
ECE 477 Digital Systems Senior Design Project Rev 9/12

Homework 9: Software Design Considerations

Team Code Name: _____Treasure Chess__________________________ Group No. __2__

Team Member Completing This Homework: __Parul Schroff___________________

E-mail Address of Team Member: pschroff @ purdue.edu

Evaluation:

SEC DESCRIPTION MAX SCORE

1.0 Introduction 5

2.0 Software Design Considerations 30

3.0 Software Design Narrative 30

4.0 Summary 5

5.0 List of References 10

App A Flowchart/Pseudo-code for Main Program 10

App B Hierarchical Block Diagram of Code Organization 10

 TOTAL 100

Comments:

Comments from the grader will be inserted here.

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -1-

1.0 Introduction

Our project is a voice-controlled chess game that uses two 16x32 RGB LED matrix panels to

display the chess board. A player can input the moves to play through a microphone or a keypad.

Thereafter, the game logic checks if the move played is correct or not in two ways: if the square

the piece is being moved to is empty or occupied by the opponent’s piece, and if the move

played by the respective piece is correct – for example rook only travels horizontally or

vertically, bishop only travels diagonally, etc. Once the game logic has assessed the move, it then

sends the output to the RGB LED matrix panel to display the current state of the chessboard. Our

design also has provision for displaying the possible moves for a piece selected by the player to

move. Additionally, we will be using OLEDs to display time and other in-game statistics during

the game.

2.0 Software Design Considerations

The main microcontroller of our design PIC24EP512GU810 has on-chip flash memory of 512

KB. For the purpose of this document, we will refer to this microcontroller as PICEP. We will

use the Run-Time Self-Programming method to program the flash memory which allows the user

application to modify Flash program memory contents [1]. Most of this memory is utilized for

game logic. The program memory map for the PICEP can be seen in Figure 3 (Appendix C).

User Program Flash Memory is restricted to the address range 0x000200 to 0x0557FE. Data

storage for our design is limited to the current state of the chessboard, any pieces lost during the

game, total number of moves played, status of pawns and status of rooks and kings (for

implementing en passant capturing and castling respectively), corresponding color of player 1

and 2 and the checkmate status that checks if the game has reached to an end or not. All of these

are extern global variables that are stored in the data segment of the program memory [12]. The

executable instructions for program are stored in the text segment. The voice recognition

microcontroller dsPIC33FJ128GP202 has an on-chip flash memory of 128 KB which is used for

packing the inputs (1-8 and a-h) for the coordinates of the square of the piece received through

the microphone. For the purpose of this document, we will refer to this microcontroller as dsPIC.

For both the microcontrollers, we are using the RPn/RPIn pins for any of the remappable

peripherals.

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -2-

 We are using the MPLAB Integrated Development Environment for programming and

debugging in C for both the microcontrollers [2]. MPLAB ICD 3 In-Circuit Debugger probe is

connected to the PC using a high-speed USB 2.0 interface and to the microcontroller

development board using an RJ-11 header. Microchip C 30 Toolsuite provides the MAPLAB

C30 C Compiler which uses pic30-gcc to compile C code used for the project.

 Voice input from the microphone will first get transmitted to the Si3000 voice band

codec [3] which will perform the analog to digital conversion. Each of the input goes through a

mixer prior to ADC conversion. Subsequently, data is sent to the dsPIC for completing the voice

recognition and packing in the inputs received.

 Transmission between the two microcontrollers is accomplished by using the UART

channel [4]. UART will use the UxCTS (clear to send) and UxRTS (request to send) hardware

controlled pins. This will allow it to operate in flow control mode. This works similar to the

handshake protocol. Unless the PICEP is ready to receive another input from the dsPIC, data will

not be transmitted between the two microcontrollers. UART will run at the standard speed mode

that is, 16x baud clock. For the UART mode register, UARTEN, UEN <1:0> and BRGH will be

used and ABAUD (Auto-Baud) will be disabled. Data bits <7:0> will be accordingly used for the

UART Receive and Transmit register to transfer the characters. UART Baud Rate Generator

Register <15:0> will store the value such that the baud rate value is 9600 at an oscillating

frequency of 7.37 MHz

 The Type A Timer in asynchronous counter mode for the PICEP will be used timing

the game [5]. Register T1CON controls the Type A Timer. Bit 15, TON, either starts or stops the

timer; TSYNC is set to 0 to disable external clock input synchronization and Bit 1, TCS is set to

1 to enable input from external clock; Bits 5-4, TCKPS <1:0> are set to 00 for a prescale value

of 1:1. TMR1, timer count register (initialized to 0) and PR1, period register (set to 32767) are

also used with the required values.

