
© 2008 Microchip Technology Inc. DS01045B-page 1

AN1045

INTRODUCTION
This application note describes the usage of file I/O
functions using Microchip’s memory disk drive file
system library. Microchip’s memory disk drive file
system is:

• Based on ISO/IEC 9293 specifications
• Known as the FAT16 file system, used on earlier

DOS operating systems by Microsoft® Corporation
• Also supports the FAT32 file system
• Most popular file system with SD (Secure

Digital) card, CF (CompactFlash®) card and USB
thumb drive

Most SD cards and MMCs (MultiMedia Cards), particu-
larly those sized below 2 gigabytes (GBs), use the
FAT16 standard. The FAT32 standard can be used to
address memory sized between 2 gigabytes and
2 terabytes. This application note provides a method to
read and/or write to these storage devices through a
microcontroller. The data of these storage devices can
be read by a PC, and the data written by a PC can be
read by a microcontroller. Most operating systems (i.e.,
Windows® XP) support the FAT16 and FAT32 file
systems.

SD CARDS AND MMCS

SD cards and MMCs are proprietary and removable
Flash technology-based media licensed by the SD
Card Association and the MM Card Association (see
“References”).

Functionally, the two card formats are similar. However,
the SD card has optional encryption security features
that are not customarily found on the MMC. The
specifications of these devices and the terms and
conditions for their use vary, and should be verified for
further application licensing information.

INTERFACE
The PICtail™ Daughter Board for SD and MMC,
Microchip product number AC164122, provides an
interface between SD or MMC and a
PIC® microcontroller through the Serial Peripheral
Interface (SPI) bus. The PICtail Daughter Board is
designed to operate with a multitude of demonstration
boards, including all those having PICtail or PICtail
Plus Daughter Board interfaces.

The SPI protocol uses four basic pins for
communication: Serial Data In (SDI), Serial Data Out
(SDO), Serial Clock (SCK), and Chip Select (CS).
Additionally, all SD card sockets have two electrically
determined signals, card detect and write-protect that
allow the user to determine if the card is physically
inserted and/or write-protected.

The MMC does not have a physical write-protect
signal, but most card connectors will default to a
non-write-protected state in this case.

For more information about interfacing PIC micro-
controllers to SD cards or MMCs, refer to AN1003,
“USB Mass Storage Device Using a PIC® MCU”
(DS01003) available on the Microchip web site
(www.microchip.com).

Authors: Peter Reen and Naveen Mohanswamy
Microchip Technology Inc.

Important: It is the user’s responsibility to obtain a
copy of, familiarize themselves fully
with, and comply with the requirements
and licensing obligations applicable to
third party tools, systems and/or
specifications including, but not limited
to, Flash-based media and FAT file
systems available from CompactFlash
Association, SD Card Association,
MultiMediaCard Association and
Microsoft Corporation.
Refer to the license agreement for
details.

Implementing File I/O Functions Using Microchip’s Memory
Disk Drive File System Library

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

AN1045

DS01045B-page 2 © 2008 Microchip Technology Inc.

CARD FILE SYSTEM
A FAT16 file system stores data in sectors. A sector
size of 512 bytes is common. Since the number of
available memory addresses is capped at FFFFh,
sectors can be grouped into clusters that share an
address to increase the size of the card.

The first sector on a card is the Master Boot Record
(MBR). The MBR contains information about different
logical subdivisions on a card, known as partitions.
Each partition can be formatted with a unique file
system. Typically, an SD card or MMC has only one
active partition, which comprises the following parts:

• Boot Sector – This is the first sector of the
partition and contains basic information about the
file system type.

• FAT Regions – This region is the map of the card,
which indicates how the clusters are allocated in
the data region. Generally, there are two copies of
the FAT in this region to provide redundancy in
case of data corruption.

• Root Directory Region – In the FAT16 file system,
this region follows the FAT region. In the FAT32
file system, the root is an ordinary cluster chain
and can be located anywhere on the volume. The
root directory is composed of a directory table that
contains entries for subdirectories and files. Other
directories and files have entries in the directory
tables of the directories in the root.

Collectively, the first three sections are the system
area. The remaining space is the data region.

• Data Region – Stores file data or subdirectory
directory tables. The data stored in this region
remains intact even if it is deleted or until it is
overwritten.

The FAT16 system uses 16-bit FAT entries, allowing
approximately 65,536 (216) clusters to be represented;
the FAT32 system uses 32-bit FAT entries (effectively
only 28 bits) allowing approximately 268,435,456 (228)
clusters to be addressed.

A signed byte in the boot sector defines the number of
sectors per cluster for a disk. This byte has a range of
-128 to 127. The only usable values in the FAT file
system are positive, power-of-two values (1, 2, 4, 8, 16,
32 and 64). This means with the standard 512-byte
sector, the FAT16 file system can support a maximum
of 2 GB disk space.

The memory structure of an SD card or an MMC is
illustrated in Figure 1.

FIGURE 1: DISK STRUCTURE

Master Boot Record
The MBR contains information that is used to boot the
card and information about the partitions on the card.
The information in the MBR is programmed at the time
of manufacture and any attempt to write to the MBR
could render the disk unusable.

Table 1 provides the contents of the MBR.

TABLE 1: CONTENTS OF THE MBR
Offset Description Size

000h Boot Code (machine code and
data).

446 bytes

1BEh Partition Entry 1. 16 bytes

1CEh Partition Entry 2. 16 bytes

1DEh Partition Entry 3. 16 bytes
1EEh Partition Entry 4. 16 bytes

1FEh Boot Signature Code (55h AAh). 2 bytes

Unused Disk Space

P
ar

tit
io

n
1

Sp
ac

e

Data Space

Boot Sector

FAT n

Master Boot Record

Unused Disk Space

FAT 1

Root Directory

Legend: n = number of FATs.

© 2008 Microchip Technology Inc. DS01045B-page 3

AN1045
Partition Entry in the MBR
A partition table entry of the master boot record
contains the Information about a partition on the disk. A
file system descriptor is included in the entry to indicate
which type of file system was specified when the
partition was formatted. The following file descriptor
values indicate the FAT16 formatting:

• 04h (16-bit FAT, < 32M)
• 06h (16-bit FAT, ≥ 32M)
• 0Eh (DOS CHS mapped)

SD cards generally contain a single active partition.

Table 2 provides the contents of a partition table entry.

Boot Sector
This is the first sector of a partition. It contains file sys-
tem information and pointers to important parts of the
partition. The first entry in the boot sector is a command
to jump past the boot information.

Table 3 provides the entire content of the boot sector.

TABLE 2: PARTITION TABLE ENTRY
Offset Description Size

00h Boot Descriptor (80h if
active partition, 00h if inactive).

1 byte

01h First Partition Sector. 3 bytes
04h File System Descriptor. 1 byte
05h Last Partition Sector. 3 bytes
08h Number of Sectors between the

Master Boot Record and the First
Sector of the Partition.

4 bytes

0Ch Number of Sectors in the Partition. 4 bytes

TABLE 3: BOOT SECTOR ENTRY
Offset Description Size

00h Jump Command. 3 bytes
03h OEM Name. 8 bytes
0Bh Bytes per Sector. 2 bytes
0Dh Sectors per Cluster. 1 byte
0Eh Total Number of Reserved

Sectors.
2 bytes

10h Number of File Allocation Tables. 1 byte
11h Number of Root Directory Entries. 2 bytes
13h Total Number of Sectors (bits 0-15

out of 48).
2 bytes

15h Media Descriptor. 1 byte
16h Number of Sectors per FAT. 2 bytes
18h Sectors per Track. 2 bytes
1Ah Number of Heads. 2 bytes
1Ch Number of Hidden Sectors. 4 bytes
20h Total Number of Sectors

(bits 16-47 out of 48).
4 bytes

24h Physical Drive Number. 1 byte
25h Current Head. 1 byte
26h Boot Signature. 1 byte
27h Volume ID. 4 bytes
2Bh Volume Label. 11 bytes
36h File System Type (not for

determination).
8 bytes

1FEh Signature (55h, AAh). 2 bytes

AN1045

DS01045B-page 4 © 2008 Microchip Technology Inc.

