ECE 477 Digital Systems Senior Design Project Spring 2008

Homework 9: Software Design Considerations
Due: Friday, March 21, at NOON

Team Code Name: Two Wheel Deal Group No. 12
Team Member Completing This Homework: Eric Geier
e-mail Addressof Team Member: __edgeier @ purdue.edu

NOTE: This is the last in a series of four “desagmponent” homework assignments, each
which is to be completed by one team member. Bhepteted homework will count for 20%
of the individual component of the team memberadg: The body of the report should be
5 pagesnpot including this cover sheet, references, attachsnenappendices.

Evaluation:
SCORE DESCRIPTION

10 Excellent — among the best papers submitted for this assghnvery few
corrections needed for version submitted in Finep&t.

9 Very good — all requirements aptly met. Minor additions/aections needed for
version submitted in Final Report.

8 Good — all requirements considered and addressed. rSeneteworthy
additions/corrections needed for version submittellinal Report.

/ Average — all requirements basically met, but some rewisim content should
be made for the version submitted in the Final Repo

6 Marginal — all requirements met at a nominal level. Sigaift revisions in
content should be made for the version submitteddrFinal Report.

N Below the passing threshold — major revisions required to meet report
requirements at a nominal leveRevise and resubmit.

* Resubmissions are due witlone week of the date of return, and will be awarded a scofre
“6” provided all report requirements have been natta nominal level.

Comments:

ECE 477 Digital Systems Senior Design Project Spring 2008

1.0 Introduction

The Two Wheel Deal is a personal transportationcketbased on the control theory
principle of the inverted pendulum [1]. The inver@endulum is an inherently unstable system
that consists of a mass atop a rod that is hing@dcart. In order to stay upright a force is
applied to the cart in a linear direction so tit ¢art is always under the system’s center of
gravity. This is usually accomplished using some gbfeedback control. With this principle in
mind, there are a few major software design comatobas.

The first and most important consideration is teuga that there is a constant, correct,
and efficient reading of analog outputs from theed@rometer, gyroscope, joystick, and battery.
This data determines how the system needs to rdgpdceep the vehicle stable. Another major
design consideration is to accurately determineatigge of tilt from vertical that the vehicle has
sustained. This way the proper motor speed is dddio keep the base of the vehicle under the
center of gravity. One final major design consitierais to use a quick and efficient method of
control that will not allow a lot of overshoot dfe vertical angle yet will be fast enough to keep
the vehicle upright. One other design considerasdo display important information to the
rider such as battery life and other operatingrimfation.

2.0 Software Design Considerations

2.1 Memory Mapping

The microcontroller [2] that was chosen has 32 kBelf-programmable Flash memory.
The Flash memory is addressed from $0000 to $3RHFEtatic data which includes the Two
Wheel Deal program as well as any constants wiitbeed in Flash memory. The current size of
the program is about 8 kB and the final prograre stzould be about 10 kB. This will leave
plenty of space left to add additional featurefuorctions. The microcontroller has 2 kB of
SRAM and it is located from $0000 to $085F. Theeggahpurpose working registers make up
the first 32 addresses in the SRAM space. The 6esiddresses are for the 1/0 registers and will
be where the variables are kept. The stack witt stathe bottom address $085F, and it will work
its way up as items are added or back down as isgeneemoved. No heap space will be used
since all variables are declared when compiled.

2.2 Mapping of External Interfaces

ECE 477 Digital Systems Senior Design Project Spring 2008

There are a large number of components that sedaced to the microcontroller with
every port being used. Information such as theesddj3], the function, and the peripheral, if
applicable, of every port that is used can be faanBable 1 of Appendix C.

2.3 Utilization of Integrated Peripherals

The Two Wheel Deal utilizes the following peripheraADC, PWM, and TIM. The
interrupt driven ADC is used to read the valuestitbe sensors at a constant time interval. The
16-bit PWM is used to provide a signal to the matamtroller that corresponds to the
appropriate output torque of the each motor. Thg dycle of the PWM is based on the angle of
the vehicle from vertical. The timer is used toateean accurate time base in which to run the
main program.

The analog to digital register ADMUX is set so thiet ADC uses AREF which is set
equal to 5V, the results are left adjusted sottatesult can be read in one byte, and the ADC
is initially set to start on channel 0. The regiit®CSRA is set so that the ADC is enabled,
there is no auto triggering, ADC interrupts arel#ed, there is a clock prescalar of 128, and the
ADC conversions are started. The PWM register TCERIset so that on compare match
OC1A/OC1B are cleared and force output compare /@ndésabled. The register TCCR1B is set
so the input noise canceller is disabled, a falédge is used for input capture, fast PWM mode
is used with a top value of ICR1, and there isloclcprescaling. The register ICR1 is set so that
the PWM frequency is 2 kHz. The timer register TQG/As set so that there was no force
output compare, it used Clear Timer on Compare (Gmade, there was normal port operation,
and a clock prescalar of 64 making the timer rud5&t kHz. The register OCRO was set equal to
250 so that the timer interrupt service routine daun every 1 ms. Finally register TIMSK was
set to allow output compare interrupts but not fleerinterrupts. These register values can be
viewed in Table 2 located in Appendix C.