 Output from the PICEP to the OLEDs is sent through the SPI module. SPI is used under

the Master mode of operation as the master (PICEP) will just be outputting the data to the OLED

(slave) [6]. 8-bits are transferred at a time as the shift register being used in our design is an 8-bit

parallel out shift register [7], hence, for SPIxCON1 register, MODE16 is set to 0. Bit 11 of the

same register, SDOx (serial data output pin), is controlled by the module therefore DISSDP is set

to 0. Bits CKE, SMP and CKP are also set to 0 under the Master mode. MSTEN is set to 1 as we

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -3-

are running the module under Master mode and setting SPIEN to 1, enables the SPI module.

Register SPIxCON2 is set to 0 as we are not performing framed SPI operation.

 In addition to voice input, a player can also manually send the moves to play through 16-

key keypad. Input from the keypad directly goes to the PICEP microcontroller. For scanning the

keypad, we will use the sequential exploration of rows method [8]. In this method, all the rows

are configured as output and the columns as inputs to the microcontroller or vice versa. Default

input for all the column lines is set to 1. The keypad is then scanned by setting the rows to 0 one

at a time and reading the columns. This method even though scans 16 keys, only requires 8 pins

on the micro (Figure 5, Appendix C) making it more efficient.

 PWM channels for the display are used to increase the speed of refreshing the RGB LED

Matrix panel [9]. It will work under the independent output mode (PMOD=11). GPIO Pins A, B

and C are used to control which rows the data will go to.

Overall organization of the application code is command driven (Application Code 3) as

our design depends on the user input and also runs through the same code every time (Figure 1,

Appendix A). Unless the player has provided any input, we do not want the game to run. Once

the move is entered, the program checks if it is legal and/or displays the possible moves for the

selected piece. Once the move is correctly assessed, chessboard is displayed on the RGB LED

matrix panel. Therefore, even though, same code is implemented, running the program

continuously in an infinite loop is not required. The game and hence the executable code end

when either of the kings has been checkmated.

3.0 Software Design Narrative

Figure 1 in Appendix B depicts the hierarchical view of the various code modules. Chessboard

layout on the RGB LED matrix is shown in Figure 6 (Appendix C). The rows (ranks) are

numbered 1 through 8 bottom-up, and the columns from ‘a’ through ‘h’, left to right. White

pieces are placed on rank 1 and 2 (bottom two rows) and the black pieces are placed on rank 7

and 8 (first two rows). Upon start-up, input is received from either the microphone or the keypad

according to user preference. The player will speak out or press the coordinates of the current

position of the piece and that of the next position they want to move to. The input from the

microphone will be transmitted to the PICEP (game and display logic microcontroller) after

passing through the Si3000 voice band codec and the dsPIC (Section 2).

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -4-

The PICEP performs the game logic and sends the correct output to the RGB LED matrix

panel. Once the coordinates are received from the player, the game logic begins its magic. Most

of the functions to check if the move played by the player is legal or not are under one source

file. At first, the piece that occupies the current position as provided by the player is retrieved.

Then the square to which the player wishes to move is checked if it is empty or occupied by an

opponent piece. Then for each piece, we check if the corresponding move is possible or not. For

example: a rook can only move horizontally or vertically, a bishop can move diagonally, queen

can move either like a rook or a bishop, king can move to any of the 8 surrounding squares or

engage in castling in conjunction with a rook provided it does not result in the king being in a

check state, a knight can ‘jump’ in an L-shape; rules for en passant capturing for pawns is also

taken into consideration [10]. Our game also has provision to display the possible moves for a

piece selected by the player to play [11]. Whether the possible moves will be displayed each time

a player makes a move, or it will be an option using a pushbutton, is still undecided. After the

move is ascertained to be legal, the game logic will reset the current state of the chessboard and

send the output to the RGB LED Matrix.

For displaying various pieces on the RGB LED Matrix panel, each piece utilizes 4x4

RGB LEDs of the two 16x32 matrices. Having RGB LEDs gives us the freedom to pick any

color for the players and the squares; exact colors being used still need to be determined. For

each piece, we will display it using a corresponding letter: C for rook, H for knight, B for bishop,

K for king, Q for queen and P for pawn (Figure 4, Appendix C). Our design will also keep track

of the number of pieces lost during the game and the time elapsed since the game has started.

Both of these statistics will be displayed on the OLED screens as an output. This provision is

simply for the convenience of the players.

Almost all of the game logic has been successfully coded and tested in pure C, that is, it

compiles using gcc. Interfacing it with the PICEP microcontroller is the next step which might

require minor changes syntactically; code for voice recognition and output display still needs to

be written and tested.

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -5-

4.0 Summary

Our project is a voice controlled chess game that takes the input from a microphone or a keypad

and uses the RGB LED matrix panel to display the chess board. Our design not only checks if

the moves played by each player are legal or not, but also displays possible moves for each

selected piece. Additionally, we are using OLEDs to output various in-game statistics.