Root Directory
The root directory stores file and directory information
in 32-byte entries. Each entry includes the filename, file
size, the address of the first cluster of the file and the
time the file was created or modified.

In the FAT16 file system, the root directory region is
located after the FAT region. In the FAT32 file system,
the root is an ordinary cluster chain and can be located
anywhere on the volume.

Table 4 provides the contents of a root directory entry.

TABLE 4: ROOT DIRECTORY ENTRIES

TABLE 5: POSSIBLE VALUES FOR THE
FIRST CHARACTER IN THE
DIRECTORY FILENAME

File Allocation Table
The FAT has space for an entry that corresponds to
every cluster in the data cluster section of the partition.
This entry would be 2 bytes in case of FAT16 and
4 bytes in the FAT32 file system. For example, the third
set of two bytes in the FAT will correspond to the first
cluster in the data region.

Figure 2 illustrates an example of this. A value placed
in each position can indicate many things.

Table 6 provides a list of FAT values.

Each file has at least one cluster assigned to it. If that
file size is smaller than the size of a cluster, the FAT
entry for that cluster will contain the last cluster value
indicating that there are no more clusters assigned to
that file; else, it will contain the value of the next cluster
of the file. By linking clusters in this way, the FAT can
create a chain of clusters to contain larger files and can
allocate non-sequential clusters to a file. Figure 2
illustrates an example of this.

It is important to note that the values that would point
towards Clusters 0 and 1 are reserved to indicate
special conditions. Because of this, the first cluster in
the data region is labeled as Cluster 2. The FAT entries
corresponding to Clusters 0 and 1 contain the media
descriptor, followed by bytes containing the value, FFh.

Note: Generally, a file entry conforms to “eight
dot three” short filename format. Only
digits, 0 to 9, letters, A to Z, the space
character and special characters, ‘! # $ %
& () - @ ^ _ ` { } ~ ‘,’, are used. Although it
is customary to consider the period (.) and
extension as elements of the filename, in
this case, none of the characters after the
initial name are used as part of the actual
filename.
For example, a file named FILE.txt
would have the filename FILE_ _ _ _ in
the root directory with the final four
characters replaced by four instances of
the space character, 20h.

Offset Description Size

00h Filename(1). 8 bytes
08h File Extension. 3 bytes
0Bh File Attributes. 1 byte
0Ch Reserved. 1 byte
0Dh File Creation Time (ms portion). 1 byte
0Eh File Creation Time (hours,

minutes and seconds).
2 bytes

10h File Creation Date. 2 bytes
12h Last Access Date. 2 bytes
14h Extended Address-Index. 2 bytes
16h Last Update Time (hours, minutes

and seconds).
2 bytes

18h Last Update Date. 2 bytes
1Ah First Cluster of the File. 2 bytes
1Ch File Size. 4 bytes
Note 1: The first character of the filename can

take on special values (see Table 5).

Value Description

00h This entry is available and no subsequent
entry is in use.

E5h The file in this entry was deleted and the
entry is available.

05h The first character in the filename is E5h.
2Eh This entry points to the current or previous

directory.

© 2008 Microchip Technology Inc. DS01045B-page 5

AN1045
TABLE 6: FAT VALUES

FIGURE 2: FAT CLUSTER CHAIN

The “First Cluster” values in three file entries in the root
directory indicate the start of three files. The FAT
Values demonstrate the links between the files. File 1
and 3 are smaller than the size of a cluster; hence, only
one cluster is assigned to them. The entries in the FAT
that correspond to these files contain only the
End-Of-File (EOF) value.

File 2 is larger than three clusters, but smaller than
four; hence, four clusters are assigned to it. Since three
consecutive clusters were not available when File 2
was created, nonconsecutive clusters were assigned
to it; this is called “fragmentation”. Each value in the
FAT for File 2 point to the next cluster in the file. The
last entry in the FAT for File 2 contains the End-Of-File
value.

FAT16 Values FAT32 Values Description

0000h 0000h Cluster is available for use.
0001h 0001h Cluster is reserved.
0002-FFEFh 0000 0002-0FFF FFEFh Points to next cluster in the file.
FFF0-FFF6h 0FFF FFF0-0FFF FFF6h Cluster is reserved.
FFF7h 0FFF FFF7h Cluster is bad.
FFF8h-FFFFh 0FFF FFF8h-0FFF FFFFh Last cluster of a file.

FAT Position Value

File 1

File 2, Part 1

File 2, Part 2

File 3

File 2, Part 3

File 2, Part 4

Available Cluster

File 1 → Cluster 3

File 2 → Cluster 4

File 3 → Cluster 6

0003h

0004h

0005h

0006h

0007h

0008h

0009h

FFFFh

0005h

0007h

FFFFh

0008h

FFFFh

0000h

“First Cluster” Values from File Entries

Contents of Data Clusters

FAT Values

Note 1: Two-byte cluster values in this figure are for the FAT16 file system. FAT32 uses four-byte cluster values, as
indicated in Table 6.

AN1045

DS01045B-page 6 © 2008 Microchip Technology Inc.

Directories
Except for the root directory, the directories in this file
system are written in the same way that files are
written. Each directory occupies one or more clusters in
the data section of the partition, and has its own
directory entry and chain of FAT entries. Bit four of the
attribute field in the directory entry of a directory is set,
indicating that the entry belongs to a directory.
Directory names in this library follow the short filename
format (8.3 format). Directories differ from files; they do
not have an extension.

Each directory contains 32-byte directory entries. Two
directory entries, the dot entry and the dot dot entry are
present in every directory except the root directory. The
dot entry is the first entry in any subdirectory. The name
value in this entry is a single dot (2Eh) followed by ten
space characters (20h). The pointer of this entry to the
first cluster of its “file” will actually point to the cluster
that contains the entry itself. The dot dot entry is similar,
except the name contains two dots followed by nine
spaces, and the pointer to the first cluster in the “file”
will point to the directory that contains the entry for the
directory that the dot dot entry is in (the previous
directory).

When the directories are enabled in this library, all file
modification will be done in the Current Working
Directory (CWD). When the card is initialized by calling
FSInit, the CWD is automatically set to the root
directory. After this, the CWD can be changed with the
FSchdir function.

Follow these conventions when specifying path names
in the directory manipulation functions:

Directory names in a path string are delimited by the
backslash character (\). When denoting a backslash
character in a string, an additional backslash must be
added as part of an escape sequence, as the
backslash is used by C to begin escape sequences.

• If the first character of a path string is a backslash,
the path will be assumed to be specified relative
to the root directory.

• If a path string begins with a directory name, the
path will be assumed to be specified relative to
the current working directory.

• If a dot (.) or dot dot (..) is included in the path as a
directory name, the code will operate using those
directory entries.

For example, if the user changes the CWD to
“.\TEST\..\TEST\..\.\.”, the current working
directory would not change from where it originally
started, assuming that the directory, TEST, exists in
the original directory.

Table 7 provides more examples of path strings.

TABLE 7: EXAMPLE DIRECTORY PATH STRINGS

Note: When hard-coding the string in C, double
backslashes are required. Refer to the API
descriptions of FSmkdir, FSchdir,
FSrmdir and FSgetcwd.

Path Meaning

“\” The root directory.
“.” Current directory.
“..” Previous directory.
“ONE” Directory ONE in the current directory.
“.\ONE” Directory ONE in the current directory.
“\ONE” Directory ONE in the root directory.
“..\ONE” Directory ONE in the previous directory.
“ONE\TWO” Directory TWO in directory ONE in the current directory.
“\ONE\TWO” Directory TWO in directory ONE in the root directory.
“ONE\..\TWO” Directories ONE and TWO in the current directory (this path could be used to create

non-existent directories in the same place using the FATmkdir function).

© 2008 Microchip Technology Inc. DS01045B-page 7

AN1045
SOFTWARE LIBRARY

User Functions
To manage file and disk manipulation, call functions are
provided in Table 8.

TABLE 8: FILE AND DISK MANIPULATION FUNCTIONS
Function Name Description

FSInit Initializes the card, loads the master boot record (partition information), loads the boot sector
and updates the parameters passed into it with its information.

