
ECE 477 Digital Systems Senior Design Project Spring 2008

Homework 9: Software Design Considerations
Due: Friday, March 21, at NOON

Team Code Name: ____Two Wheel Deal___________________________ Group No. __12__

Team Member Completing This Homework: ____Eric Geier___________________________

e-mail Address of Team Member: __edgeier_____ @ purdue.edu

Evaluation:

SCORE DESCRIPTION

10
Excellent – among the best papers submitted for this assignment. Very few
corrections needed for version submitted in Final Report.

9
Very good – all requirements aptly met. Minor additions/corrections needed for
version submitted in Final Report.

8
Good – all requirements considered and addressed. Several noteworthy
additions/corrections needed for version submitted in Final Report.

7
Average – all requirements basically met, but some revisions in content should
be made for the version submitted in the Final Report.

6
Marginal – all requirements met at a nominal level. Significant revisions in
content should be made for the version submitted in the Final Report.

*
Below the passing threshold – major revisions required to meet report
requirements at a nominal level. Revise and resubmit.

* Resubmissions are due within one week of the date of return, and will be awarded a score of
“6” provided all report requirements have been met at a nominal level.

Comments:

NOTE: This is the last in a series of four “design component” homework assignments, each of
which is to be completed by one team member. The completed homework will count for 20%
of the individual component of the team member’s grade. The body of the report should be 3-
5 pages, not including this cover sheet, references, attachments or appendices.

ECE 477 Digital Systems Senior Design Project Spring 2008

 -1-

1.0 Introduction

The Two Wheel Deal is a personal transportation vehicle based on the control theory

principle of the inverted pendulum [1]. The inverted pendulum is an inherently unstable system

that consists of a mass atop a rod that is hinged to a cart. In order to stay upright a force is

applied to the cart in a linear direction so that the cart is always under the system’s center of

gravity. This is usually accomplished using some sort of feedback control. With this principle in

mind, there are a few major software design considerations.

The first and most important consideration is to ensure that there is a constant, correct,

and efficient reading of analog outputs from the accelerometer, gyroscope, joystick, and battery.

This data determines how the system needs to respond to keep the vehicle stable. Another major

design consideration is to accurately determine the angle of tilt from vertical that the vehicle has

sustained. This way the proper motor speed is obtained to keep the base of the vehicle under the

center of gravity. One final major design consideration is to use a quick and efficient method of

control that will not allow a lot of overshoot of the vertical angle yet will be fast enough to keep

the vehicle upright. One other design consideration is to display important information to the

rider such as battery life and other operating information.

2.0 Software Design Considerations

 2.1 Memory Mapping

 The microcontroller [2] that was chosen has 32 kB of self-programmable Flash memory.

The Flash memory is addressed from $0000 to $3FFF. All static data which includes the Two

Wheel Deal program as well as any constants will be stored in Flash memory. The current size of

the program is about 8 kB and the final program size should be about 10 kB. This will leave

plenty of space left to add additional features or functions. The microcontroller has 2 kB of

SRAM and it is located from $0000 to $085F. The general purpose working registers make up

the first 32 addresses in the SRAM space. The next 64 addresses are for the I/O registers and will

be where the variables are kept. The stack will start at the bottom address $085F, and it will work

its way up as items are added or back down as items are removed. No heap space will be used

since all variables are declared when compiled.

 2.2 Mapping of External Interfaces

ECE 477 Digital Systems Senior Design Project Spring 2008

 -2-

 There are a large number of components that are interfaced to the microcontroller with

every port being used. Information such as the address [3], the function, and the peripheral, if

applicable, of every port that is used can be found in Table 1 of Appendix C.

 2.3 Utilization of Integrated Peripherals

The Two Wheel Deal utilizes the following peripherals: ADC, PWM, and TIM. The

interrupt driven ADC is used to read the values from the sensors at a constant time interval. The

16-bit PWM is used to provide a signal to the motor controller that corresponds to the

appropriate output torque of the each motor. The duty cycle of the PWM is based on the angle of

the vehicle from vertical. The timer is used to create an accurate time base in which to run the

main program.

The analog to digital register ADMUX is set so that the ADC uses AREF which is set

equal to 5 V, the results are left adjusted so that the result can be read in one byte, and the ADC

is initially set to start on channel 0. The register ADCSRA is set so that the ADC is enabled,

there is no auto triggering, ADC interrupts are enabled, there is a clock prescalar of 128, and the

ADC conversions are started. The PWM register TCCR1A is set so that on compare match

OC1A/OC1B are cleared and force output compare on A/B disabled. The register TCCR1B is set

so the input noise canceller is disabled, a falling edge is used for input capture, fast PWM mode

is used with a top value of ICR1, and there is no clock prescaling. The register ICR1 is set so that

the PWM frequency is 2 kHz. The timer register TCCR0 was set so that there was no force

output compare, it used Clear Timer on Compare (CTC) mode, there was normal port operation,

and a clock prescalar of 64 making the timer run at 250 kHz. The register OCR0 was set equal to

250 so that the timer interrupt service routine would run every 1 ms. Finally register TIMSK was

set to allow output compare interrupts but not overflow interrupts. These register values can be

viewed in Table 2 located in Appendix C.