2.4 Overall Organization of Application Code

The overall organization of the application cosla ihybrid or flag driven program. This
means that the main loop of the program is a sirfrplend robin” loop that checks to see if
certain flags are set. Those flags are set byrigeservice routines that occur at a fixed and
known rate. The rationale behind this is sinceritier will most likely be in constant motion, it
must be ensured that the controller will checktith@ngle and update the motor torque at a fast

and constant rate. This is best performed usingtamrupt that occurs at a known interval and

ECE 477 Digital Systems Senior Design Project Spring 2008

increases a counter each time it is executed. @moegh interrupts have occurred a flag is then
set in the “round robin” main loop. Since this meoap is small and only checking three flags, it
can be assured that the balancing algorithm funatidi be run at a precise rate.

2.5 Debugging Provisions

There is nothing specific that has been includetiéncode that deals only with
debugging. The microcontroller is programmed usigSPI and an inline programmer. The
LCD has been used as a terminal to help with debgggde. Since it was the first interface that
was programmed, it has been used to display registeable, and port information to help
locate sources of error in the software.

3.0 Software Design Narrative

The following sections include a detailed narmatf each module used throughout the
Two Wheel Deal software. Each module is linkedlkovathe actual code to be viewed online.
Also, a hierarchical arrangement of the code maduleluding the functions included in them
can be viewed in Appendix B.

3.1 Main Module (main.c)

This module contains the “round robin” polling loap well as the ADC and TIM
interrupt service routines. The main loop servearasndless polling loop that checks if the tens
(LCD), huns (balance), and ones (battery) flagssatelf one of them is then it calls that
function otherwise is continues looping. This mediods been written, programmed, and
verified to work correctly. The flowchart illustrag the activity of the main loop can be viewed
in Figure 1 of Appendix A.

The first operation of the main loop is to call thaction ioinit() which sets the data
direction registers for Ports A, C, and D. It atsdis varinit() which initializes the battery fitte
array so that the battery does not read 0 V wheveped up. It then enables interrupts and calls
the function PERInit() which initializes all thenggherals and interfaces. This includes the TIM,
PWM, ADC and the LCD. In that function it calls tath() which loads custom characters into
the LCD driver. Next it prints an introduction gtieg on the LCD for 2 seconds using
print_greeting() and delay_ms() and then cleargligglay. Finally it enters the endless while
loop where it checks the huns and tens flags repbat

If the huns flag is set then 10 ms has passedhranbalancing algorithm function is

called. If the tens flag is set then 100 ms hasgzhand the LCD update function is called.

ECE 477 Digital Systems Senior Design Project Spring 2008

Finally if the ones flag is set then 1 second resspd and the battery filtering function is
executed. Each of these functions is describeeitaildater.

The ADC ISR is used to continually check and updhé outputs from the accelerometer
in the X and Y directions, the gyroscope, the jmystand the battery voltage divider. The
flowchart describing the routine activity can berid in Figure 2 in Appendix A. It works by
waiting until the ADC interrupt bit is set which \ares a conversion has been completed, and
then it reads the ADC data register result fromdatpleted conversion and stores it in the
corresponding spot in a data array. It then incrémthe ADC channel counter, resets the
ADMUX register for that channel, starts the ADGeersion, and then leaves the routine.

The TIM ISR is used to keep a continuous time lasthe system and the flowchart can
be viewed in Figure 3 of Appendix A. It works byitirgg until the OCIF bit is set indicating that
the timer counter equals the compare registeneh sets the 1 ms flag and increments the
hundredths, tenths, and ones counters by one. iTtl@hundredths counter equals 10 the huns
flag is set and the hundredths counter reset. ahme ccurs with the tenths counter except it
must equal 100, the tens flag is set, and the $esdbnter reset. Finally if the ones counter
equals 1000 then the ones flag is set and the eoisteset. The routine is then exited.

3.2LCD Update Module (Icd.c)

This module contains the lcd_update() functionchihis called by the main function to
update information displayed on the LCD every tesfth second. This module has been written,
programmed, and verified to work correctly. Thanbiart for this function can be viewed in
Figure 4 of Appendix A. The first operation perfadhby lcd_update() is to read the filtered
battery level variable and determine how manydunlll empty blocks are necessary for updating
the custom battery symbol.