FSfclose Updates the file information, writes the remaining entry in and frees the RAM from the heap
that was used to hold the information about that file. This also updates the time-stamp
information for the file.

FSfeof Verifies if the end of the file has been reached.
FSfopen Allocates space in the heap for file information. If the file being opened already exists,

FSfopen can open it so that the data would be appended at the end of the file, erase it and
create a new file with the same name to be written to, or simply open it for reading. If the file
does not exist, FSfopen can create it. This function then returns a pointer to the structure in
the heap that contains information for this file.

FSfopenpgm Opens a file on the SD card and associates an FSFILE structure (stream) with it using
arguments specified in ROM. This function is necessary only on the PIC18 architecture.

FSfread Reads information from an open file to a buffer. The number of bytes written can be specified
by its parameters. If FSfread is called consecutively on the same open file, the read will
continue from the place it stopped after the previous read. This function returns the number of
data objects read.

FSfseek Changes the position in a file. When a user calls FSfseek, they specify the base address to
set, which can either be at the beginning or end of the file, or at the current position in the file.
The user also specifies an offset to add to the base (note that if the base address is at the end
of the file, the offset will be subtracted). Hence, if FSfseek is called with the base set to the
beginning of the file and a specified offset of ‘0’, the position would be changed to the first byte
of the file.

FSftell Returns the current position in the file. The first position in the file is the first byte in the first
sector of the first cluster, which has the value ‘0’. Hence, if a file was created and 2000 bytes
were written to it, FSftell would return the number 1999 if it was called.

FSfwrite Writes information from a buffer to an open file. The algorithm it uses reads a sector from the
data region of the disk to SRAM, modifies the relevant bytes and then writes the sector back to
the disk. Because each FSfwrite call reads the data first, the ability to open multiple files at a
time is supported. This also means that writing data in larger blocks takes less time than writing
the same data in smaller blocks as fewer sector reads and writes will be needed.

FSremove Searches for a file based on a filename parameter passed into it. If the file is found, its directory
entry is marked as deleted and its FAT entry is erased.

FSremovepgm Deletes the file identified by a given filename. If the file is opened with FSfopen, it must be
closed before calling FSremovepgm. The filename must be specified in ROM. This function is
necessary only on the PIC18 architecture.

FSrename Changes the name of a file or directory. If the pointer passed into this function is NULL, the
name of the current working directory will be changed.

FSrewind Resets the position of the file to the beginning of the file.
FSmkdir (directory
manipulation)

Creates a new subdirectory in the current working directory.

FSchdir (directory
manipulation)

Changes the current working directory to the one specified by the user.

FSrmdir (directory
manipulation)

Deletes the specified directory. The user may also choose to specify whether subdirectories
and files contained within the deleted directory are removed. If the user does not permit the
function to delete subdirectories, it fails if the user attempts to delete a non-empty directory.

AN1045

DS01045B-page 8 © 2008 Microchip Technology Inc.

Library Setup
This section provides a list of customizations that can
be used with this library. Perform the following steps
before compiling a project:

1. Add the appropriate physical layer file to the
project. Interfaces for the SD card in SPI mode
(SD-SPI.c, SD-SPI.h) and the CompactFlash
card using the PMP module (CF-PMP.c,
CF-PMP.h) or manual bit toggling (CF-Bit
transaction.c, CF-Bit transaction.h)
are provided. Set the appropriate physical layer
header file by including one of the filenames in
FSconfig.h.

2. Define the system clock frequency in
FSconfig.h.

3. Users, who want to configure static memory for
file objects should specify the maximum number
of files that are going to be open at any one time
in FSconfig.h.

4. Users, who want to configure SD SPI interface
should specify the appropriate register names in
SD-SPI.h.

For example, if SPI module 1 is used on PIC24,
change the definition of SPI1CON to SPI1CON1.
If module 2 is used, change the definition to
SPI2CON1.

5. PIC18 users should modify the linker file to
include a 512-byte section of RAM that will act
as a buffer for file reads/writes. This buffer is
defined at the top of the physical interface files.
Also create a section in the linker mapped to this
RAM called dataBuffer. Repeat this process
to create a buffer for FAT reads and writes. This
buffer requires a section mapped to the RAM
you allocate called FATBuffer.

6. Users, who want to configure dynamic memory
to allocate file objects should set the
corresponding preprocessor directive in the
FSconfig.h file to “#if 1”. If PIC18 is used, a
section called, _SRAM_ALLOC_HEAP, must be
created in the linker file that contains enough
memory to contain all the opened file objects.
Each file object is 46 bytes. Due to variation in
the memory allocation algorithm, the allocated
memory size will be larger. This is also true
when using a PIC24. Verify that enough memory
was allocated to the heap. Include the
salloc.c and salloc.h files in the project
when using PIC18. When using dynamic
memory allocation with the PIC24, a heap in the
MPLINK30 tab of the Build Options menu should
be created.

7. Set the library path and include path (and linker
path, if PIC18) in the General tab of the Build
Options menu.

FSgetcwd
(directory
manipulation)

Returns the name of the current working directory to the user.

FindFirst Locates files in the current working directory that meet the name and attribute criteria. A
SearchRec Structure Pointer will be passed into the function. Once a file is located, the file-
name, file size, create time and date stamp, and attributes fields in the SearchRec structure
will be updated with the correct file information.

FindFirstpgm Operates in the same manner as the FindFirst function, except the name criteria for the file
to be found will be passed into the function in ROM. This function is necessary only on the
PIC18 architecture.

FindNext Locates the next file in the current working directory that matches the criteria specified in the
last call of FindFirst or FindFirstpgm. It will then update the SearchRec structure
provided by the user with the file information.

FSformat Erases the root directory and file allocation table of a card. The user may also call the function
in a mode that causes it to create a new boot sector based on the information in the master
boot record.

FSfprintf Writes a formatted string to a file. It automatically replaces any format specifiers in the string
with dynamic values from variables passed into the function. Integer promotion must be
enabled in the build options menu when using this function with the PIC18 architecture.

SetClockVars Used in user-defined Clock mode to manually set the current date and time. This date and time
would be applied to files as they are created or modified.

TABLE 8: FILE AND DISK MANIPULATION FUNCTIONS (CONTINUED)
Function Name Description

© 2008 Microchip Technology Inc. DS01045B-page 9

AN1045
8. Set the required input and output pins in

your physical layer header file (SD-SPI.h,
CF-PMP.h, …).

9. Make sure that all pins used are configured as
digital I/Os, including the PORTB pins set in the
Configuration registers and any pins that could
be analog channels for the A/D converter.

10. Select the appropriate device and language
toolset. The compiled code will be appropriate to
the processor type (PIC18, PIC24F, PIC24H,
dsPIC30 or dsPIC33).

11. There are several definitions in FSconfig.h
that can be used to disable option (functionality)
to save code space if these functions are not
required. To enable the functionality,
uncomment the option definition in the code.
The available options are shown in Table 9:

12. Uncomment a define to select a Clock mode for
determining file create/modify/access times.
The Increment Time-Stamp mode will set the
times to a static value and will not provide accu-
rate timing values. This mode is useful when file
times are unimportant, as it reduces complexity.
The User-Defined Clock mode will allow the
user to manually set the timing values using the

SetClockVars function. The Use Real-Time
Clock mode will set the timing values auto-
matically based on the values in the Real-Time
Clock and Calendar (RTCC) module. This mode
will require the user to enable and configure the
RTCC module, and it is not available in
architectures that do not support RTCC.

TABLE 9: LIBRARY OPTIONS
Option Description

ALLOW_WRITES Enables write functions to write data to the card.
ALLOW_DIRS Enables directory functions such as, creating, changing, and so on.

Note: Writes must be enabled to use directories.
ALLOW_FORMATS Enables card formatting function.

Note: Writes must be enabled to use directories.
ALLOW_FILESEARCH Enables file and directory search functions, such as FindFirst and FindNext.
ALLOW_PGMFUNCTIONS Enables the pgm functions, such as FSfopenpgm, FSremovepgm and so on for PIC18.

