

Uncontrolled Copy when printed or downloaded.
Please refer to the 4D Systems website for the latest Revision of this document

μD
R
IV

E
-μ

S
D

-G
1

–
 E

m
be

d
de

d
 “

D
O

S
 m

ic
ro

-D
riv

e”

4DGL Programmers Reference Manual

Document Date: 27th February 2013

Document Revision: 5.2 R
E
F
E
R
E
N

C
E

4D SYSTEMS
TURNING TECHNOLOGY INTO ART

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Contents

1. 4DGL Introduction ..4

2. LANGUAGE SUMMARY...5

3. LANGUAGE STYLE ...6

 Numbers ... 6 3.1.

 Identifiers ... 6 3.2.

 Comments .. 6 3.3.

 Re-defining pre-processor directives ... 7 3.4.

4. VARIABLES and CONSTANTS ..8

 Variables... 8 4.1.

 Private Variables .. 10 4.2.

 Constants ... 11 4.3.

 Inbuilt Constants .. 13 4.4.

 Data Blocks: #DATA … #END ... 14 4.5.

5. PRE-PROCESSOR DIRECTIVES..16

 #IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount 16 5.1.

 #STOP ... 16 5.2.

 #USE, USING ... 16 5.3.

 #inherit ... 17 5.4.

 #MODE ... 18 5.5.

6. EXPRESSIONS and OPERATORS ..19

 Assignment Operator ... 19 6.1.

 Address Modifiers .. 19 6.2.

 Arithmetic Operators ... 19 6.3.

 Comparison Operators ... 20 6.4.

 Boolean Logical Operators ... 21 6.5.

 Bitwise operators ... 22 6.6.

 Short Hand Notations... 24 6.7.

 Compound Assignment Operators ... 25 6.8.

 Compound Bitwise operators .. 26 6.9.

 Ternary Operator ... 27 6.10.

7. LANGUAGE FLOW CONTROL ..28

 if … else … endif .. 28 7.1.

 while … wend ... 29 7.2.

 repeat … until/forever .. 30 7.3.

 goto .. 31 7.4.

 for....next .. 32 7.5.

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 switch case ... 33 7.6.

 The Break and Continue statements .. 37 7.7.

8. FUNCTIONS and SUBROUTINES ..38

 func … endfunc ... 38 8.1.

 Functions with Arguments and Return value ... 40 8.2.

 gosub … endsub... 41 8.3.

 SystemReset() .. 45 8.4.

 ProgramExit() ... 45 8.5.

 Argcount(function_name) .. 45 8.6.

 @ (the argument pointer) .. 45 8.7.

9. PROCESSOR SPECIFIC INTERNAL FUNCTIONS ...46

 GOLDELOX Internal Functions (Chip Resident) .. 46 9.1.

 PICASO Internal Functions (Chip Resident) .. 46 9.2.

10. Legal Notice..48

11. Contact Information ...48

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 4 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

1. 4DGL Introduction

The 4D-Labs family of embedded graphics processors (GOLDELOX and PICASO) are powered by a highly
optimised soft core virtual engine, E.V.E. (Extensible Virtual Engine).

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised
to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up
for the EVE engine core. It is a high level language which is easy to learn and simple to understand yet
powerful enough to tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development. An extensive library of graphics,
text and file system functions and the ease of use of a language that combines the best elements and syntax
structure of languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at
home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL,
GOSUB..ENDSUB, GOTO as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT,
GFX_LINE, GFX_CIRCLE and many more.

This document covers the language style, the syntax and flow control. This document should be used in
conjunction with processor specific internal functions documents, refer to section 8.

GOLDELOX Internal Block Diagram

PICASO Internal Block Diagram

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 5 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

2. LANGUAGE SUMMARY

The document is made up of the following sections:

 Language Style
Numbers, identifiers, comments

 Constants and Variables
var, var private, #constant, Inbuilt Constants, #CONST...#END, #DATA...#END

 Pre-Processor Directives
#IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount, #STOP, #USE ..
USING, #inherit, #MODE

 Expressions and Operators
:=, &(address modifier), *, +, -, *, /, %, &(as a logial operator), |, ^, ==, !=, >, <, <=, &&, ||, !, ~, <<, >>,
++, -- , +=, -=, *=, /=, %=, &=, |=, ^=, ternary operators

 Language Flow Control
if .. else .. endif, while .. wend, repeat .. until/forever, goto, for .. next, switch .. case

 Functions and Subroutines
gosub .. endsub, func .. endfunc, return, SystemReset, ProgramExit, Argcount, @(argument pointer)

 Processor Specific Internal Functions (Chip Resident)
GOLDELOX-GFX2 Internal Functions
PICASO-GFX Internal Functions

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 6 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

3. LANGUAGE STYLE

4DGL is a case sensitive language. The colour of the text, in the 4DGL Workshop IDE, reveals if the syntax will
be accepted by the compiler.

 Numbers 3.1.

Numbers may be defined as decimal, hex or binary.

 Identifiers 3.2.

Identifiers are names used for referencing variables, constants, functions and subroutines.

A Valid identifier: -

 Must begin with a letter of the English alphabet or possibly the underscore (_)

 Consists of alphanumeric characters and the underscore (_)

 May not contain special characters: ~ ! @ # $ % ^ & * () ` - = { } [] : " ; ' < > ? , . / |

Elements ignored by the compiler include spaces, new lines, and tabs. All these elements are collectively
known as the “white space”. White space serves only to make the code more legible – it does not affect the
actual compiling.

Note that an identifier for a subroutine must have a colon (:) appended to it. Subroutine names are scoped
locally inside functions, they are not accessible outside the function.

 Comments 3.3.

A comment is a line or paragraph of text in a program file such that that line or paragraph is not considered
when the compiler is processing the code of the file.

To write a comment on one line, type two forward slashes // and type the comment. Anything on the right side
of both forward slashes will not be read by the compiler.

Single line comment example:

Also you can comment in multiple lines by enclosing between /* and */. See example.

Multi-Line comment example:

Also you can use multiple line comment in one line like:

/*

This is a multi line

comment which can

span over many lines

*/

// This is my comment

mysub:

 [statements]

endsub;

0xAA55 // hex number

-1234 // decimal number

0b10011001 // binary number

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 7 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

It is good to comment your code so that you or anybody else can later understand it. Also, comments are useful
to comment out sections of the code, so it can be left as a reminder about a modification that was made, and
perhaps be modified or repaired later. Comments should give meaningful information on what the program is
doing. Comment such as 'Set output 4' fails to state the purpose of instruction. Something like 'Turn Talk LED
ON' is much more useful.