Then the cursor is positioned at the first charaat¢he first line using
lcd_rc(rows,columns). This function uses the inpdittows and columns values and sets the
corresponding cursor address using the lcd_adam@tion which simply writes a command to
the LCD driver. Next the strings “Angle:” and “Baty:” are written to the LCD using lcdstr().
This uses a character array and a pointer to disphring character by character on the LCD
until a null character is reached. Then the cuissogpositioned on the second line and the angle
is displayed using Ilcdnum(). This function is usedlisplay an inputted float number to two

significant digits. This is done by casting thegoral float to an int. The int is then displayed

ECE 477 Digital Systems Senior Design Project Spring 2008

using lcdrite() which simply writes data be disgdyon the LCD. The float and int are then
multiplied by 100 and subtracted from each othéis Temainder is the decimal portion that is
then displayed on the LCD using Icdrite().

Next the cursor is repositioned on the third rowl displays the left side of the custom
battery symbol. Then using the number of full ampty blocks found earlier displays the filled
and empty parts of the battery then displays thiet side of the battery. This is done again on
the fourth row to complete the symbol. Finally thaction is exited to return to the main loop.

3.3 Battery Filter Module (bat.c)

This module contains the battery_alg() functionekhis called by the main function to
average the values read by the ADC from the batteltgge divisor to determine the voltage left
in the batteries. The flowchart is located in Fegbrof Appendix A. It is called every second to
read a new value from the ADC and determine the anavage which is used when updating the
LCD. The reason a filtered battery value is usedigplay the voltage left on the batteries is
because if there are power spikes or dips duecteasing or decreasing the motor speed this
will not be displayed to the rider. This module baen written, tested, and verified to work
correctly. The first operation the function perf@rma to read value from the ADC and store it in
the battery filter array. It then increments thegrcounter and uses a while loop to sum the
array. It then averages the value and convertslts to be used in the LCD update function.

3.4 Balance Update Module (bal.c)

This module contains the balance_alg() functioictvis called by the main function to
determine the angle of tilt from vertical and ugtite motor controller PWM signals and
therefore the motor torque accordingly. The funceaecutes every hundredth of a second. This
module has not been tested but is partially writted is laid out in pseudocode. The logic and
activity of this function was based on open sog®eudocode provided by Trevor Blackwell [4]
as well as open source code provided by a groipl 6Wayland High School students [5]
while designing a similar transportation vehicléeTlowchart can be viewed in Figure 6 of
Appendix A. The first operation performed is toddhe ADC values for x axis accelerometer, y
axis accelerometer, gyroscope, and joystick. Theonatant is subtracted from the x and y axis
values to account for the positioning of the aawatester. The angle in degrees is found by

taking the arctangent of the y axis divided by:ttexis then converted from radians.

ECE 477 Digital Systems Senior Design Project Spring 2008

The balancing torque is then found using a Praogaat-Derivative Controller. The angle
is multiplied by an appropriate constant and adddtie rate multiplied by an appropriate
constant. These two values represent the propaitaord derivative values respectively. The
balancing torque value is then set as the basermalae for the rest of the algorithm. Turning is
then accounted for by first reading the value ftbin joystick and subtracting a constant from it
to make a left turn a negative number and a rigint & positive number. This is then subtracted
from the base motor value so that if a left hand ta needed the left motor slows and vice versa
for a right hand turn. Finally the motor value the left and right side motors are written to the
left and right PWM duty registers respectively, dinel function is exited.

4.0 Summary

Those are the major design considerations foil the Wheel Deal as well as the
software design narrative describing the overallectunctionality. One final note is that as of
right now there are no safety functions or consitiens taken into account. These are currently
out of the scope of the project, but if there isdiafter the main project specific success criteria

are completed, then they will be added as needed.

ECE 477 Digital Systems Senior Design Project Spring 2008

List of References

[1] Engineering at University of Michigan, “Modeling &mverted Pendulum”. [Online].

Avalilable: http://www.engin.umich.edu/group/ctm/examples/pengben.html [Accessed:
Mar. 19, 2008].

[2] Atmel Corporation, “ATmega32/32L MicrocontrollefOnline]. Available:

http://www.atmel.com/dyn/resources/prod_documentsZ803.pdf[Accessed: Mar. 19,
2008].

[3] Atmel Corporation, “AVR505: Migration between ATneels/32 and
Atmegal64P/324P/644P”. [Online]. Available:

http://www.atmel.com/dyn/resources/prod_documents3601.pdf[Accessed: Mar. 19,
2008].

[4] Trevor Blackwell, “Building a Balancing Sctay”. [Online]. Available:
http://tlb.org/scooter.htm[Accessed: Mar. 19, 2008].