These functions accept parameters passed through ROM (pgm functions) on PIC18.
The pgm functions will not work with other architectures. However, arguments in ROM
can be passed into standard functions (e.g., FSfopen instead of FSfopenpgm) directly
in PIC24, dsPIC30 and dsPIC33 architectures.

ALLOW_FSFPRINTF Enables FSfprintf function.
Note: Writes must be enabled to use directories.

SUPPORT_FAT32 Enables FAT32 functionality.

AN1045

DS01045B-page 10 © 2008 Microchip Technology Inc.

FAT16/FAT32 Initialization and File
Creation
The following C18 code example illustrates a basic
sequence of function calls to open a file for reading.
This example initializes the card with the FSInit
function, and then calls FSfopen to create a new file.
Then, the code calls FSfopenpgm, a function which
performs the same function as FSfopen, but accepts

ROM parameters. This call opens an existing file in the
Read mode. The code reads one 10-byte object and
five 1-byte objects from the existing file. The example
also describes how the code writes these objects to the
newly created files, and then closes both the files.
Finally, the code deletes the old file. It is important to
close a currently open file before deleting it.

EXAMPLE 1: INITIALIZATION AND FILE CREATION FOR PIC18

#include “FSIO.h”

#define bfrsize 5

void main(void)
{

FSFILE *pOldFile, pNewFile;
char myData[20];
char bfr [6];
int bytesRead, bytesWritten;
char newFile[] = “newfile.txt”;
char writeArg = “w”;

// Must initialize the FAT16/FAT32 library. It also initializes SPI and other related
pins.

if(!FSInit())
// Failed to initialize FAT16 – do something…
return 1; // Card not present or wrong format

// Create a new file

pNewFile = FSfopen (newFile, writeArg);

// Open an existing file to read
pOldFile = FSfopenpgm (“myfile.txt”, “r”);
if (pOldFile == NULL)

// Either file is not present or card is not present
return 1;

// Read 10 bytes of data from the file.
bytesRead = FSfread((void*)myData, 10, 1, pOldFile);
// read bfrSize (5) items (of size 1 byte). returns items count
bytesRead = FSfread((void *)bfr, 1, bfrSize, pOldFile);

// Write those fifteen bytes to the new file
bytesWritten = FSfwrite ((void *) myData, 10, 1, pNewFile);
bytesWritten = FSfwrite ((void *) bfr, 1, bfrSize, pNewFile);

// After processing, close the file.
FSfclose(pOldFile);
FSfclose (pNewFile);

//Delete the old file
FSremovepgm (“myfile.txt”);

 }

© 2008 Microchip Technology Inc. DS01045B-page 11

AN1045
Memory Usage
Table 10 provides the unoptimized memory usage for
the file interface library using the SD-SPI physical layer.
512 bytes of data memory are used for the data buffer
and an additional 512 bytes are used for the file
allocation table buffer. Additional data memory would
be required based on the number of files opened at a

time. The default values provided are for two files
opened in Static Allocation mode. The C18 data
memory value includes a 200h byte stack. The first row
of the table indicates the smallest amount of memory
that the library will use (for Read-Only mode), and each
subsequent row indicates the increase in memory
caused by enabling other functionality.

TABLE 10: FILE I/O LIBRARY MEMORY USAGE(1)

Prerequisites
• During sector reads and writes, the card should

not be removed.
• The size of the PIC18 stack might have to be

increased. Otherwise, a stack overflow could
occur when functions are called and the data is
pushed to the stack. If the stack size is increased
in this way, the memory model in the
Project > Build Options > C18 tab must be set
to “Multi-Bank Model”. To change the size of the
stack, the linker script must be modified. An
example of this is given in Appendix A: “The
PIC18 Linker Script”.

Description of Data Types and Structures
• DISK – The DISK structure contains information

about the physical disk. Never directly use the
information stored in this structure.

• FILE – The FILE structure contains information
about a file on the disk. Never directly use the
information stored in this structure.

• Types defined in GenericTypedefs.h:
- BYTE – An unsigned char (8 bits)
- WORD – A short int (16 bits)
- SWORD – An unsigned short long (24 bits)
- DWORD – An unsigned long (32 bits)

• SearchRec – The SearchRec structure contains
the name, create time and date stamps, size and
attributes of a file found using the FindFirst,
FindFirstpgm or FindNext function.

Table 11 provides the contents of the SearchRec
structure.

Functions Included Program Memory
(C30)

Data Memory
(C30)

Program Memory
(C18)

Data Memory
(C18)

All extra functions disabled
(Read-Only mode)

11934 bytes 1454 bytes 11099 bytes 2121 bytes

File search enabled +1854 bytes +0 bytes +2098 bytes +0 bytes
Write enabled +6810 bytes +0 bytes +7488 bytes +0 bytes
Format enabled
(write must be enabled)

+2499 bytes +0 bytes +2314 bytes +0 bytes

Directories enabled
(write must be enabled)

+8430 bytes +78 bytes +8380 bytes +90 bytes

Directories and search are
both enabled

+51 bytes +0 bytes +118 bytes +0 bytes

pgm functions enabled N/A N/A +288 bytes +0 bytes
FSfprintf enabled +4749 bytes +0 bytes +2758 bytes +0 bytes
FAT32 support enabled +423 bytes +4 bytes +407 bytes +4 bytes
Note 1: This is a resource requirement for V1.02. Refer to the ReadMe file for version-specific resource

requirements. This library was compiled using MPLAB® C18 v8.02, v.3.13 and C30 v.3.01 compilers.

AN1045

DS01045B-page 12 © 2008 Microchip Technology Inc.

TABLE 11: CONTENTS OF THE SearchRec STRUCTURE
Element Function

char filename The name of the file (NULL terminated)
unsigned char attributes The file attributes
unsigned long file size The size of the file in bytes
unsigned long time-stamp The create time and date of the file

unsigned int entry The file entry in the current working directory (for internal use only)
char search name The string that the user searched for (for internal use only)
unsigned char search attr The file attributes that the user searched for (for internal use only)
unsigned int cwd clus The cluster number of the directory that the search was performed in (for

internal use only)
unsigned char initialized Indicates that the SearchRec object has been initialized with search

information by a call from FindFirst (for internal use only)

Bits Value

31:25 Year (0 = 1980, 1 = 1981, …)
24:21 Month (1 = Jan, 12 = Dec)
20:16 Day (1-31)
15:11 Hours (0-23)
10:5 Minutes (0-59)
4:0 Seconds/2 (0-29)

© 2008 Microchip Technology Inc. DS01045B-page 13

AN1045

UNSUPPORTED FEATURES
Long filenames are not supported.

REFERENCES
• SD Card Association – http://www.sdcard.org
• CompactFlash® Association –

http://www.compactflash.org
• The following documents are referenced by this

application note.
- SD Memory Card Specifications, Part 1

“Physical Layer Specification”, Version 1.01,
September 2000

- SD Memory Card Specifications, Part 2 “File
System Specification”, Version 1.0, February
2000

• MultiMediaCard Association –
http://www.mmca.org

• PCGuide: FAT File System Disk Volume Structures –
http://www.pcguide.com/ref/hdd/file/fat.htm

• ISO/IEC 9293 –
http://www.iso.ch/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER = 21273

• FAT32 File System Specification –
http://www.microsoft.com/whdc/system/
platform/firmware/fatgen.mspx

• From Wikipedia –
http://en.wikipedia.org/wiki/Fat16

CONCLUSION
File creation and storage are undoubtedly useful for
applications that need to store large or small amounts
of data over a long period. By using this application
note and the C18/C30 code provided with it, project
development time can be minimized.

http://www.mmca.org
http://www.mmca.org
http://www.pcguide.com/ref/hdd/file/fat.htm
http://www.pcguide.com/ref/hdd/file/fat.htm
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER = 21273
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER = 21273
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
http://en.wikipedia.org/wiki/Fat16
http://en.wikipedia.org/wiki/Fat16
http://www.sdcard.org
http://www.compactflash.org
http://www.compactflash.org

AN1045

DS01045B-page 14 © 2008 Microchip Technology Inc.