 Re-defining pre-processor directives 3.4.

It is possible to add your own 'flavour' to the pre-processor by using the '$' (substitution directive).

For example, if you wanted to make your code look 'more C like' you can do the following,

Now, the compiler will use these new words as aliases to the default directives.

Example:

//define some user preferences to make things look more 'C' like

#constant enum $#constant /* define the enum word*/

#constant #define $#constant /* define the #define word*/

#constant #ifdef $#IF EXISTS /* define the #ifdef word */

#constant #ifndef $#IFNOT EXISTS /* define the #ifndef word */

#constant #else $#ELSE /* define the #else word */

#constant #endif $#ENDIF /* define the #endif word */

#constant #include $#inherit /* define the #include word */

#constant #if $#IF /* define the #if word */

/* This is my one line comment */

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 8 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

4. VARIABLES and CONSTANTS

 Variables 4.1.

Like most programming languages, 4DGL is able to use and process named variables and their contents.
Variables are simply names used to refer to some location in memory - a location that holds a value with which
we are working with. Variables used by the -GFX based target platforms are signed 16 bit. Variables are defined
with the var statement, and are visible globally if placed outside a function (scope is global) or private if placed

inside a function (scope is local).

Type Resolution Range

Integer Signed 16 bit -32,768 to 32,767

Variables can also be an array such as:

Global and local variables can now be initialised when they are declared. GLODELOX-GFX and PICASO-GFX now
supports local arrays as well, however they must be used with caution due to stack size limitations, especially
on GOLDELOX-GFX. A variable or array can only be initialised with a constant value.

You can also size an array by setting certain initialization values,

And, partial initializing,

Note that arrays can only have a single dimension. Variables can also hold a pointer to a function or pointer to
other variables including arrays. Also, the index starts from 0.

var myBuffer[10] := [0xAA, 0x55]; // create buffer, initialize 2 entries

Example:

var myvar := 100;

var myArray[4] := [5,200,500,2000]; // initialise the array

var PlotInfoX[100], PlotInfoY[100]; // Index starting from 0 to 99.

Example:

var ball_x, ball_y, ball_r;

var ball_colour;

var xdir, var ydir;

var myArray[] := [1,2,3,4]; // array is sized to 4

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 9 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Notes concerning variables:

 Global variables and arrays are persistent and exist during the entire execution of a program.

 Global variables and arrays are visible to all functions and are considered a shared resource.

 Local variables are created on the stack and are only visible inside a function call.

 Local variables are released at the end of a function call.

 Local arrays are currently not supported.
 More data types will be added in future releases.

Example:

var funclist[2];

//---

func foo()

 [...some code here...]

endfunc

//---

func baa()

 [...some code here...]

endfunc

//---

func main()

 //load the function pointers into an array

 funclist[0] := foo;

 funclist[1]: = baa;

 funclist[0](); // execute foo

endfunc

//---

Example:

var buffer[30]; // general purpose buffer for up to 60 bytes

var buffer2[30]; // general purpose buffer for up to 60 bytes

func main()

 buffer[0] := 'AB'; // put some characters into the buffer

 buffer[1] := 'CD';

 buffer2[0] := 'EF';

 //buffer is 16bits per location so chars are packed

 buffer2[1] := 0;

 :

 :

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 10 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Private Variables 4.2.

In the normal course of program execution, any variables declared locally in functions are discarded when the
function exits, freeing up the stack.

If we want the value of a variable or variable array to be retained after the function has executed, we simply
declare the variable as private.

A private variable may be initialised just like a normal global or local variable, however, it will only be initialised
once during the program initialisation in the start-up code (just like a global variable) therefore, each time the
function is called, the value that was set during initialisation is persistent.

In the above example, each time the function is called, “hitcounter” will be printed then incremented, showing
the number of times the function is called starting from 100.

As stated above, Private variables are not built temporarily on the stack like normal local variables, they
consume space in the global memory space. Private variables can be accessed from any other function by
prepending the function name, followed by a period, to the private variable within that function.

Example:

func anotherfunc()

// code........

myfunc.hitcounter := 50; // set hitcounter in myfunc() to 50

// code.....

endfunc

Example:

func myfunc()

var private hitcounter := 100; // initial hitcounter value is 100

print(“\nHits = “,hitcounter++);

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 11 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Constants 4.3.

A constant is a data value that cannot be changed during run-time. A constant can be declared as a single line
entry with the #constant directive. A block of constants can be declared with the #CONST and #END directives.
Every constant is declared with a unique name which must be a valid identifier.

It is a good practice to write constant names in uppercase. The constant's value can be expressed as decimal,
binary, hex or string. If a constants value is prepended with a $ it becomes a complete text substitution with no
validation during pre-processing.

Note also that the := operator can be included for readability. For example,

Constants can now be automatically enumerated ,

#constant BUFSIZE1 := 10

#constant BUFSIZE2 := 20

#constant TOTALBUF := BUFSIZE1+BUFSIZE2

#constant BUF_SAFE_LIMIT := (BUFSIZE1+BUFSIZE2) * 750 / 1000

// 75% mark

#NOTICE "Buffer safe limit = ",BUF_SAFE_LIMIT

// show in Workshop error window

Example:

#constant GO_FLAG 16

#constant LOGON $Welcome

//in the function...

func main()

 var flags;

 flags := 16;

 if (flags && GO_FLAG)

 putstr (LOGON);

 run_process();

 endif

 :

endfunc

Syntax:

#constant NAME value

or

#constant NAME1 := value1, NAME2 := value2,..., NAMEN := valueN

or

#constant NAME equation

or

#constant NAME $TextSubstitution

or

#CONST

 BUTTONCOLOUR 0xC0C0

 SLIDERMAX 200

#END

#constant : The required symbol to define.

NAME : The name of the constant

value : A value to set the symbol to

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 12 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Each of the enumeration values is equated with a sequential number. The enumeration will have the following
values assigned. Hearts = 0 , Diamonds = 1 , Clubs = 2 , Spades = 3.

You can also override the default number assignments. For example,

#constant must have all the definitions on the same line and traditionally is only used for single constant
initialisation. #CONST blocks are usually more readable for multiple constant assignments . For example,

#CONST

 Hearts:=10,

 Diamonds,

 Clubs:=20,

 Spades,

 Total:= Hearts+Diamonds+Clubs+Spades

#END

#NOTICE “Total = “, Total // show result of constant 'Total'

#constant Hearts:=10, Diamonds, Clubs:=20, Spades

//now, Hearts = 10 , Diamonds = 1 1, Clubs = 2 0, Spades = 21

#constant Hearts, Diamonds, Clubs, Spades

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 13 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Inbuilt Constants 4.4.

