
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 1

Interrupts and the Timers

Introduction

This chapter will introduce you to the use of interrupts on the ARM
®
 Cortex-M4

®
 and the general

purpose timer module (GPTM). The lab will use the timer to generate interrupts. We will write a

timer interrupt service routine (ISR) that will blink the LED.

Agenda

NVIC...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

4 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Chapter Topics

Interrupts and the Timers ...4-1

Chapter Topics ...4-2

Cortex-M4 NVIC ..4-3

Cortex-M4 Interrupt Handing and Vectors ..4-7

Genral Purpose Timer Module ..4-9

Lab 4: Interrupts and the Timer ...4-10
Objective..4-10
Procedure ...4-11

 Cortex-M4 NVIC

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 3

Cortex-M4 NVIC

Nested Vectored Interrupt Controller (NVIC)

 Handles exceptions and interrupts

 8 programmable priority levels, priority grouping

 7 exceptions and 65 Interrupts

 Automatic state saving and restoring

 Automatic reading of the vector table entry

 Pre-emptive/Nested Interrupts

 Tail-chaining

 Deterministic: always 12 cycles or 6 with tail-chaining

t

Motor control ISRs (e.g. PWM, ADC)

Communication ISRs (e.g. CAN)

Main application (foreground)

Tail Chaining...

Cortex-M4 NVIC

4 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

PUSH POPISR 1 POP ISR 2

PUSH ISR 1 POPISR 2

12
Cycles

IRQ1

IRQ2

Typical processor

Cortex-M4
Interrupt handling in

HW 6
Cycles

12
Cycles

Interrupt Latency - Tail Chaining

Highest
Priority

Tail-chaining

Pre-emption …

PUSH

In the above example, two interrupts occur simultaneously.

In most processors, interrupt handling is fairly simple and each interrupt will start a

PUSH PROCESSOR STATE – RUN ISR – POP PROCESSOR STATE process. Since IRQ1 was

higher priority, the NVIC causes the CPU to run it first. When the interrupt handler (ISR) for the

first interrupt is complete, the NVIC sees a second interrupt pending, and runs that ISR. This is

quite wasteful since the middle POP and PUSH are moving the exact same processor state back

and forth to stack memory. If the interrupt handler could have seen that a second interrupt was

pending, it could have “tail-chained” into the next ISR, saving power and cycles.

The Stellaris NVIC does exactly this. It takes only 12 cycles to PUSH and POP the processor

state. When the NVIC sees a pending ISR during the execution of the current one, it will “tail-

chain” the execution using just 6 cycles to complete the process.

If you are depending on interrupts to be run quickly, the Stellaris devices offer a huge advantage

here.

 Cortex-M4 NVIC

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 5

Interrupt Latency – Pre-emption

ISR 1 ISR 2

ISR 1 POP ISR 2

1-
12

Cycles

IRQ1

IRQ2

Cortex-M4

6
Cycles

Highest
Priority

POP

12
Cycles

Typical processor

Late arrival...

PUSHPOP POP

In this example, the processor was in the process of popping the processor status from the stack

for the first ISR when a second ISR occurred.

In most processors, the interrupt controller would complete the process before starting the entire

PUSH-ISR-POP process over again, wasting precious cycles and power doing so.

The Stellaris NVIC is able to stop the POP process, return the stack pointer to the proper location

and “tail-chain” into the next ISR with only 6 cycles.

Again, this is a huge advantage for interrupt handling on Stellaris devices.

Cortex-M4 NVIC

4 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

ISR 2

Interrupt Latency – Late Arrival

IRQ1

IRQ2

ISR 2ISR 1

PUSH POPCortex-M4

Highest
Priority

12
Cycles

6
Cycles

ISR 1

Typical processor

Interrupt handling...

PUSH POPPUSH PUSH POP

In this example, a higher priority interrupt has arrived just after a lower priority one.

In most processors, the interrupt controller is smart enough to recognize the late arrival of a

higher priority interrupt and restart the interrupt procedure accordingly.

The Stellaris NVIC takes this one step further. The PUSH is the same process regardless of the

ISR, so the Stellaris NVIC simply changes the fetched ISR. In between the ISRs, “tail chaining”

is done to save cycles.

Once more, Stellaris devices handle interrupts with lower latency.