APPENDIX A: THE PIC18 LINKER
SCRIPT

This sample linker script reserves three blocks of
memory:

• Specified by section, _SRAM_ALLOC_HEAP
• Specified by section, dataBuffer
• Specified by section, FATBuffer

The heap section need not be reserved if dynamic
memory is not being used to store file objects.

This script contains a 0x200 byte stack. If a stack spans
multiple memory banks, like the Example A-1 script
does, the “Multi-Bank” model should be selected from
the Project Build Options menu.

EXAMPLE A-1: PIC18 LINKER SCRIPT
// $Id: 18f8722i.lkr,v 1.4 2005/12/19 16:40:18 nairnj Exp $
// File: 18f8722i.lkr
// Sample ICD2 linker script for the PIC18F8722 processor

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FD7F
CODEPAGE NAME=debug START=0x1FD80 END=0x1FFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr1 START=0x60 END=0xFF
DATABANK NAME=gpr2 START=0x100 END=0x1FF
DATABANK NAME=gpr3 START=0x200 END=0x2FF
DATABANK NAME=gpr4 START=0x300 END=0x3FF
DATABANK NAME=gpr5 START=0x400 END=0x4FF
DATABANK NAME=gpr6 START=0x500 END=0x5FF
DATABANK NAME=gpr7 START=0x600 END=0x6FF
// Allocate 0x200 bytes for the data buffer
DATABANK NAME=buffer1 START=0x700 END=0x8FF PROTECTED
// Allocate 0x200 bytes for the FAT buffer
DATABANK NAME=buffer2 START=0x900 END=0xAFF PROTECTED
// Allocate 0x200 bytes for the heap
DATABANK NAME=gpr8 START=0xB00 END=0xBFF
DATABANK NAME=gpr9 START=0xC00 END=0xDFF
DATABANK NAME=gpr10 START=0xE00 END=0xEF3
DATABANK NAME=dbgspr START=0xEF4 END=0xEFF PROTECTED
DATABANK NAME=gpr11 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
// Create a heap section
SECTION NAME=_SRAM_ALLOC_HEAP RAM=gpr8
// Create the data buffer section
SECTION NAME=dataBuffer RAM=buffer1
// Create the FAT buffer section
SECTION NAME=FATBuffer RAM=buffer2

STACK SIZE=0x200 RAM=gpr9

© 2008 Microchip Technology Inc. DS01045B-page 15

AN1045

APPENDIX B: API DETAILS

FSInit
This API initializes the hardware and mounts the card in the library. If the card is not detected, it returns FALSE.
This must be called before calling any other API function. If the card is removed and inserted, the application must
call FSInit to remount the card. To verify if the card is present, call the MediaIsPresent() low-level function.

Syntax
int FSInit(void)

Parameters
None

Return Values
TRUE if card is present and the format is FAT12, FAT16 or FAT32; FALSE otherwise.

Precondition
None

Side Effects
None

EXAMPLE B-1: FSInit CODE

// Initialize library and detect card

if (FSInit() != TRUE)

 // Failed to initialize FAT16

AN1045

DS01045B-page 16 © 2008 Microchip Technology Inc.

FSfclose
This API closes an opened file.

Syntax
int FSfclose(FSFILE *stream)

Parameters
stream – A pointer to a FILE structure obtained from a previous call of FSfopen.

Return Values
Returns 0 on success.

Returns EOF (-1) on failure.

Precondition
FSfopen was called and the stream contains the pointer returned by FSfopen.

Side Effects
None

EXAMPLE B-2: FSfclose CODE
if(FSfclose(stream) == EOF)

{

 // Failed to close the file

 ...

}

...

© 2008 Microchip Technology Inc. DS01045B-page 17

AN1045
FSfeof

This API detects if End-Of-File (EOF) position is reached.

Syntax
int FSfeof(FSFILE *stream)

Parameters
stream – Pointer to opened file.

Return Values
Returns non-zero if the End-Of-File (EOF) indicator is reached.

Returns 0 otherwise.

Precondition
File is opened successfully.

Side Effects
None

EXAMPLE B-3: FSfeof CODE
if (FSfeof (pFile) == 0)

{

 // Error

 ...

}

AN1045

DS01045B-page 18 © 2008 Microchip Technology Inc.

FSfopen
This API opens a file on the card and associates a FILE structure (stream) with it.

Syntax
FSFILE * FSfopen (const char * fileName, const char *mode)

Parameters
filename – A NULL terminated char string specifying the filename. This string must be stored in RAM. The

filename must be less than 8 characters, followed by a radix (.), followed by an extension
containing three or lesser characters. The filename cannot contain any directory or drive letter
information.

mode – A NULL terminated string specifying the file operation. This string must also be specified in RAM
for PIC18.

The valid strings are:

r Read-Only

w Write If a file with the same name exists, it will be overwritten.
No reads are allowed.

a Append If the file exists, the current location will be set to the end of the file;
otherwise, the file will be created.
No reads are allowed.

Return Values
A pointer to an FSFILE structure to identify the file in subsequent operations; NULL if the specified file could not
be opened.

Precondition
FSInit is called.

Side Effects
None

EXAMPLE B-4: FSfopen CODE
// Create argument strings in RAM and use them to call the function

 FSFILE * fPtr;

 char [11] name = “myFile.txt”;

 char [2] modeArg = “w”;

 fPtr = FSfopen(name, modeArg);

© 2008 Microchip Technology Inc. DS01045B-page 19

AN1045
FSfopenpgm

This API opens a file on the SD card and associates a FSFILE structure (stream) with it using arguments specified
in ROM.

Syntax
FSFILE * FSfopenpgm (const rom char * fileName, const rom char *mode)

Parameters
filename – A NULL terminated char string specifying the filename. This string must be stored in ROM.

The filename must be less than 8 characters, followed by a radix (.), followed by an extension
containing three or less characters. The filename cannot contain any directory or drive letter
information.

mode – A NULL terminated string specifying the file operation. This string must also be specified in ROM.

The valid strings are:

r Read-Only

w Write If a file with the same name exists, it will be overwritten.
No reads are allowed.

a Append The file must exist for this operation.
No reads are allowed.

Return Values
A pointer to the FILE structure to identify the file in subsequent operations, NULL if the specified file could not be
opened.

Precondition
FSInit is called.

Side Effects
None

EXAMPLE B-5: FSfopenpgm CODE
// Create a file called MYFILE.TXT

FSFILE * fPtr;

fPtr = FSfopen(“myfile.txt”, “w”);

AN1045

DS01045B-page 20 © 2008 Microchip Technology Inc.

FSfread
This API reads data from the previously opened file. FSfread reads n items of data, each of length size bytes
from the given file stream. The data is copied to the buffer pointed by ptr. The total number of bytes transferred
is n * size.

Syntax
size_t FSfread(void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr – Pointer to buffer to hold the data read.

size – Length of item in bytes.

n – Number of items to read.

stream – stream pointer to file opened with read (r) mode.

Return Values
On success, FSfread returns the number of items (not bytes) actually read.

On End-Of-File or error it returns ‘0’.

Precondition
File is opened in Read mode.

Side Effects
None

EXAMPLE B-6: FSfread CODE
...

//Read 100 packets of size 10 bytes each

nItems = FSfread(bfr, 10, 100, pFile);

if(nItems == 0)

{

 // No packet was read

 ...

}

else if(nItems < 100)

{

 // did not read all 100 packets. Possible EOF

}

else

{

 //read all 100 packets

 ...

}

© 2008 Microchip Technology Inc. DS01045B-page 21

AN1045
FSfseek

This API moves the File Pointer position associated with the stream. The new position is offset bytes from the
file location given by whence.

Syntax
int FSfseek(FSFILE *stream, long offset, int whence)

Parameters
whence – File location defining the starting point for offset. Must be 0, 1 or 2 as follows:

SEEK_SET 0 File beginning

SEEK_CUR 1 Current File Pointer position

SEEK_END 2 End-Of-File

offset – Number of bytes away from the starting point defined by whence.

stream – Pointer to opened file.

Return Values
Return 0 if success.