The compiler now checks the program and memory sizes and reports error if amount is exceeded. This used to
be done by the Workshop. The following constants must be defined in the platforms fnc file for this to work.
For example,

To allow the programmer to recognise what platform is being used, the device is also described with a constant
in the fnc file. For GOLDELOX,

This allows the programmer to make coding decisions,

#IF __PLATFORM == GOLDELOX

// code it this way

#ELSE

// code it that way

#ENDIF

//in the GOLDELOX-GFX2.fnc file we have

#constant GOLDELOX 1

#constant __PLATFORM GOLDELOX

Example:

#constant __MAXMEM 255

#constant __MAXPROG 9216

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 14 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Data Blocks: #DATA … #END 4.5.

#DATA blocks reside in the CODE space and can be bytes or words. Data cannot be changed during run-time
(i.e. it is read only). A block of data can be indexed like an array. A block of data is declared with the #DATA and
#END directives. Every data entry is declared with a unique name which must be a valid identifier.

#DATA statements can now contain pre-processor computed values. For example,

#DATA statements can reference functions and variables. For example,

Example2:

 #constant SPEED 33

 #DATA

 word mylimits (BUFSIZE1+BUFSIZE2)*750/1000, 100, 200, (SPEED*20)

 #END

 func main()

 var n;

 for(n:=0; n < sizeof(mylimits); n++) print(mylimits[n],"\n");

 endfunc

Example1:

#DATA

 word values

 0x0123, 0x4567, 0x89AB, 0xCDEF

 byte hexval

 "0123456789ABCDEF"

#END

//and in a function,

func main()

 var ch, wd, index1, index2;

 ch := hexval[index1];

 // load ch with the correct ascii character

 wd := values[index2]; // get the required value to wd

 :

endfunc

Syntax:

#DATA

 type name

 value1, value2, valueN

#END

or

#DATA

 type name value1, value2, valueN

#END

or

#DATA

 type name equation1, equation2,....equationN

#END

#DATA : The required symbol to define.

type : byte or word data type keyword

name : The name of the data array

value : A list of 8 bit or 16 bit values in the data array

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 15 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Example3:

#DATA word myfuncs tom, dick, harry

func main()

var n;

for(n:=0; n < sizeof(myfuncs); n++) myfuncs[n]();

endfunc

func tom() putstr("Tom\n"); endfunc

func dick() putstr("Dick\n"); endfunc

func harry() putstr("Harry\n"); endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 16 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

5. PRE-PROCESSOR DIRECTIVES

 #IF, #IFNOT, #ELSE, #ENDIF, EXISTS, #ERROR, #MESSAGE, #NOTICE, sizeof, argcount 5.1.

These pre-processor directives allows you to test the value of an arithmetic expression, or the existence of a
pre-defined constant or PmmC function name, or the size of a predefined array. #IFNOT gives the inverse
response of #IF. Combined with #ELSE and #ENDIF ,conditional inheritance of other files and control of blocks
of code can be performed.

Note: If you wish to add a comment following a preprocessor definition, the preferred style is /*.....*/ . The //
comment style will not work in many cases as it breaks the 'inline' rule by ignoring everything to the end of line
following the // comment directive.

 #STOP 5.2.

#STOP terminates compilation , it is mainly used for debugging purposes to disable compilation of code from a
certain point onwards.

 #USE, USING 5.3.

The compiler will compile all functions it finds, but will only link functions that are referenced. This allows to
inherit other files that could be considered as function libraries with your favourite routines in them.

To reduce compile time and improve code readability, the #USE and USING preprocessor directives are used to
selectively include functions in #inherited files, allowing you to build libraries of code, but only selectively
inherit the functions required by the project.

Example:

#STOP //compiler will stop here

Example:

#constant NUMBER 10000

var buffer[30];

#MESSAGE "Example Code" // messages go to the *.aux file

#IF (__PLATFORM == GOLDELOX) & (NUMBER == 10000)

#NOTICE "Compiling for Goldelox Project ", NUMBER, ", Buffer

size is ",sizeof(buffer)

#ELSE

#ERROR "Unknown Platform"

#ENDIF

// check for existance of a PmmC function

#IF EXISTS gfx_Rectangle

#NOTICE "we have gfx_Rectangle, token value = ", gfx_Rectangle

#NOTICE "gfx_Rectangle requires ", argcount(gfx_Rectangle), "

arguments"

#ELSE

func gfx_Rectangle(var x1,var y1,var x2, var y2, var colour)

// code your own function here

endfunc

#ENDIF

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 17 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 #inherit 5.4.

#inherit "filename" includes another source file. Inherited files can be nested. Inherited files can now also
contain #DATA, functions and variables. There is no special ordering required for functions, func main can now
be the first function in the program if required, however, preprocessor calculation cannot be forward
referenced. There is now also a mechanism to allow selected portions of an inherited file to be compiled on
demand (see #USE and USING below).

Example:

#platform "GOLDELOX-GFX2"

#inherit "4DGL_16bitColours.fnc"

func main()

:

:

endfunc

Syntax:

#inherit “filename”

filename:”.fnc” file to be included in the program.

Example:

//In a file named mylib.lib

#IF USING tom

 func tom() putstr("Tom\n"); endfunc

#ENDIF

#IF USING dick

 func dick()

 putstr("Dick\n");

 endfunc

#ENDIF

#IF USING harry

 func harry() putstr("Harry\n"); endfunc

#ENDIF

#IF USING george

 func george() putstr("George\n"); endfunc

#ENDIF

//==

//now in your main file

#USE tom, george

//this instructs the compiler to compile those functions and use

//them in your program

func main()

tom();

george();

endfunc

// note that dick and harry are not compiled or linked

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 18 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 #MODE 5.5.

#MODE is used to define the memory section you want you program to run from. This Preprocessor Directive
does not apply to GOLDELOX-GFX2.

The only keyword that is usable with the #MODE directive is “RUNFLASH”. If #MODE RUNFLASH is added to the
start of the program, the program actually executes from FLASH memory. If #MODE RUNFLASH is omitted, the
program in FLASH is loaded into RAM before it is run. A program that is run directly from FLASH runs a little
slower than a program run from RAM, but has the advantage of leaving the RAM space free for running child
programs.

Syntax:

#inherit "4DGL_16bitColours.fnc"

#inherit "FONT4.fnt"

#MODE RUNFLASH

// this prog intended to be 'front end' and run from FLASH

func main()

:

:

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 19 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

6. EXPRESSIONS and OPERATORS

Operators make 4DGL a powerful language. An operator is a function which is applied to values to give a result.
These operators take one or more values and perform a useful operation. The operators could be +, -, & etc.