 Cortex-M4 Interrupt Handing and Vectors

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 7

Cortex-M4 Interrupt Handing and Vectors

Interrupt handling is automatic. No instruction overhead.

Entry

 Automatically pushes registers R0–R3, R12, LR, PSR, and PC onto the

stack

 In parallel, ISR is pre-fetched on the instruction bus. ISR ready to start

executing as soon as stack PUSH complete

Exit

 Processor state is automatically restored from the stack

 In parallel, interrupted instruction is pre-fetched ready for execution

upon completion of stack POP

Exception types...

Cortex-M4® Interrupt Handling

Cortex-M4® Exception Types

Vector
Number

Exception
Type

Priority Vector
address

Descriptions

1 Reset -3 0x04 Reset

2 NMI -2 0x08 Non-Maskable Interrupt

3 Hard Fault -1 0x0C Error during exception processing

4 Memory
Management
Fault

Programmable 0x10 MPU violation

5 Bus Fault Programmable 0x14 Bus error (Prefetch or data abort)

6 Usage Fault Programmable 0x18 Exceptions due to program errors

7-10 Reserved - 0x1C - 0x28

11 SVCall Programmable 0x2C SVC instruction

12 Debug Monitor Programmable 0x30 Exception for debug

13 Reserved - 0x34

14 PendSV Programmable 0x38

15 SysTick Programmable 0x3C System Tick Timer

16 and above Interrupts Programmable 0x40 External interrupts (Peripherals)

Vector Table...

Cortex-M4 Interrupt Handing and Vectors

4 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Cortex-M4® Vector Table

 After reset, vector table is located at
address 0

 Each entry contains the address of the
function to be executed

 The value in address 0x00 is used as
starting address of the Main Stack
Pointer (MSP)

 Vector table can be relocated by writing
to the VTABLE register
(must be aligned on a 1KB boundary)

 Open startup_ccs.c to see vector table
coding

GPTM...

 General Purpose Timer Module

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 9

General Purpose Timer Module

General Purpose Timer Module

 Six 16/32-bit and Six 32/64-bit general purpose timers

 Twelve 16/32-bit and Twelve 32/64-bit capture/compare/PWM pins

Timer modes:
• One-shot

• Periodic

• Input edge count or time capture with 16-bit prescaler

• PWM generation (separated only)

• Real-Time Clock (concatenated only)

Count up or down

Simple PWM (no deadband generation)

Support for timer synchronization, daisy-chains, and stalling
during debugging

May trigger ADC samples or DMA transfers

Lab...

Lab 4: Interrupts and the Timer

4 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Lab 4: Interrupts and the Timer

Objective

In this lab we’ll set up the timer to generate interrupts, and then write the code that responds to

the interrupt … flashing the LED. We’ll also experiment with generating an exception, by

attempting to configure a peripheral before it’s been enabled.

Lab 4: Interrupts and the GP Timer

 Enable and configure the Timer

 Enable and configure Interrupts

 Write the ISR code and test

 Generate an exception

Agenda ...

USB Emulation Connection

 Lab 4: Interrupts and the Timer

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 11

Procedure

Import Lab4 Project

1. We have already created the Lab4 project for you with an empty main.c, a startup file

and all necessary project and build options set. Maximize Code Composer and click

Project Import Existing CCS Eclipse Project. Make the settings show below and click

Finish. Make sure that the “Copy projects into workspace” checkbox is unchecked.

Lab 4: Interrupts and the Timer

4 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Header Files

2. Expand the lab by clicking the + or to the left of Lab4 in the Project Explorer pane.

Open main.c for editing by double-clicking on it. Type (or copy/paste) the following

seven lines into main.c to include the header files needed to access the StellarisWare

APIs :

#include "inc/hw_ints.h"

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/sysctl.h"

#include "driverlib/interrupt.h"

#include "driverlib/gpio.h"

#include "driverlib/timer.h"

hw_ints.h : Macros that define the interrupt assignment on Stellaris devices (NVIC)

hw_memmap.h : Macros defining the memory map of the Stellaris device. This includes

defines such as peripheral base address locations, e.g., GPIO_PORTF_BASE

hw_types.h : Defines common types and macros such as tBoolean and HWREG(x)

sysctl.h : Defines and macros for System Control API of driverLib. This includes

API functions such as SysCtlClockSet and SysCtlClockGet.

interrupt.h : Defines and macros for NVIC Controller (Interrupt) API of DriverLib.