Returns -1 on error.

Precondition
File is opened successfully.

Side Effects
None

EXAMPLE B-7: FSfseek CODE

// move 100 bytes forward from the current
position

if(FSfseek(pFile, 100, SEEK_CUR) != 0)

{

 ... // handle error condition

}

AN1045

DS01045B-page 22 © 2008 Microchip Technology Inc.

FSftell
This API returns the current position of the File Pointer.

Syntax
long FSftell(FSFILE *stream)

Parameters
stream – Pointer to opened file.

Return Values
Returns the current File Pointer position on success.

Returns -1 on error.

Precondition
File is opened successfully.

Side Effects
None

EXAMPLE B-8: FSftell CODE
// get current file position

 long pos = FSftell(pFile);

 if (pos == -1)

{

 ... //handle error condition

}

© 2008 Microchip Technology Inc. DS01045B-page 23

AN1045
FSfwrite

This API writes data to the previously opened file, FSfwrite, writes n items of data, each of length size bytes to
the given file stream. The data is copied from the buffer pointed to by ptr. The total number of bytes transferred
is n* size.

Syntax
size_t FSfwrite(const void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr – Pointer to buffer holding data to write.

size – Length of item in bytes.

n – Number of items to write.

stream – stream pointer to file opened with write (w) or append (a) mode.

Return Values
On successful completion, FSfwrite returns the number of items (not bytes) actually written; on error it returns a
short count or 0.

Precondition
File is opened in Write (w) or Append (a) mode.

Side Effects
None

EXAMPLE B-9: FSfwrite CODE
if(FSfwrite(ptr, 100, 20, pFile) != 20)

{

 // not all items were written

 ... //handle error condition

}

AN1045

DS01045B-page 24 © 2008 Microchip Technology Inc.

FSremove
This API deletes the file identified by filename. If the file is opened with FSfopen, it must be closed before calling
FSremove. The filename must be specified in the RAM.

Syntax
int FSremove (const char * filename)

Parameters
filename – A pointer to a NULL terminated string in RAM.

Return Values
Returns 0 on success.

Returns EOF (-1) on failure.

Precondition
FSInit is called successfully.

Side Effects
None

EXAMPLE B-10: FSremove CODE
// Create a string for the file name in RAM and then deletes the file with that name

 char name[] = “myfile.txt”;

 if(FSremove(name) == EOF)

 {

 // error handling

 ...

 }

 ...

© 2008 Microchip Technology Inc. DS01045B-page 25

AN1045
FSremovepgm

This API deletes the file identified by filename. If the file has been opened with FSfopen, it must be closed before
calling FSremovepgm. The filename must be specified in ROM.

Syntax
int FSremove (const rom char * filename)

Parameters
filename – A pointer to a NULL terminated string in ROM.

Return Values
Returns 0 on success.

Returns EOF (-1) on failure.

Precondition
FSInit is called successfully.

Side Effects
None

EXAMPLE B-11: FSremovepgm CODE
// Deletes MYFILE.TXT

if(FSremovepgm (“myfile.txt”) == EOF)

{

 // error handling

 ...

}

...

AN1045

DS01045B-page 26 © 2008 Microchip Technology Inc.

FSrewind
This API resets the file position to the beginning of the file.

Syntax
void FSrewind (FSFILE *stream)

Parameters
stream – A pointer to FILE structure obtained from a previous call of FSfopen.

Return Values
None

Precondition
File should already be opened by a previous call of FSfopen.

Side Effects
None

© 2008 Microchip Technology Inc. DS01045B-page 27

AN1045
SetClockVars

This API sets the timing variables used to set file create/modify/access times. This function is only used when the
user-defined Clock mode is selected.

Syntax
int SetClockVars (unsigned int year, unsigned char month, unsigned char day,
unsigned char hour, unsigned char minute, unsigned char second);

Parameters
year – The year, from 1980 to 2107.

month – The month, from 1-12.

day – The day, from 1-31.

hour – The hour of the day, from 0 (midnight) to 23.

minute – The current minute, from 0 to 59.

second – The current second, from 0 to 59.

Return Values
Returns 0 on success.

Returns -1 if an invalid parameter is passed in.

Precondition
USERDEFINEDCLOCK is defined in FSconfig.h.

Side Effects
Modified global timing variables.

EXAMPLE B-12: SetClockVars CODE
// Set the date and time to

// 2:35:20 PM, January 12, 2007

 if (SetClockVars (2007, 1, 12, 14, 35, 20))

 {

 // Invalid values passed in

 ...

 }

AN1045

DS01045B-page 28 © 2008 Microchip Technology Inc.

FSformat
This API erases the root directory and file allocation table of a card. It can also create a new boot sector, based on
the mode the user calls the function in. FAT32 formatting is not supported.

Syntax
int FSformat (char mode, long int serialNumber, char * volumeID);

Parameters
Mode – 0 Just erase FAT and root.

1 Create a new boot sector. This will fail if the MBR is not present.

serialNumber – The serial number to program into the new boot sector.

volumeID – The name of the card; must be 8 or fewer characters.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Preconditions
None

Side Effects
None

EXAMPLE B-13: FSformat CODE
char volID[] = “MyCard”;

// Erase FAT and root, create new boot sector

// Set Card serial number to 0x12345678,

// Set Card name to “MyCard”

 if (FSformat (1, 0x12345678, volID))

 {

 // Format failed

 …

 }

© 2008 Microchip Technology Inc. DS01045B-page 29

AN1045
FSmkdir

This API creates a directory based on the path string passed by the user. Every non-existent directory in the path
string will be created. Directory names in the path string must be no more than 8 ASCII characters. Directory names
are delimited by the backslash (\) character. A dot (.) as a directory name will access the current directory. Two dots
(..) will access the previous directory. Beginning the path string with a backslash will create the directories specified
in the root directory. Beginning the path string with a directory name will create the directories specified in the
current working directory.

Syntax
int FSmkdir (char * path);

Parameters
path – The path of directories to create.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FSInit is called successfully.

Side Effects
None

EXAMPLE B-14: FSmkdir CODE

char path[] = “\\ONE\\TWO\\THREE\\FOUR”;

// The path starts with a ‘\’ so dir ONE will be created in the root directory if it does
not exist

// Dir TWO will be created in dir ONE if it does not exist. THREE will be created in TWO
FOUR will be created in THREE

if (FSmkdir (path))

{

 // Error

 ...

}

AN1045

DS01045B-page 30 © 2008 Microchip Technology Inc.

FSchdir
This API changes the current working directory based on the path string passed by the user. Directory names are
delimited by the backslash (\) character. A dot (.) as a directory name will access the current directory. Two dots (..)
will access the previous directory. Beginning the path string with a backslash will change to the directory specified
starting from the root directory. Beginning the path string with a directory name will change to the directory specified
starting from the current working directory.

Syntax
int FSchdir (char * path);

Parameters
path – The path of directory to change to.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FSInit is called successfully.

Side Effects
The current working directory will be changed.

EXAMPLE B-15: FSchdir CODE
char path[] = “\\ONE\\TWO\\THREE”;

char path2[] = “..\\..\\..”;

// Change to directory THREE

if (FSchdir (path))

{

 // Error

 ...

}

// Change back to the root

// The first .. will change from THREE to TWO

// The second .. will change from TWO to ONE

// The third .. will change from ONE to the root

// Calling this function with a path of “\\” would also change to the root

if (FSchdir (path2))

{

 // Error

 ...

}

© 2008 Microchip Technology Inc. DS01045B-page 31

AN1045
FSrmdir

This API deletes a directory based on the path string passed by the user. Directory names in the path string must
be no more than 8 ASCII characters. Directory names are delimited by the backslash (\) character. A dot (.) as a
directory name will access the current directory. Two dots (..) will access the previous directory. Specify if the
subdirectories and files in the directory should be deleted.

Syntax
int FSrmdir (char * path, unsigned char rmsubdirs);

Parameters
path – The path of the directory to delete.

rmsubdirs – TRUE All subdirectories and files will be deleted.

FALSE The directory will only be deleted if it is empty.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FSInit is called successfully.