Most common ones are Arithmetic operators. Other operators are used for comparison of values, combination
of logical states and manipulation of individual binary digits.

Expressions are a combination of Operators and values. The values produced by these expressions can be used
as part of even larger expressions or they can be stored in variables.

 Assignment Operator 6.1.

“:=” Assign a value to a variable:

 Address Modifiers 6.2.

“&” Get the address of a variable:

“*” Use a variable as a pointer:

 Arithmetic Operators 6.3.

“+” Addition:

“-” Subtraction:

“*” Multiplication:

GOLDELOX-GFX2: the overflow (bits 16 to 31) is placed into the VM_OVERFLOW register which can be
read by the OVF() function.

Example:

velocity := 5;

time := 10;

displacement := velocity * time;

Example:

val1 := 5;

val2 := 10;

diff := val2 - val1;

Example:

val1 := 5;

val2 := 10;

sum := val1 + val2;

Example:

a := *b; // Can be used on the right side and/or

*j := myArray; // left side and/or

*d := *s; // even both side of assignment operator.

Example:

a := &myArray[0];

a := myArray; // same as above. The array name without indices

A := &b; // implies an address, same as in the C language.

Example:

a := b c*(d-e)/e;

a := b + 22;

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 20 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

“/” Division:

GOLDELOX-GFX2: the remainder is placed into the VM_OVERFLOW register which can be read by the
OVF() function.

“%” Modulus:

*, / and % have the higher precedence and the operation will be performed before + or - in any expression.
Brackets should be used to enforce a different order of evaluation. Where division is performed between two
integers, the result will be an integer, with remainder discarded. If a program is ever required to divide a
number by zero, this will cause an error, usually causing the program to crash.

 Comparison Operators 6.4.
4DGL has set of logical operators useful for performing comparisons. These operators all return a TRUE (1) or
FALSE (0) depending on the result of the comparison. These comparisons are most frequently used to control
an if statement or a repeat or a while loop. Note that == is used in comparisons and := is used in assignments.

“==” Equals test:

“>” Greater Than test:

“>=” Greater Than or Equals test:

“<” Less Than test:

Example:

while(index < 10)

 ..

 index++;

wend

Example:

while(index >= 0)

 ..

 index--;

wend

Example:

while(index > 0)

 ..

 index--;

wend

Example:

if(index == count) print(“count complete”);

Example:

a := 3;

b := 11;

remainder := b%a; // remainder is 2

Example:

delta := 5;

length := 10;

strain := delta/length;

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 21 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

“<=” Less Than or Equals test:

 Boolean Logical Operators 6.5.
4DGL provides common logical operators designed to return TRUE (1) or FALSE (0) depending on the result of
the expression. These operators both return boolean results and take boolean values as operands.

“!=” Not Equals test:

The NOT (!) operator inverts the boolean result of a value, or the result of an expression. For example, if a
variable named flag is currently 55 , prefixing the variable with a '!' character will make the result FALSE (0).

“&&” Logical AND test:

“||” Logical OR test:

“^” Logical XOR test:

Example:

if ((A< B) ^ (C < D))

 putstr("Expression is true");

endif

Example:

if(x > 10 || x < 5) print(“x out of range”);

Example:

if(x < 10 && x > 5) print(“x within range”);

Example2:

var flag := 55; //variable is non zero

var flag2;

flag2 := !flag; // flag2 set to FALSE (0)

flag2 := !flag; // now flag2 set to TRUE (1)

Example1:

if(denominator != 0)

 result := numerator/denominator;

endif

Example:

while(index <= 10)

 ..

 index++;

wend

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 22 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

“!” Unary NOT:

The unary NOT (!) operator sets a 1 if all bits in a variable are zero, otherwise sets 0

“~” Unary 2's COMPLEMENT:

The unary 2's COMPLEMENT (~) operator inverts all bits

 Bitwise operators 6.6.

“&” Bitwise AND:

The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers.
Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1
appearing in the same position of the resulting number. If either bit position contains a 0 then a zero appears in
the result.

“|” Bitwise OR:

The bitwise OR performs a bit by bit comparison of two binary numbers. The OR operator places a 1 in the
result if there is a 1 in the first or second operand.

“^” Bitwise XOR:

The bitwise XOR sets a 1 if one or other corresponding bit positions in the two numbers is 1. If both positions
are a 1 or a 0 then the corresponding bit in the result is set to a 0.

Example:

var j := 0b10101011;
var k := 3;

var r;

r := k ^ j; // Perform bitwise OR on variables k and j

print(“The result is ", r); // Result is 168

Example:

var j := 0b0000000010101011;
var k := 3;

var r;

r := k | j; // Perform bitwise OR on variables k and j

print(“The result is ", r); // Result is 171

Example:

var j := 0b0000000010101011; var k := 3; var r;

r := k & j; // Perform bitwise AND on variables k and j

print(“The result is ", r); // Result is 3

Example:

 x := 0x5555;

 print([HEX]~x); //Prints 0xAAAA

Example:

 while(!x)

 continue operation while x == 0

 wend

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 23 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

“<<” Shift Left:

The bitwise left shift moves each bit in a binary number a specified number of positions to the left. As the bits
are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that once the
left most (high order) bits are shifted beyond the size of the variable containing the value, those high bits are
shifted into the VM_OVERFLOW register and can be read with OVF() function (VM_OVERFLOW can also be read
using peekW(VM_OVERFLOW) on the GOLDELOX-GFX2 processor only).

The above code would display the shifted result, which is 3552 and the overflow value is 3.

The VM_OVERFLOW register is not cleared prior to a shift, this allows you to do interesting things such as
rotating an array. The VM_OVERFLOW register must be cleared (or preset to a required value) prior to using
the shift instruction if you wish to obtain the correct result.

GOLDELOX-GFX2: the most significant bit goes out and into the VM_OVERFLOW register which can be read by
the OVF() function.

“>>” Shift Right:

A bitwise right shift is much the same as a left shift except that the shift takes place in the opposite direction.
Note that the low order bits that are shifted off to the right are shifted into the VM_OVERFLOW register and
can be read with OVF() function (VM_OVERFLOW can also be read using peekW(VM_OVERFLOW); the vacated
high order bit(s) position are replaced with zeros.

The above code would display the shifted result, which is 21 and the overflow value is 16384.

The VM_OVERFLOW register is not cleared prior to a shift, this allows you to do interesting things such as
rotating an array. The VM_OVERFLOW register must be cleared (or preset to a required value) prior to using
the shift instruction if you wish to obtain the correct result.