This includes API functions such as IntEnable and IntPrioritySet.

gpio.h : Defines and macros for GPIO API of driverLib. This includes API functions

such as GPIOPinTypePWM and GPIOPinWrite.

timer.h : Defines and macros for Timer API of driverLib. This includes API functions

such as TimerConfigure and TimerLoadSet.

 Lab 4: Interrupts and the Timer

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 13

Main() Function

3. We’re going to compute our timer delays using the variable Period. Create main()

along with an unsigned-long variable (that’s why the variable is called ulPeriod) for this

computation. Leave a line for spacing and type (or cut/paste) the following after the

previous lines:

int main(void)

{

 unsigned long ulPeriod;

}

Clock Setup

4. Configure the system clock to run at 40MHz (like in Lab3) with the following call.

Leave a blank line for spacing and enter this line of code inside main():

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

GPIO Configuration

5. Like the previous lab, we need to enable the GPIO peripheral and set the pins connected

to the LEDs as outputs. Leave a line for spacing and add these lines after the last ones:

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

Timer Configuration

6. Again, before calling any peripheral specific driverLib function we must enable the clock

to that peripheral (RCGCn register). If you fail to do this, it will result in a Fault ISR

(address fault). The second statement configures Timer 0 as a 32-bit timer in periodic

mode. Note that when Timer 0 is configured as a 32-bit timer, it combines the two 16-bit

timers Timer 0A and Timer 0B. See the General Purpose Timer chapter of the device

datasheet for more information. TIMER0_BASE is the start of the timer registers for

Timer0 in, you guessed it, the peripheral section of the memory map. Add a line for

spacing and type the following lines of code after the previous ones:

SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

Lab 4: Interrupts and the Timer

4 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Calculate Delay

7. To toggle a GPIO at 10Hz and a 50% duty cycle, you need to generate an interrupt at ½

of the desired period. First, calculate the number of clock cycles required for a 10Hz

period by calling SysCtlClockGet() and dividing it by your desired frequency. Then

divide that by two, since we want a count that is ½ of that for the interrupt.

This calculated period is then loaded into the Timer’s Interval Load register using the

TimerLoadSet function of the driverLib Timer API. Note that you have to subtract one

from the timer period since the interrupt fires at the zero count.

Add a line for spacing and add the following lines of code after the previous ones:

ulPeriod = (SysCtlClockGet() / 10) / 2;

TimerLoadSet(TIMER0_BASE, TIMER_A, ulPeriod -1);

Interrupt Enable

8. Next, we have to enable the interrupt … not only in the timer module, but also in the

NVIC (the Nested Vector Interrupt Controller, the Cortex M4’s interrupt controller).

IntMasterEnable is the master interrupt enable for all interrupts. IntEnable enables the

specific vector associated with the Timer. TimerIntEnable, enables a specific event

within the timer to generate an interrupt. In this case we are enabling an interrupt to be

generated on a timeout of Timer 0A. Add a line for spacing and type the following three

lines of code after the previous ones:

IntEnable(INT_TIMER0A);

TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

IntMasterEnable();

Timer Enable

9. Finally we can enable the timer. This will start the timer and interrupts will begin

triggering on the timeouts. Add a line for spacing and type the following line of code

after the previous ones:

TimerEnable(TIMER0_BASE, TIMER_A);

Main Loop

10. The main loop of the code is simply an empty while(1) since the toggling of the GPIO

will happen in the interrupt routine. Add a line for spacing and add the following lines of

code after the previous ones:

while(1)

{

}

 Lab 4: Interrupts and the Timer

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 15

Timer Interrupt Handler

11. Since this application is interrupt driven, we must add an interrupt handler for the Timer.

In the interrupt handler, we must first clear the interrupt source and then toggle the GPIO

pin based on the current state. Just in case your last program left any of the LEDs on, the

first GPIOPinWrite() call turns off all three LEDs. Writing a 4 to pin 2 lights the blue

LED. Add a line for spacing and add the following lines of code after the final closing

brace of main().

void Timer0IntHandler(void)

{

// Clear the timer interrupt

 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Read the current state of the GPIO pin and

 // write back the opposite state

if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_2))

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);

 }

 else

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);

 }

}

If your indentation looks wrong, remember how we corrected it in the previous lab.