Side Effects
None

EXAMPLE B-16: FSrmdir CODE
char path[] = “\\ONE\\TWO\\THREE\\FOUR”;

// Delete directory FOUR if it exists

if (FSrmdir (path, FALSE))

{

 // Error

 // Maybe there’s something in FOUR

 // Try to delete all contents

 if (FSrmdir (path, TRUE))

 {

 // Error

 // Maybe FOUR just does not exist

 ...

 }

 ...

}

AN1045

DS01045B-page 32 © 2008 Microchip Technology Inc.

FSgetcwd
This API returns the path of the current working directory copied into a character array passed by the user. If the
user passes a NULL Array Pointer, a default array of 10 bytes will be used. If the current working directory name is
too large for the array, the number of characters that fit in the array will be copied into it, starting from the beginning
of the path.

Syntax
char * FSgetcwd (char * path, int numchars);

Parameters
path – The path to copy the current working directory name to.

numchars – The number of characters that can be copied into the path.

Return Values
Returns a pointer to the current working directory name string.

Precondition
FSInit is called successfully.

Side Effects
The default name string will be overwritten if the function is called with a NULL Path Pointer.

EXAMPLE B-17: FSgetcwd CODE
char dir[] = “\\ONE\\TWO\\THREE\\FOUR”;

char buffer[40];

char * pointer;

char * pointer2;

FSmkdir (dir);

FSchdir (dir);

// Our current working directory is now \ONE\TWO\THREE\FOUR

// Copy the first 40 characters of the path name into buffer

pointer = FSgetcwd (path, 40);

// Get a pointer to a string with the first 10 chars of the path name

pointer2 = FSgetcwd (NULL, NULL);

© 2008 Microchip Technology Inc. DS01045B-page 33

AN1045
FindFirst

This API locates the first file in the current working directory that matches the naming and attribute criteria passed
by the user and copies its parameters into a structure passed by the user.

Syntax
int FindFirst (const char * fileName, unsigned int attr, SearchRec * rec);

Parameters
fileName – The name the file must correspond to (refer to Table B-1 for filename formats).

attr – The attributes that the file may have (refer to Table B-2 for attribute values).

rec – Pointer to the structure that will contain file information if a file is found.

TABLE B-1: FILENAME FORMATS

TABLE B-2: ATTRIBUTE VALUES

Format Function

. Find any file or directory
FILENAME.ext Find a file named FILENAME.ext
FILENAME.* Find a file with name FILENAME and any extension
*.ext File a file with any name and the extension, ext
* Find any directory
ADIRNAME Find a directory named ADIRNAME
FI*.E* Find any file with name starting with FI- and extension starting with E-

Attribute Value Function

ATTR_READ_ONLY 01h File may have read-only attribute
ATTR_HIDDEN 02h File may have hidden attribute
ATTR_SYSTEM 04h File may be a system file
ATTR_VOLUME 08h File may be a volume label
ATTR_DIRECTORY 10h File may be a directory
ATTR_ARCHIVE 20h File may have archive attribute
ATTR_MASK 3Fh File may have any attributes

AN1045

DS01045B-page 34 © 2008 Microchip Technology Inc.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FSInit is called successfully.

Side Effects
The search criteria in the SearchRec structure from the last call of FindFirst or FindFirstpgm will be lost.

EXAMPLE B-18: FindFirst CODE
SearchRec file;

unsigned char attributes = ATTR_HIDDEN | ATTR_SYSTEM | ATTR_READ_ONLY | ATTR_VOLUME |
ATTR_ARCHIVE;

char name[] = “FILE*.*”;

// Find any non-directory file that has a name starting

// with the letters FILE-

if (FindFirst (name, attributes, &file))

{

 // Error

 ...

}

// Delete the file we found if its empty

if(file.size == 0)

FSremove (file.filename);

© 2008 Microchip Technology Inc. DS01045B-page 35

AN1045
FindFirstpgm

This API performs the same function as the FindFirst function, but accepts a filename string passed into the
function in ROM. This function will be required only on the PIC18 architecture.

Syntax
int FindFirstpgm (const rom char * fileName, unsigned int attr, SearchRec * rec);

Parameters
fileName – The name the file must correspond to.

attr – The attributes that the file may have.

rec – Pointer to the structure that will contain file information if a file is found.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FSInit is called successfully.

Side Effects
The search criteria from the last call of FindFirst or FindFirstpgm will be lost.

EXAMPLE B-19: FindFirstpgm CODE
SearchRec file;

unsigned char attributes = ATTR_MASK;

// Find any file that has a name starting with the letters FILE-

if (FindFirstpgm (“FILE*.*”, attributes, &file))

{

 // Error

 ...

}

// Delete the file we found if its empty

if(file.size == 0)

FSremove (file.filename);

AN1045

DS01045B-page 36 © 2008 Microchip Technology Inc.

FindNext
This API locates the next file in the current working directory that matches the naming and attribute criteria specified
by the last call of FindFirst or FindFirstpgm on the SearchRec object that is passed into the function.

Syntax
int FindNext (SearchRec * rec);

Parameters
rec – Pointer to the structure that will contain file information if a file is found.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
FindFirst or FindFirstpgm is called successfully.

Side Effects
None

EXAMPLE B-20: FindNext CODE
SearchRec file;

unsigned char attributes = ATTR_MASK;

char name[] = “*.*”;

// Find any file or directory

if (FindFirst (name, attributes, &file))

{

 // Error

 ...

}

// Find the next file or directory

if(FindNext (&file))

{

 // Error

 ...

}

© 2008 Microchip Technology Inc. DS01045B-page 37

AN1045
FSrename

This API changes the name of a file or directory. If the pointer passed into this function is NULL, the name of the
current working directory will be changed.

Syntax
int FSrename (const char *fileName, FSFILE * fo)

Parameters
fileName – The new name of the file.

fo – The file to rename.

Return Values
Returns 0 on success.

Returns -1 otherwise.

Precondition
None

Side Effects
None

EXAMPLE B-21: FSrename CODE
FSFILE *fs;

// Here, Assign “fs”pointer to a file
structure whose name to be renamed

if (!Fsrename(“NEWNAME.TXT”, fs))

 // Success

else

 // Handle error

AN1045

DS01045B-page 38 © 2008 Microchip Technology Inc.

FSfprintf
The FSfprintf function will write a formatted string to a file.

Syntax
int FSfprintf (FSFILE *fptr, const char * fmt, ...)

Parameters
fptr – Pointer to a file to write to.

fmt – The string to write (specified in ROM).

... – Format specifiers.

Return Values
Returns the count of characters written on success.

Returns -1 otherwise.

Precondition
The file to be written to has been opened successfully.

Side Effects
None

Remarks
The FSfprintf function formats output, passing the characters to the specified stream. The format string is
processed one character at a time and the characters are output as they appear in the format string, except for
format specifiers. A format specifier is indicated in the format string by a percent sign, %; following that, a
well-formed format specifier has the following components. Except for the conversion specifier, all format specifiers
are optional.

1. Flag Characters:

- ‘-’ – The result of the format conversion will be left justified.

- ‘+’ – By default, a sign is only prefixed to a signed conversion if the result is negative. If this flag is included,
a ‘+’ sign will be prefixed if the result of a signed conversion is positive.

- ‘0’ – This flag will prefix leading zeros to the result of a conversion until the result fills the field width. If the ‘-’
flag is specified, the ‘0’ flag will be ignored. If a precision is specified, the ‘0’ flag will be ignored.

- ‘ ’ – The space flag will prefix a space to the result of a signed conversion if the result is positive. If the space
flag and the ‘+’ flag are both specified, the space flag will be ignored.

- ‘#’ – This flag indicates the “alternate form” of a conversion. For the ‘0’ conversion, the result will be
increased in precision, such that the first digit of the result will be ‘0’. For the ‘x’ conversion, a ‘0x’ will be
prefixed to the result. For the ‘X’ conversion, a ‘0X’ will be prefixed to the result. For the ‘b’ conversion, a
‘0b’ will be prefixed to the result. For the ‘B’ conversion, a ‘0B’ will be prefixed to the result.