GOLDELOX-GFX2: the most significant bit goes out and into the VM_OVERFLOW register which can be read by
the OVF() function.

Example:

var k := 0b0000000010101011; // 171

var r;

pokeW(VM_OVERFLOW, 0); // clear the overflow register

r := k >> 3; // shift k 3 bit positions to the right

print(“The result is ", r, “OVF() = “, OVF());

Example:

var k := 0b0110111100000000; // 28416

var r;

pokeW(VM_OVERFLOW, 0); // clear the overflow register

r := k << 3; // shift k 3 bit positions to the left

print(“The result is ", r, “OVF() = “, OVF());

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 24 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Short Hand Notations 6.7.

The iterator(..); function can be used to modify the post or pre increment value for the next execution of the
Post/Pre increment and decrement operation. The increment value is automatically set back to 1 after the next
Post/Pre increment and decrement operation.

“var++” Post-Increment:

“++var” Pre-Increment:

“var--” Post-Decrement:

“--var” Pre-Decrement:

Example:

//Using iterator

iterator(10);

myarray[x++] := 123;

// equivalent to

myarray[x] := 123;

x := x + 10;

Example:

x := --b*a;

// equivalent to

b := b-11;

x := a*b;

Example:

x := a*b--;

// equivalent to

x := a*b;

b := b-1;

Example:

x := ++b*a;

// equivalent to

b := b+1;

x := a*b;

Example:

x := a*b++;

// equivalent to

x := a*b;

b := b+1;

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 25 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Compound Assignment Operators 6.8.
4DGL now provides a number of operators designed to combine an assignment with a mathematical or logical
operation. These are primarily of use when performing an evaluation where the result is to be stored in one of
the operands. For example, you may write an expression as follows:

+= operator

-= operator

*= operator

/= operator

%= operator

Note that any overflow situation from the math operators can be obtained by reading the VM_OVERFLOW
register. It can be read with OVF() function (VM_OVERFLOW can also be read using peekW(VM_OVERFLOW).

Example:

k %= j; //Perform Modulo of j on k and place result in k

Example:

k /= j; //Divide k by j and place result in k

Example:

k *= j; //Multiply k by j and place result in k

Example:

k -= j; //Subtract j from k and place result in k

Example:

k += j; //Add j to k and place result in k

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 26 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Compound Bitwise operators 6.9.
Like the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the
operation and assignment to be performed using a single operator.

“&=” Compound Bitwise AND:

“|=” Compound Bitwise OR:

“^=” Compound Bitwise XOR:

Note that any overflow situation from the math operators can be obtained by reading the VM_OVERFLOW
register. It can be read with OVF() function (VM_OVERFLOW can also be read using peekW(VM_OVERFLOW).

Example:

k ^= j

//Perform a bitwise XOR of k and j and assign result to k

Example:

k |= j

//Perform a bitwise OR of k and j and assign result to k

Example:

k &= j

//Perform a bitwise AND of k and j and assign result to k

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 27 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Ternary Operator 6.10.
4DGL now includes the ternary operator , a shortcut way of making decisions.

The way this usually works is that [condition] is replaced with an expression that will return either TRUE (1) or
FALSE (0). If the result is true then the expression that replaces the [true expression] is evaluated. Conversely, if
the result was false then the [false expression] is evaluated.

The above code example will evaluate whether k is greater than j, this will evaluate to false resulting in j being
returned to r.

The above code example will print a '1' if the random number is < 1000, else it will print a '0'.

The above code example will print “low” ' if the random number is < 1000, else it will print “high”

The above code example will call myfunc1() if the number lies between 45 and 55 inclusive, else it will call
myfunc2() . The functions may have arguments if required

Any number of expressions may occur to the left and right of the colon (:), however, only the right-most
comma separated element will actually return a value, for example, in the following code,

myfunc1() will be called if the number lies between 45 and 55 inclusive and r will receive its return value, else
myfunc2() will be called, but actually returns the value of X (X is then incremented).

The return value (if any) from myfunc2() is discarded.

r := (n >= 45 && n <= 55) ? myfunc1() : myfunc2(), X++;

(n >= 45 && n <= 55) ? myfunc1() : myfunc2();

print([STR] (RAND()<10000) ? "low " : "high");

print((RAND()<10000) ? 1 : 0);

Example:

var k:=20, j:=40;

var r;

r := (k > j) ? k : j ;

print(“Larger number is “, r);

Syntax:

[condition] ? [true expression] : [false expression]

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 28 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

7. LANGUAGE FLOW CONTROL

 if … else … endif 7.1.

The if-else statement is a two-way decision statement. The if statement answers the question, “Is this true or
false?", then proceeds on some action based on this. If the condition was true then the statement(s) following
the if is executed and if the condition was false then the statement(s) following the else is executed.

Example:

func collision()

 if(ball_x <= LEFTWALL)

 ball_x := LEFTWALL;

 ball_colour := LEFTCOLOUR;

 xdir := -xdir;

 endif

 if(ball_x >= RIGHTWALL)

 ball_x := RIGHTWALL;

 ball_colour := RIGHTCOLOUR;

 xdir := -xdir;

 endif

endfunc

Syntax:

if(condition)

 [statements]

else

 [statements]

endif

or

if(condition) statement;

or

if(condition) statement; else statement;

condition : Required conditional expression to evaluate.

statements: Optional block of statements or single statement to be

 executed.

statement : Optional single statement.

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 29 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 while … wend 7.2.

Loop through a block of statements while a specified condition is true. Note that the while statement may be
used on a single line without the wend statement. The while … wend loop evaluates an expression before
executing the code up to the end of the block that is marked with a wend. If the expression evaluates to FALSE
on the first check then the code is not executed.

Example:

//This example shows the nesting of the while..wend loops

var rad, color, counter;

func main()

 color := 0xF0F0;

 gfx_Set(0, 1); // set PenSize to 1 for outline objects

 while(counter++ != 1000)

 rad := 10;

 while(rad < 100)

 gfx_Circle(120, 160, rad++, color++);

 gfx_Ellipse(120, 160, rad++, 20, color++);

 gfx_Line(120, 160, 20, rad++, color++);

 gfx_Rectangle(10, 10, rad++, rad++, color++);

 wend

 wend

endfunc

Example:

i := 0;

val := 5;

while(i < val) myVar := myVar * i++;

Example:

i := 0;

val := 5;

while(i < val)

 myVar := myVar * i;

 i++;

wend

Syntax:

while(condition)

 [statements]

 [break;]

 [continue;]

wend

or

while(condition) statement;

or

while(conditional statement);

condition : Required condition to evaluate each time through the

 loop. The loop will be executed while the condition is true.

statement : Optional block of statements to execute.

wend : Required keyword to specify the end of the while loop.