Transmission between the two microcontrollers is handled by the UART protocol. The game and

display logic microcontroller (PIC24EP512GU810) sends the data to the OLEDs using the SPI

module and uses the PWM for fast refreshing of the RGB LED matrix. Our overall organization

of the application code is command driven. Even though we repeat the same instructions after a

move is played, the game does not progress unless the player has played correct moves.

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -6-

5.0 List of References

[1] "Section 5. Flash Programming," Microchip, [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/70609D.pdf. [Accessed 21 March

2013].

[2] "MPLAB ICD 3 In-Circuit Debugger," Microchip, [Online]. Available:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDo

cName=en537580. [Accessed 21 March 2013].

[3] "Si3000 Voice Band Codec with Microphone/Speaker Drive," Silicon Labs, [Online].

Available: https://www.silabs.com/Support%20Documents/TechnicalDocs/si3000.pdf.
[Accessed 21 March 2013].

[4] "Section 17. UART," Microchip, [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/70582D.pdf. [Accessed 21 March
2013].

[5] "Section 11. Timers," Microchip, [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/S11.pdf. [Accessed 21 March 2013].

[6] "Section 18. Serial Peripheral Interface (SPI)," Microchip, [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/70569C.pdf. [Accessed 21 March
2013].

[7] "SN54LV164A, SN74LV164A 8-Bit Parallel-Out Shift Registers," April 2005. [Online].
Available: http://www.ti.com/lit/ds/symlink/sn74lv164a.pdf. [Accessed 21 March 2013].

[8] "Lab 18: Matrix keypad interfacing," Embedded Lab, 25 August 2011. [Online]. Available:

http://embedded- lab.com/blog/?p=3428. [Accessed 21 March 2013].

[9] "Section 14. High-Speed PWM," Microchip, [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/70645C.pdf. [Accessed 21 March

2013].

[10] P. Schroff, "Check If Legal," Treasure Chess, March 2013. [Online]. Available:

https://engineering.purdue.edu/477grp2/nb/Game%20Logic/checkIfLegal.c. [Accessed 21
March 2013].

[11] P. Schroff, "Possible Moves," Treasure Chess, March 2013. [Online]. Available:

https://engineering.purdue.edu/477grp2/nb/Game%20Logic/possibleMoves.c. [Accessed 21
March 2013].

[12] P. Schroff, "Main Declarations," Treasure Chess, March 2013. [Online]. Available:
https://engineering.purdue.edu/477grp2/nb/Game%20Logic/mainDeclarations.h. [Accessed
21 March 2013].

[13] "16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, USB and
Advanced Analog," Microchip, [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/70616g.pdf. [Accessed 21 March
2013].

[14] "Keypad Scan," [Online]. Available: http://esd.cs.ucr.edu/labs/decode_key/decode_key.html.

[Accessed 21 March 2013].

[15] E. Scimia, "How to Set Up a Chess Board," About.com, [Online]. Available:

http://chess.about.com/od/rulesofchess/ss/Boardsetup_7.htm. [Accessed 21 March 2013].

http://ww1.microchip.com/downloads/en/DeviceDoc/70609D.pdf
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en537580
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en537580
https://www.silabs.com/Support%20Documents/TechnicalDocs/si3000.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70582D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/S11.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70569C.pdf
http://www.ti.com/lit/ds/symlink/sn74lv164a.pdf
http://embedded-lab.com/blog/?p=3428
http://ww1.microchip.com/downloads/en/DeviceDoc/70645C.pdf
file://shay.ecn.purdue.edu/477grp2/pchome/.pcprefs/Desktop/Website/nb/Game%20Logic/checkIfLegal.c
file://shay.ecn.purdue.edu/477grp2/pchome/.pcprefs/Desktop/Website/nb/Game%20Logic/possibleMoves.c
file://shay.ecn.purdue.edu/477grp2/pchome/.pcprefs/Desktop/Website/nb/Game%20Logic/mainDeclarations.h
http://ww1.microchip.com/downloads/en/DeviceDoc/70616g.pdf
http://esd.cs.ucr.edu/labs/decode_key/decode_key.html
http://chess.about.com/od/rulesofchess/ss/Boardsetup_7.htm

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -7-

Appendix A: Flowchart/Pseudo-code for Main Program

Figure 1: Main program flow. The same steps are repeated for both the players
after resetting the chess board.

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -8-

Appendix B: Hierarchical Block Diagram of Code Organization

Figure 2: Hierarchical Block Diagram

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -9-

Appendix C: Related Images

 Figure 3: Memory Organization for PIC24EP512GU810 [13]

Figure 4: Characters display on the RGB LED matrix (4x4)

ECE 477 Digital Systems Senior Design Project Rev 9/12

 -10-

Figure 5: Connections for Keypad Scanning [14]

Figure 6: Chessboard Layout [15]