Lab 4: Interrupts and the Timer

4 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

12. Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_ints.h"

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/sysctl.h"

#include "driverlib/interrupt.h"

#include "driverlib/gpio.h"

#include "driverlib/timer.h"

int main(void)

{

 unsigned long ulPeriod;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

 TimerConfigure(TIMER0_BASE, TIMER_CFG_32_BIT_PER);

 ulPeriod = (SysCtlClockGet() / 10) / 2;

 TimerLoadSet(TIMER0_BASE, TIMER_A, ulPeriod -1);

 IntEnable(INT_TIMER0A);

 TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 IntMasterEnable();

 TimerEnable(TIMER0_BASE, TIMER_A);

 while(1)

 {

 }

}

void Timer0IntHandler(void)

{

 // Clear the timer interrupt

 TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT);

 // Read the current state of the GPIO pin and

 // write back the opposite state

 if(GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_2))

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);

 }

 else

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 4);

 }

}

 Lab 4: Interrupts and the Timer

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 17

Startup Code

13. Open startup_ccs.c for editing. This file contains the vector table that we discussed

during the presentation. Browse the file and look for the Timer 0 subtimer A

vector.

When that timer interrupt occurs, the NVIC will look in this vector location for the

address of the ISR (interrupt service routine). That address is where the next code fetch

will happen.

You need to carefully find the appropriate vector position and replace

IntDefaultHandler with the name of your Interrupt handler (We suggest that you

copy/paste this). In this case you will add Timer0IntHandler to the position with the

comment “Timer 0 subtimer A” as shown below:

You will also need to declare this function at the top of this file as external. This is

necessary for the compiler to resolve this symbol. Find the line containing:

extern void _c_int00(void);

and add:

extern void Timer0IntHandler(void);

right below it as shown below:

Click the Save button.

Lab 4: Interrupts and the Timer

4 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

Compile, Download and Run The Code

14. Compile and download your application by clicking the Debug button on the menu

bar. If you have any issues, correct them, and then click the Debug button again.(You

were careful about that interrupt vector placement, weren’t you?) After a successful

build, the CCS Debug perspective will appear.

Click the Resume button to run the program that was downloaded to the flash

memory of your device. The blue LED should be flashing on your LaunchPad board.

When you’re done, click the Terminate button to return to the Editing perspective.

 Lab 4: Interrupts and the Timer

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers 4 - 19

Exceptions

15. Find the line of code that enables the GPIO peripheral and comment it out as shown

below:

Now our code will be accessing the peripheral without the peripheral clock being

enabled. This should generate an exception.

16. Compile and download your application by clicking the Debug button on the menu

bar, then click the Resume button to run the program. What?! The program seems to

run just fine doesn’t it? The blue LED is flashing. The problem is that we enabled the

peripheral in our earlier run of the code … we never disabled it or power cycled the part.

17. Click the Terminate button to return to the editing perspective. Remove/reinstall the

micro-USB cable on the LaunchPad board to cycle the power. This will return the

peripheral registers to their default power-up states.

The code that you just downloaded is running, but note that the blue LED isn’t flashing

now.

18. Compile and download your application by clicking the Debug button on the menu

bar, then click the Resume button to run the program. Nothing much should appear

to be happening. Click the Suspend button to stop execution. You should see that

execution has trapped inside the FaultISR() interrupt routine. All of the exception

ISRs trap in while(1) loops in the provided code. That probably isn’t the behavior you

want in your production code.

19. Remove the comment and compile, download and run your code again to make sure

everything works properly. When you’re done, click the Terminate button to return

to the Editing perspective and close the Lab4 project. Minimize CCS.

20. Homework Idea: Investigate the Pulse-Width Modulation capabilities of the general

purpose timer. Program the timer to blink the LED faster than your eye can see, usually

above 30Hz and use the pulse width to vary the apparent intensity. Write a loop to make

the intensity vary periodically.

 You’re done.

Lab 4: Interrupts and the Timer

4 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Interrupts & Timers