Related statements (only if in block mode):

break; : Break out of the while loop by jumping to the statement

 following the wend keyword (optional).

continue; : Skip back to beginning of the while loop and

re-evaluate the condition (optional).

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 30 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 repeat … until/forever 7.3.

Loop through a block of statements until a specified condition is true. The statement block will always execute
at least once even if the until(condition) result is true. For example, you may need to step through an array
until a specific item is found.

The repeat statement may also be used on a single line with until(condition);

Example:

i := 0;

repeat i++; until(i >= 5);

Example:

i := 0;

repeat

 myVar := myVar * i;

 i++;

 if(i >= 5) break;

forever

Example:

i := 0;

repeat

 myVar := myVar * i;

 i++;

until(i >= 5);

Syntax:

repeat

 [statements]

 [break;]

 [continue;]

until(condition);

or

repeat

 [statements]

 [break;]

 [continue;]

forever

or

repeat (statement); until(condition);

condition : Required condition to evaluate at the end of loop.

The loop will be repeated until the condition is true.

statement : Optional block of statements to execute.

until : Required keyword to specify the end of the repeat loop.

Related statements (only if in block mode):

break; : Break out of the repeat loop by jumping to the statement

following the until(condition) or forever keywords (optional).

continue; : Skip back to beginning of the repeat loop (optional).

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 31 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 goto 7.4.

The goto instruction will force a jump to the label and continue execution from the statement following the
label. Unlike the gosub there is no return. It is strongly recommended that 'goto' SHOULD NEVER BE USED,
however, it is included in the language for completeness.

The goto statement can only be used within a function and all labels are private within the function body.
All labels must be followed by a colon ':'.

Example:

func main()

 if(x<20) goto bypass1;

 print("X too small");

 x := 20;

bypass1:

 if(y<50) goto bypass2;

 print("Y too small");

 y := 50;

bypass2:

 // more code here

endfunc

Syntax:

 goto label; // branches to the statements at label:

 ...

label:

 [statements]

 [statements]

label : Required label for the goto jump

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 32 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 for....next 7.5.

Repeats a set of statement certain number of times.

It is possible to do things like x++, x := x + 10, or even x := random (5) and if you really wanted to, you could
call other functions that do nothing to the variable but still have a useful effect on the code. Notice that a
semicolon separates each of these sections, that is important. Also note that every single one of the sections
may be empty, though the semicolons still have to be there. If the condition is empty, it is evaluated as true
and the loop will repeat until something else stops it, like a break statement within the loop body .

If a for loop is on a single line, 'next' may be omitted,

for (n:=5; n<15; n++) myfunc();

Example:

func main()

for (rad:=0; rad<100; rad++)

 gfx_Circle(63, 63, rad, color);

next

Syntax:

for (variable initialisation; condition; variable update)

// statements to execute while the condition is true

next

variable initialization : Assign a value to an already existing

variable. More than one variable may be initialized here,

not necessarily associated with the loop control.

Condition : condition part tells the program that while

the conditional expression is true the loop should continue to

repeat itself.

Variable update : The amount by which variable is changed

each time through the loop.

Statement : Statements to execute while condition is true.

Next : Terminates the definition of the For/Next loop.

Related statements (only if in block mode):

break; : Break out of the For/Next loop by jumping to the

statement following the “Next”.

continue; : Skip back to beginning of the For/Next updater (

last part).

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 33 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 switch case 7.6.

Runs one of several groups of statements, depending on the value of an expression. In 4DGL, there are 2
different classes of switch-case statement.

Switch with Expression:
The first type is ‘switch with expression’. It evaluates the conditional expression following the switch
statement and tests it against numerous constant values (the cases). A case that matches the value of the
expression executes the statement block

Note1: Multiple case statement values can be associated with a statement block

The case statements and the default statement can occur in any order in the switch body. The default
statement is optional, and is activated if none of the constants in the case statements can be matched. The
continue statement may be used to force the switch statement to re-evaluate the expression, and restart the
switch body.
Note: The compiler produces the most efficient code if the case values are a consecutive range of numbers in
which case it can produce a simple linear vector table which will not only be compact, but will execute a bit
faster than non consecutive values. This does not mean that the cases need to be in this order, they are sorted
during compilation to produce a linear table if possible. If the case values are not ordered, the compiler still
determines the best strategy for building case statements depending on case values, eg if you use values less
than 255 it can build a match table for the vectors in a linear byte array (similar to the lookup8 function), but if
the values exceed 255 it needs to build a match table with words (similar to the lookup16 function).

Syntax:

switch (expression)

 case constantValue1:

 case constantValueN: // note #1

 statementsBlock1;

 break; // optional break

 case constantValue2:

 statementsBlock2;

 break; // optional break

 case constantValue3:

 statementsBlock3;

 break; // optional break

 default:

 defaultStatementBlock;

 break; // optional break

endswitch

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 34 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Example:

var msg[100];

func main()

 var result;

 to(msg); putstr("This msg contains 4DGL and other words");

 print("string has ",strlen(msg), " characters\n");

 result := test1();

 print("found '4DGL' at position ", result, "\n");

repeat forever

endfunc

// Nested Switch test #1

// Uses four nested switch statements in a loop to scan

character patterns. Not a good way to scan for patterns, but

a good switch test. Note, the breaks have been commented out

as they are redundant as there are no more cases in the

nested switch level.

func test1()

 var i, p;

 p := str_Ptr(msg);

 for (i := 0; i < strlen(msg) - 3; i++)

 switch (str_GetByte(p+i))

 case '4':

 switch (str_GetByte(p+i+1))

 case 'd':

 case 'D':

 switch (str_GetByte(p+i+2))

 case 'g':

 case 'G':

 switch (str_GetByte(p+i+3))

 case 'l':

 case 'L':

 return i;

 endswitch

 //break;

 endswitch

 //break;

 endswitch

 //break;

 endswitch

 next

 return 0;

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 35 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Switch without Expression:
The second type of switch statement in the ‘expressionless switch’ which allows a complete expression to be
evaluated for each case. It can be thought of as a sequence if if / endif blocks, with the optional break acting
as a goto to skip the rest of the evaluations, or continue to act as a goto to restart the switch block from the
top. Overall, this type of switch usually gives a neater appearance than the if / else / endif construction, and is
easier to visualize.

Note: For this class of switch, the switch statement has no expression.

Note2: Each case must be a parenthesised comparison expression, and no semicolon follows.