[5] Massachusetts Institute of Technology, “TN¥ Segway”. [Online]. Available:
http://web.mit.edu/first/segwayfAccessed: Mar. 19, 2008].

ECE 477 Digital Systems Senior Design Project Spring 2008

Appendix A: Function Flowcharts

p Initialization

ower -LCD - Micro
On - Battery Array

- Print Greeting

- Enable Interrupts

\ 4

Update _ Yes| |s hundredths |
Balancing Alg. | flag set?

No

\4

Is tenths flag | Yes | Update LCD
set?

A

No

\4

Update Battery| , Yes Is ones flag
Filter Array |~ set?

No

I
»

Figure1: Main Loop Flowchart

ADC
Interrup

Read ADC Set 1 ms flag
result anc
Increment Increment
ADC channe hent, cnt, ocn
Is channel Ygs Set channel Is hent = 10? [Yes | Set huns and
>= 7% to C "l clear her
* No * No
Set register to| Settens and [Yeq Istcnt = 1007,
channe D clear tcn D
* * No
Start _ Is ocnt = Yed Setones and
conversiol " 1000° "l clear ocr
No
—
Figure2: ADC_ISR Flowchart Figure3: TIM_ISR Flowchart

ECE 477

Digital Systems Senior Design Project

battery_alg
function call

Clear battery total

v

Read raw ADC
output and store ir}
battery array

v

Increment array
counte

v

Is counter > 607

Set counter to O

*No

Sum all values in

battery arra

v

Find the average
value, convert to
volts, and store ag

filtered value

Return to
main

balance_alg
function call

Read accel, gyro,
and joystick values

v

Subtract offset from
x and y accel values

v

Derive angle by
arctan(y/x)*180/pi

v

Determine PD
controller balance

Figure4: Battery Function Flowchart

Set balance torque
as base L/R motor

\ 4

values

\ 4
Is (joystick value — | Yes

lcd_update
function call

Read filtered
battery valu

]

Determine numbe
of full/empty
blocks

v

Display strings for
value label

)

Display angle and
battery value

)

Display custom
battery symbol
based on number|
of full/empty
blocks

Return to
main

Subtract Ks*turn

2.5) 1= 0?

No
A\ 4

Write L/R motor values
to L/R motor controller

\4

from correct L or R
motor value

A

PWM duty registers

torque by
Kp*angle+Kd*rate

Return to
main

Figure 6: Balance Function Flowchart

-9-

Spring 2008

Figure5: LCD Function Flowchart

ECE 477

Digital Systems Senior Design Project

Spring 2008

Appendix B: Hierarchical Block Diagram of Code Organization

main()

\ 4

\ 4

Initialization balance_alg() battery alg() lcd_update()
Functions

- ioinit()

- varinit() Y

- perinit() Sub Functions

- print_greeting() -led_rc()

- ledeeh() ISR Functions - led_addr()

- delay_ms() - led_rite()
- lcd_str()
- lcd_num()

\ 4 v
ADC_ISR() TIM_ISR()

-10-

ECE 477

Digital Systems Senior Design Project

Appendix C: Tables

Spring 2008

Register Name

Address

Peripheral

Function

PORTA

$3B

ADC/GIO

PAOQ — Battery Level
PAL1 — Accelerometer X Axis
PA2 — Accelerometer Y Axis
PA3 — Gyroscope Rate
PA4 - GIO
PA5 — Joystick Value
PA6 — GIO
PA7 — Not Used

PORTB

$38

SPI/GIO

PBO - GIO
PB1 - GIO
PB2 - GIO
PB3 - GIO
PB4 - GIO
PB5 — MOSI
PB6 — MISO
PB7 — SCK

PORTC

$35

LCD

PCO - LCD Data Bit 0
PC1 - LCD Data Bit 1
PC2 — LCD Data Bit 2
PC3 - LCD Data Bit 3
PC4 — LCD Data Bit 4
PC5 - LCD Data Bit 5
PC6 — LCD Data Bit 6
PC7 — LCD Data Bit 7

PORTD

$32

LCD/PWM/GIO

PDO — Right Motor ControllefR Pin
PD1 — Left Motor Controller F/R Pin

PD2 — Not Used
PD3 — Not Used

PD4 — Right Motor Controller PWM
PD5 — Left Motor Controller PWM
PD6 — LCD RS (Command/Data) Pin

PD7 — LCD E (Clock) Pin

Table 1: Port and Pin Descriptions

Peripheral

Register Values

ADC

ADMUX = 20h, ADCSRA = CFh

16-bit PWM

TCCR1A = A2h, TCCRI1B = 19h, ICR1 = 01EAh

8-bit TIM

TCCRO = 0Bh, OCRO0 = FAh, TIMSK = xxxxxxb0

-11-

Table 2: Peripheral Register Initializations

