THE INCREDIBLE HUD

UPDATED PSSCs

- An ability to display critical system information via a heads-up-display (HUD)
- An ability to measure telemetry information (speed, acceleration, temperature, humidity and GPS) and store it to flash memory.
- An ability to maintain portability through the use of a rechargeable battery system
- An ability to enable/disable important features within the display (full information, minimal, on/off).
- An ability to plot recorded GPS data on a map while overlaying telemetry information on a computer.

MAJOR DESIGN CONSTRAINTS

• Electrical specifications:

- Microcontroller responsible for fusing sensor and GPS data into meaningful packets to be delivered to Intel Atom motherboard
- Intel Atom board responsible for processing rear-view camera feed, generating GUI elements and outputting VGA signal to HUD

Optical performance:

Collimated light & combiner glass

Packaging:

- Majority of components must fit onto helmet
- Design must be robust enough to be water/dust/impact resistant

MAJOR DESIGN CONSTRAINTS

MAJOR DESIGN CONSTRAINTS

• Electrical specifications:

- Microcontroller responsible for fusing sensor and GPS data into meaningful packets to be delivered to Atom motherboard
- Atom board responsible for processing rear-view camera feed,
 generating GUI elements and outputting VGA signal to HUD

Optical performance:

Collimated light & combiner glass

Packaging:

- Majority of components must fit onto helmet
- Design must be robust enough to be water/dust/impact resistant

COMPUTATIONAL REQUIREMENTS

• Intel Atom motherboard:

- Handles all video processing rear-view camera feed control, generate VGA signal for output to projector
- Will render GUI elements with telemetry information

PIC32 microcontroller:

- Sampling information from GPS module, temperature sensor
 & accelerometer @10Hz
- Process raw accelerometer data into meaningful "G-force"
 value, GPS data into meaningful location and heading data
- Perform signal conditioning on raw GPS data
- Parse and transmit aggregated sensor data to Intel Atom board in a custom packet format via RS-232 connection
- Sample and process control device inputs

eBox510-820-FL

ON-CHIP PERIPHERAL REQUIREMENTS

Peripheral(s)	Туре	Number of channels
Thermometer (TI TMP102 Breakout)	ATD	1
Accelerometer (Freescale MMA7361 Breakout)	ATD	3
GPS Module (Trimble Copernicus 12-Channel Module)	SCI	1
Microcontroller→ Atom board connection	RS-232 or USB	1/1
Rotary encoder	GPIO	2
Select/Back buttons	GPIO	2
Rear-view insta-select/Kill-switch buttons	GPIO	2
Data collection algorithms & rotary encoder input decoding	TIM	2
Audio feedback to helmet (tentative)	PWM/ Atom	1/1

POWER CONSTRAINTS

- Intel Atom motherboard (Board = 5V, Die = 1.1V)
 - Supports advance power saving features such as SpeedStep
 - Consumes approximately 2W, current draw of processor expected to be ~1.8A
- PIC32 microcontroller & sensors
 - All components function in the 2.7~3.3V range
 - Collectively expected to draw <50mA
 - GPS module is comparatively power hungry, with 35mA continuous current draw when tracking
- Total current consumption ≈1.9A
 - Desired runtime ≥ 2.5hrs
 - Battery capacity requirement ≥ 4800mAh

PACKAGING CONSTRAINTS

- Contain as much of the hardware as possible on the helmet itself
- Allow for sufficient heat dissipation by the projector, Atom processor, and GPS mod.
- Optimize device for hostile and extreme environments by 'ruggedizing' it.
 - Water, dust and impact-resistant
- Battery may have to be relocated offhelmet due to size required – possibly integrated into a neck-brace or backpack

COST CONSTRAINTS

- Closest competitors are diopter based:
 - 'Smart' ski-goggles (\$631)
 - Retro-fit helmet HUD (\$N/A)
- The Incredible HUD is a novel device in both feature-set and display technology
- Target cost is ≤ \$1000
 - Display alone = \$300
- Costs could be significantly reduced in mass production heavy prototyping costs%

COMPONENT SELECTION: Projector

COMPONENT SELECTION: Motherboard

ARMv7 based motherboard

Only UNIX OSes supported

No packaging solutions readily available – would have to be custom fabricated

Sponsorship not available ~ \$150-\$200

Intel Atom based motherboard

UNIX and Windows Embedded 7 support

Rugged case available

Free!

COMPONENT SELECTION: Microcontroller

Low power consumption

Abundance of on-chip-peripherals

Native USB support

Previous experience with PIC32s

Easily and quickly sampled from Microchip

Block Diagram: Microcontroller

Block Diagram: Microcontroller

Questions or Comments?