Syntax:

switch

 case (expression 1) // note#2

 statementsBlock1;

 break; // optional break

 case (expression 2)

 statementsBlock2;

 break; // optional break

 case (expression 3)

 statementsBlock3;

 break; // optional break

 default

 defaultStatementBlock;

 break; // optional break

endswitch

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 36 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Notes:

 Note that case statements are evaluated in order, and the default clause is executed if none of the
other expressions cause a case action.

 The break statement has the usual behaviour and exits the switch loop, and the continue statement
may be used to force a restart of the switch and re-evaluate the expressions.

 A maximum of 1000 case statements are allowed.

 The default statement must be last.

Example:

func main()

 var c;

 gfx_Cls();

 putstr("Type keys on terminal...");

 repeat

 while((c := serin()) < 0);

 print("\n'",[CHR]c,"' is ");

 switch

 case (c < 0x20)

 putstr(" control char");

 break;

 case (c >= 'A' && c <= 'Z')

 putstr(" uppercase");

 case (c >= 'a' && c <= 'z')

 putstr(" lowercase");

 case (c == '0')

 putstr(" zero");

 break;

 case (lookup8(c, "13579"))

 putstr(" odd number");

 break;

 case (lookup8(c, "2468"))

 putstr(" even number");

 break;

 case (lookup8(c, "aeiouAEIOU"))

 putstr(" vowel");

 break;

 case(c < 'A' || c > 'z' && c < 'a' || c > 'Z')

 putstr(" punctuation");

 break;

 default:

 putstr(" consonant");

 endswitch

 forever

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 37 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 The Break and Continue statements 7.7.

It is possible exit from a while, repeat, or for loop at any time by using the break statement. When the
execution path encounters a break statement the looping will stop and execution will proceed to the code
immediately following the loop.

It is important to note that in the case of nested loops the break statement only exits the current loop leaving
the outer loop to continue executing .

The continue statement causes all remaining code statements in a loop to be skipped and execution to be
returned to the top of the loop.

In the above example, continue statement will cause the printing of “n” be skipped when it equals 3 and the
break statement will cause loop termination when “n” reaches 7.

Example:

func main()

 while (n < 20)

 n++;

 if ((n == 3) continue;

 if (n == 7) break; // output is 12456

 print(n);

 wend

:

:

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 38 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

8. FUNCTIONS and SUBROUTINES

 func … endfunc 8.1.

A function in 4DGL, just as in the C language, is a block of code that performs a specific task. Each function has
a unique name and it is reusable i.e. it can be called and executed from as many different parts in a 4DGL
program. A function can also optionally return a value to the calling program. Functions can also be viewed as
small programs on their own.

Some of the properties of functions in 4DGL are:

 A function must have a unique name and it is this name that is used to call the function from other
functions, including main().

 A function performs a specific task and the task is some distinct work that the program must perform
as part of its overall operation.

 A function is an independent smaller program which can be easily removed and debugged.

 A function will always return to the calling program and can optionally return a value.

Functions have several advantages:

 Less code duplication – easier to read / update programs

 Simplifies debugging – each function can be verified separately

 Reusable code – the same functions can be used in different programs

Syntax:

func name([var parameter1], [var parameter2,…[var parameterN]])

 [statements]

 [return;]

 //OR

 [return (value);]

endfunc

name : Required name for the function.

var parameters : Optional list of parameters to be passed to

the function.

statements : A block of statements that make up the body of

the function.

return : Exit this function, returning control back to the

calling function (optional).

return value : Exit this function, with a variable or expression

to return a value for this function (optional).

Notes:

 - Functions must be created before they can be used.

 - Functions can optionally return a value.

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 39 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Functions can now be on a single line,

As long as there is no forward references that need to be calculated, the ordering of functions no longer needs
to be ordered with strict backward referencing.

A 4DGL program must have a starting origin where the point of execution begins. When a 4DGL program is
launched, EVE processor takes control and needs a specific starting point. This starting point is the main()
function and every 4DGL program must have one. The main() function is the block of code that makes the
whole program work.

Example2:

func myfunc(var n) print(“Error: “, [STR] errorstrings[n]; endfunc

Example1:

/*

This example shows how to create a function and its usage in

calling and passing parameters.

*/

func add2(var x, var y)

 var z;

 z := x + y;

 return z;

endfunc

func main()

 var a;

 a := add2(10, 4);

 print(a);

endfunc

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 40 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 Functions with Arguments and Return value 8.2.

In other languages and in mathematics a function is understood to be something which produces a value or a
number. That is, the whole function is thought of as having a value. In 4DGL it is possible to choose whether or
not a function will have a value. It is possible to make a function return a value to the place at which it was
called.

The variable bill is assigned to a function CalculateBill() and data are some data which are passed to the
function. This statement makes it look as though CalculateBill() is a number. When this statement is executed in
a program, control will be passed to the function CalculateBill() and, when it is done, this function will then
hand control back. The value of the function is assigned to "bill" and the program continues. Functions which
work in this way are said to return a value.

In 4DGL, returning a value is a simple matter. Consider the function CalculateBill() from the statement above:

As soon as the return statement is met CalculateBill() stops executing and assigns the value total to the
function. If there were no return statement the program could not know which value it should associate with
the name CalculateBill and so it would not be meaningful to speak of the function as having one value.
Forgetting a return statement can ruin a program, then the value bill would just be garbage (no predictable
value), presuming that the compiler allowed this to be written at all.

func CalculateBill(var starter, var main, var dessert) //Adds up values

var total;

total := starter + main + dessert;

return (total);

endfunc

Example:

bill = CalculateBill(data,...);

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 41 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 gosub … endsub 8.3.

The gosub starts executing the statements at the label (subroutine name) until it reaches endsub and returns
to continue after the gosub statement. The gosub statement can only be used within a function and all gosub
labels are private within the function body. All subroutines must end with endsub; All labels must be followed
by a colon ':'.

There are 2 versions of gosub as shown below:

The above version (syntax1) executes the statements at label:. When the endsub; statement is reached,
execution resumes with the statement following the gosub statement. The code between label: and the
endsub; statement is called a subroutine.

Notes:

 The gosub function can only be used within a function.

 All gosub labels are private within the function body.

 All subroutines must end with endsub;

 All labels must be followed by a colon.

 ** A common mistake is to forget the 'return' to return from a subroutine within a function.

Example:

func myfunc()

 gosub mysub1;

 gosub mysub2;

 gosub mysub3;

 print("\nAll Done\n")

 return; // return from function *** see below

 mysub1:

 print("\nexecuted sub #1");

 endsub; // return from subroutine

 mysub2:

 print("\nexecuted sub #2");

 endsub; // return from subroutine

 mysub3:

 print("\nexecuted sub #3");

 endsub; // return from subroutine

endfunc

func main()

 myfunc();

endfunc

Syntax1:

gosub label;

…

label:

 [statements]

endsub;

label : label, where the gosub is directing to.