2. Field Width:

The field width specifier follows the flag specifiers. It determines the minimum number of characters that result
from a conversion. If the result is shorter than the field width, the result is padded with leading spaces until it
has the same size as the field width. If the ‘0’ flag specifier is used, the result will be padded with leading zeros.
If the ‘-’ flag specifier is used, the result will be left justified and will be followed by trailing spaces.

The field width may be specified as an asterisk character (*). In this case, a 16-bit argument will be read from
the list of format specifiers to specify the field width. If the value is negative, it is as if the ‘-’ flag is specified,
followed by a positive field width.

© 2008 Microchip Technology Inc. DS01045B-page 39

AN1045
3. Field Precision:

The field precision specifies the minimum number of digits present in the converted value for integer
conversions, or the maximum number of characters in the converted value for a string conversion. It is indicated
by a period (.), followed by an integer value or by an asterisk (*). If the field precision is not specified, the default
precision of 1 will be used.

If the field precision is specified by an asterisk character, a 16-bit argument will be read from the list of format
specifiers to specify the field precision.

4. Size Specification:

The size specification applies to any integer conversion specifier or pointer conversion specifier. The integer
conversion specifiers are as follows: the size specifIer will determine what type of argument is read from the
format specifier list. For the n conversion, the size specifier for each pointer type corresponds to the specifier
for that data type. So, to convert something to a Long Long Pointer, you would use the specifier for a long long
data type with the n conversion.

TABLE B-3: SIZE SPECIFIERS
Argument Type C18 C30

signed char, unsigned char hh hh
short int, unsigned short int h h
short long, unsigned short long H —
intmax_t, uintmax_t j (32-bit) j (64-bit)
long, unsigned long 1 1
long long, unsigned long long — q
size_t z z
sizerom_t Z —
ptrdiff_t t t
ptrdiffrom_t T —

AN1045

DS01045B-page 40 © 2008 Microchip Technology Inc.

5. Conversion Specifiers:

- c – The int argument will be converted to an unsigned char value and the character represented by that value
will be written.

- d, i – The int argument is formatted as a signed decimal.

- o – The unsigned int argument will be converted to an unsigned octal.

- u – The unsigned int argument will be converted to an unsigned decimal.

- b, B – The unsigned int argument will be converted to an unsigned binary.

- x – The unsigned int argument will be converted to an unsigned hexadecimal. The characters, a, b, c, d, e
and f, will be used to represent the decimal numbers, 10-15.

- X – The unsigned int argument will be converted to an unsigned hexadecimal. The characters, A, B, C, D, E
and F, will be used to represent the decimal numbers, 10-15.

- s – Characters from the data memory array of char argument are written until either a terminating ‘\0’
character is seen (‘\0’ is not written) or the number of chars written is equal to the precision.

- S – Characters from the program memory array of char arguments are written until either a terminating ‘\0’
character is seen (‘\0’ is not written) or the number of chars written is equal to the precision. In C18, when
outputting a far rom char *, make sure to use the H size specifier (%HS).

- p – The pointer to void the (data or program memory) argument is converted to an equivalent size unsigned
integer type and that value is processed as if the x conversion operator had been specified. In C18, if the H
size specifier is present, the pointer is a 24-bit pointer; otherwise, it is a 16-bit pointer.

- P – The pointer to void the (data or program memory) argument is converted to an equivalent size unsigned
integer type and that value is processed as if the X conversion operator had been specified. In C18, if the H
size specifier is present, the pointer is a 24-bit pointer; otherwise, it is a 16-bit pointer.

- n – The number of characters written so far shall be stored in the location referenced by the argument, which
is a pointer to an integer type in data memory. The size of the integer type is determined by the size specifier
present for the conversion, or a 16-bit integer if no specifier is present.

- % – A literal percent sign will be written.

If the conversion specifier is invalid, the behavior is undefined.

EXAMPLE B-22: FSfprintf CODE
unsigned long long hex = 0x123456789ABCDEF0;

FSfprintf (fileptr, “This is a hex number:%#20X%c%c”, 0x12ef, 0x0D, 0x0A);

FSfprintf (fileptr, “This is a bin number:%#20b%c%c”, 0x12ef, 0x0D, 0x0A);

FSfprintf (fileptr, “%#26.22qx”, hex);

// Output:

// This is a hex number: 0x12EF

// This is a bin number: 0b0001001011101111

// 0x0000123456789ABCDEF0

© 2008 Microchip Technology Inc. DS01045B-page 41

AN1045

APPENDIX C: LIBRARY DIRECTORY

TABLE C-1: LIBRARY DIRECTORY ORGANIZATION(1)

Directory Content

MDD File System-PIC18-CF-DynMem-UserDefClock Sample project for PIC18 using the CompactFlash®
interface, user-defined clock values and dynamic file
object allocation.

MDD File System-PIC24-SD-StatMem-RTCC Sample project for PIC24F using the SD card interface,
the Real-Time Clock and Calendar (RTCC) module and
static file object allocation.

Microchip\MDD File System C files for MDD file system.
Microchip\PIC18 salloc C file for PIC18 dynamic memory allocation.
Microchip\Include Contains miscellaneous include files, including a standard

data type definition file.
Microchip\Include\MDD File System Include files for MDD file system.
Microchip\Include\PIC18 salloc Include file for C18 dynamic memory allocation.
Note 1: These directories are relative to the installation directory.

AN1045

DS01045B-page 42 © 2008 Microchip Technology Inc.

NOTES:

© 2008 Microchip Technology Inc. DS01045B-page 43

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01045A-page 44 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

01/02/08

	Introduction
	SD Cards and MMCs
	Interface
	Card File System
	FIGURE 1: Disk Structure
	Master Boot Record
	TABLE 1: Contents of the MBR

	Partition Entry in the MBR
	TABLE 2: Partition Table Entry

	Boot Sector
	TABLE 3: Boot Sector Entry

	Root Directory
	TABLE 4: Root Directory Entries
	TABLE 5: Possible Values for the First Character in the Directory Filename

	File Allocation Table
	TABLE 6: FAT Values
	FIGURE 2: FAT Cluster Chain

	Directories
	TABLE 7: Example Directory Path Strings

	Software Library
	User Functions
	TABLE 8: File and Disk Manipulation Functions

	Library Setup
	TABLE 9: Library Options

	FAT16/FAT32 Initialization and File Creation
	EXAMPLE 1: Initialization and File Creation for PIC18

	Memory Usage
	TABLE 10: File I/O Library Memory Usage(1)

	Prerequisites
	Description of Data Types and Structures
	TABLE 11: Contents of the SearchRec Structure

	Unsupported Features
	References
	Conclusion
	Appendix A: The PIC18 Linker Script
	EXAMPLE A-1: PIC18 Linker Script

	Appendix B: API Details
	EXAMPLE B-1: FSInit Code
	EXAMPLE B-2: FSfclose Code
	EXAMPLE B-3: FSfeof Code
	EXAMPLE B-4: FSfopen Code
	EXAMPLE B-5: FSfopenpgm Code
	EXAMPLE B-6: FSfread Code
	EXAMPLE B-7: FSfseek Code
	EXAMPLE B-8: FSftell Code
	EXAMPLE B-9: FSfwrite Code
	EXAMPLE B-10: FSremove Code
	EXAMPLE B-11: FSremovepgm Code
	EXAMPLE B-12: SetClockVars Code
	EXAMPLE B-13: FSformat Code
	EXAMPLE B-14: FSmkdir Code
	EXAMPLE B-15: FSchdir Code
	EXAMPLE B-16: FSrmdir Code
	EXAMPLE B-17: FSgetcwd Code
	TABLE B-1: FileName Formats
	TABLE B-2: Attribute Values
	EXAMPLE B-18: FindFirst Code
	EXAMPLE B-19: FindFirstpgm Code
	EXAMPLE B-20: FindNext Code
	EXAMPLE B-21: FSrename Code
	TABLE B-3: Size Specifiers
	EXAMPLE B-22: FSfprintf Code

	Appendix C: Library Directory
	TABLE C-1: Library Directory Organization(1)

	Worldwide Sales and Service

