, sending each 16-bit word on at the time.

Add the following for() construct inside the while() loop you just added:

for(ulindex = 0; ulindex < NUM_SSI_DATA; ulindex++)

{

}

19. Place the five lines below inside the for() construct you just added. Those lines have

these functions:

1) Create the 16-bit data word using the Reverse() function we added earlier

2) Place the data in the transmit FIFO using a blocking function (a non-blocking version

is also available)

3) Wait until the data has been transmitted

ulData = (Reverse(ulDataTx[ulindex]) << 8) + (1 << ulindex);

 SSIDataPut(SSI0_BASE, ulData);

 while(SSIBusy(SSI0_BASE))

{

}

Admittedly, this isn’t the most efficient technique. It would be less wasteful of CPU

cycles to use the µDMA to perform these transfers, but we haven’t covered the µDMA

yet.

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

Build and Load

20. Build and load the code. If you have errors, compare your main.c to the code below:

#include "inc/hw_memmap.h"

#include "inc/hw_ssi.h"

#include "inc/hw_types.h"

#include "driverlib/ssi.h"

#include "driverlib/gpio.h"

#include "driverlib/pin_map.h"

#include "driverlib/sysctl.h"

#define NUM_SSI_DATA 8

const unsigned char ulDataTx[NUM_SSI_DATA] =

{0x88, 0xF8, 0xF8, 0x88, 0x01, 0x1F, 0x1F, 0x01};

unsigned short g_pusTxBuffer[16];

// Bit-wise reverses a number.

unsigned char

Reverse(unsigned char ucNumber)

{

 unsigned short ucIndex;

 unsigned short ucReversedNumber = 0;

 for(ucIndex=0; ucIndex<8; ucIndex++)

 {

 ucReversedNumber = ucReversedNumber << 1;

 ucReversedNumber |= ((1 << ucIndex) & ucNumber) >> ucIndex;

 }

 return ucReversedNumber;

}

int main(void)

{

 unsigned long ulindex;

 unsigned long ulData;

 SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI0);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

 GPIOPinConfigure(GPIO_PA2_SSI0CLK);

 GPIOPinConfigure(GPIO_PA3_SSI0FSS);

 GPIOPinConfigure(GPIO_PA5_SSI0TX);

 GPIOPinTypeSSI(GPIO_PORTA_BASE,GPIO_PIN_5|GPIO_PIN_3|GPIO_PIN_2);

 SSIConfigSetExpClk(SSI0_BASE,SysCtlClockGet(),SSI_FRF_MOTO_MODE_0,SSI_MODE_MASTER,10000,16);

 SSIEnable(SSI0_BASE);

 while(1)

 {

 for(ulindex = 0; ulindex < NUM_SSI_DATA; ulindex++)

 {

 ulData = (Reverse(ulDataTx[ulindex]) << 8) + (1 << ulindex);

 SSIDataPut(SSI0_BASE, ulData);

 while(SSIBusy(SSI0_BASE))

 {

 }

 }

 }

}

If you’re still having problems you can find this code in the Lab11/ccs folder as

main.txt.

 Lab 11: SPI Bus and the Olimex LED BoosterPack

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI 11 - 15

Run and Test

21. Run the code by clicking the Resume button. You should see “TI” displayed on the LED

array. If you like you can play with the data structure to draw something different. Keep

it clean.

22. If you have a SPI protocol analyzer, now would be a good time to dust it off and take a

look at the serial data stream. These analyzers can save weeks troubleshooting

communication problems. The screen captures on the next page were taken with a Saleae

Logic8 logic analyzer/communications analyzer made by Saleae LLC (www.saleae.com)

Beware of counterfeits!

23. When you’re done, click the Terminate button to return to the CCS Edit perspective.

24. Right-click on Lab11 in the Project Explorer pane and close the project.

25. Disconnect your LaunchPad board from the USB port, carefully remove the Olimix

BoosterPack and re-connect your LaunchPad.

26. Minimize Code Composer Studio.

 You’re done.

http://www.saleae.com/

Lab 11: SPI Bus and the Olimex LED BoosterPack

11 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- SSI