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 42 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

The above version (syntax2) uses index to index into the list of gosub labels. Execution resumes with the
statement following the gosub statement. For example, if index is zero or index is greater than the number of
labels in the list, the subroutine named by the first label in the list is executed. If index is one, then the second
label and so on.

Note: If index is zero or greater than the number of labels, the first label is always executed.

Syntax2:

gosub (index), (label1, label2,.., labelN);

…

label1:

 [statements]

endsub;

label2:

 [statements]

endsub;

…

labelN:

 [statements]

endsub;

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 43 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Example:

func myfunc(var key)

 var r;

 to(COM0); // set redirection for the next print command

 // to the COM port

 r := lookup8(key, "fbsclx?h");

 gosub(r), (unknown,foreward,backward,set,clear,load,

 exit,help,help);

 goto done;

 help:

 putstr("Menu f,b,i,d,s,c,l or x (? or h for help)\n");

 endsub;

 unknown:

 print("\nBad command '",[CHR] key,"' ?");

 /* more code here */

 endsub;

 foreward:

 print("\nFOREWARD ");

 /* more code here */

 endsub;

 backward:

 print("\nBACKWARD ");

 /* more code here */

 endsub;

 set:

 print("\SET ");

 /* more code here */

 endsub;

 clear:

 print("\nCLEAR ");

 /* more code here */

 endsub;

 load:

 print("\nLOAD ");

 /* more code here */

 endsub;

 exit:

 print("\nEXIT");

 print("\nbye....");

 /* more code here */

 r := -1; // signal an exit

 endsub;

 done:

 return r;

endfunc

Continued....

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 44 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

Notes:

 The indexed gosub function can only be used within a function.

 All gosub labels are private within the function body.

 All subroutines must end with endsub;

 All labels must be followed by a colon.

 If index is zero or greater than the number of labels, the first label is always executed.

 ** A common mistake is to forget the 'return' to return from a subroutine within a function.

...Continued

//===

func main()

 var char;

 putstr("Open the Workshop terminal\n");

 putstr("Enter f,b,i,d,s,c,l or x\n");

 putstr("Enter ? or h for help\n");

 putstr("Enter x for exit\n");

 char := '?';

 goto here; // enter here to show help menu first up

 repeat

 while((char := serin()) < 0); // wait for a character

here:

 if(myfunc(char) == -1) break;

 // keep going until we get the exit command

 forever

 putstr("\nEXITING");

endfunc

//===

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 45 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

 SystemReset() 8.4.
This function resets and restarts the program, It is the equivalent of a 'cold boot' (i.e. a total hardware reset).
There is a 2 second delay before the program restarts, this is due to the EVE boot procedure time.

 ProgramExit() 8.5.
This function resets contrast to 0 and puts the display into low power sleep mode. For some devices, the only
wakeup procedure is a reset or power cycle. Refer to individual module or chip specifications for information
on other sleep / wakeup modes.

 Argcount(function_name) 8.6.
This compiler function returns then number of arguments required by a PmmC or user function. It is used often
for getting the argument count when using the '@' operator when using a function pointer.

 @ (the argument pointer) 8.7.
Function arguments can now be passed using the special pointer operator '@'.

Example:

#constant rsize argcount(gfx_Rectangle)

// define rsize for number of args to gfx_Rectangle()

var rect[rsize * 4], n;

// an array to hold info for 4 rectangles

func main()

// initialize some default rectangle co-ords

*rect := [10,10,40,40,RED,88,10,118,40,GREEN,10,88,40,118,BLUE,

88,88,118, 118,YELLOW];

for (n:=0; n < 4*rsize ; n+=rsize)

 gfx_Rectangle(@ rect+n);

 //draw all rectangles using arg pointer offset by n

next

repeat forever // done

endfunc

//alternatively, the ++ iterator can be employed which is a

//little more code efficient, a little faster in execution speed

//and allows a little more flexibility. Note that the iterator

//value is not 'sticky' and is reset to 1 once 'ndx++' is

//executed.

ndx:=0;

while(ndx<4)

 iterator(rsize);

 // set the iterator to the size of args for 'ndx++'

 gfx_Rectangle(@rect + ndx++);

 // draw new rectangles, bump iterator

wend

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 46 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

9. PROCESSOR SPECIFIC INTERNAL FUNCTIONS

 GOLDELOX Internal Functions (Chip Resident) 9.1.
Refer to the external document:
GOLDELOX-4DGL-Internal-Functions.pdf

 PICASO Internal Functions (Chip Resident) 9.2.
Refer to the external document:
PICASO-4DGL-Internal-Functions.pdf

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 47 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

10. Revision History

Revision History

Revision Revision Content Revision Date

5.1 Reformatted, minor document updates 23/11/2012

5.2 Fixed Case example which has : marks in error 27/02/2013

4D SYSTEMS 4DGL PROGRAMMERS REFERENCE MANUAL

© 2012 4D SYSTEMS Page 48 of 48 www.4dsystems.com.au

4
D
G

L
 P

R
O

G
R
A

M
M

E
R
S

R
E
F
E
R
E
N

C
E
 M

A
N

U
A
L

11. Legal Notice

Proprietary Information
The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission.
4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does
not accept liability for any error or omission. The development of 4D Systems products and services is
continuous and published information may not be up to date. It is important to check the current position with
4D Systems. 4D Systems reserves the right to modify, update or makes changes to Specifications or written
material without prior notice at any time.
All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability
4D Systems makes no warranty, either expressed or implied with respect to any product, and specifically
disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement
and fitness for any particular purpose.
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets
with your specifications.
In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special,
consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of
business opportunity) arising out of or relating to any product or service provided or to be provided by 4D
Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such
damages.
4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line
control equipment in hazardous environments requiring fail – safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines
or weapons systems in which the failure of the product could lead directly to death, personal injury or severe
physical or environmental damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim
any expressed or implied warranty of fitness for High Risk Activities.
Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the
buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all
damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any 4D Systems intellectual property rights.

12. Contact Information

For Technical Support: support@4dsystems.com.au

For Sales Support: sales@4dsystems.com.au

Website: www.4dsystems.com.au

Copyright 4D Systems Pty. Ltd. 2000-2012.

mailto:Support@4dsystems.com.au
mailto:Sales@4dsystems.com.au
http://www.4dsystems.com.au/