 2.4 Overall Organization of Application Code

 The overall organization of the application code is a hybrid or flag driven program. This

means that the main loop of the program is a simple “round robin” loop that checks to see if

certain flags are set. Those flags are set by interrupt service routines that occur at a fixed and

known rate. The rationale behind this is since the rider will most likely be in constant motion, it

must be ensured that the controller will check the tilt angle and update the motor torque at a fast

and constant rate. This is best performed using an interrupt that occurs at a known interval and

ECE 477 Digital Systems Senior Design Project Spring 2008

 -3-

increases a counter each time it is executed. Once enough interrupts have occurred a flag is then

set in the “round robin” main loop. Since this main loop is small and only checking three flags, it

can be assured that the balancing algorithm function will be run at a precise rate.

 2.5 Debugging Provisions

 There is nothing specific that has been included in the code that deals only with

debugging. The microcontroller is programmed using the SPI and an inline programmer. The

LCD has been used as a terminal to help with debugging code. Since it was the first interface that

was programmed, it has been used to display register, variable, and port information to help

locate sources of error in the software.

3.0 Software Design Narrative

 The following sections include a detailed narrative of each module used throughout the

Two Wheel Deal software. Each module is linked to allow the actual code to be viewed online.

Also, a hierarchical arrangement of the code modules including the functions included in them

can be viewed in Appendix B.

 3.1 Main Module (main.c)

This module contains the “round robin” polling loop as well as the ADC and TIM

interrupt service routines. The main loop serves as an endless polling loop that checks if the tens

(LCD), huns (balance), and ones (battery) flags are set. If one of them is then it calls that

function otherwise is continues looping. This module has been written, programmed, and

verified to work correctly. The flowchart illustrating the activity of the main loop can be viewed

in Figure 1 of Appendix A.

The first operation of the main loop is to call the function ioinit() which sets the data

direction registers for Ports A, C, and D. It also calls varinit() which initializes the battery filter

array so that the battery does not read 0 V when powered up. It then enables interrupts and calls

the function PERinit() which initializes all the peripherals and interfaces. This includes the TIM,

PWM, ADC and the LCD. In that function it calls lcdcch() which loads custom characters into

the LCD driver. Next it prints an introduction greeting on the LCD for 2 seconds using

print_greeting() and delay_ms() and then clears the display. Finally it enters the endless while

loop where it checks the huns and tens flags repeatedly.

If the huns flag is set then 10 ms has passed and the balancing algorithm function is

called. If the tens flag is set then 100 ms has passed and the LCD update function is called.

ECE 477 Digital Systems Senior Design Project Spring 2008

 -4-

Finally if the ones flag is set then 1 second has passed and the battery filtering function is

executed. Each of these functions is described in detail later.

 The ADC ISR is used to continually check and update the outputs from the accelerometer

in the X and Y directions, the gyroscope, the joystick, and the battery voltage divider. The

flowchart describing the routine activity can be found in Figure 2 in Appendix A. It works by

waiting until the ADC interrupt bit is set which means a conversion has been completed, and

then it reads the ADC data register result from the completed conversion and stores it in the

corresponding spot in a data array. It then increments the ADC channel counter, resets the

ADMUX register for that channel, starts the ADC conversion, and then leaves the routine.

 The TIM ISR is used to keep a continuous time base for the system and the flowchart can

be viewed in Figure 3 of Appendix A. It works by waiting until the OCIF bit is set indicating that

the timer counter equals the compare register. It then sets the 1 ms flag and increments the

hundredths, tenths, and ones counters by one. Then if the hundredths counter equals 10 the huns

flag is set and the hundredths counter reset. The same occurs with the tenths counter except it

must equal 100, the tens flag is set, and the tenths counter reset. Finally if the ones counter

equals 1000 then the ones flag is set and the counter is reset. The routine is then exited.

 3.2 LCD Update Module (lcd.c)

 This module contains the lcd_update() function which is called by the main function to

update information displayed on the LCD every tenth of a second. This module has been written,

programmed, and verified to work correctly. The flowchart for this function can be viewed in

Figure 4 of Appendix A. The first operation performed by lcd_update() is to read the filtered

battery level variable and determine how many full and empty blocks are necessary for updating

the custom battery symbol.

Then the cursor is positioned at the first character of the first line using

lcd_rc(rows,columns). This function uses the inputted rows and columns values and sets the

corresponding cursor address using the lcd_addr() function which simply writes a command to

the LCD driver. Next the strings “Angle:” and “Battery:” are written to the LCD using lcdstr().

This uses a character array and a pointer to display a string character by character on the LCD

until a null character is reached. Then the cursor is repositioned on the second line and the angle

is displayed using lcdnum(). This function is used to display an inputted float number to two

significant digits. This is done by casting the original float to an int. The int is then displayed

ECE 477 Digital Systems Senior Design Project Spring 2008

 -5-

using lcdrite() which simply writes data be displayed on the LCD. The float and int are then

multiplied by 100 and subtracted from each other. This remainder is the decimal portion that is

then displayed on the LCD using lcdrite().

 Next the cursor is repositioned on the third row and displays the left side of the custom

battery symbol. Then using the number of full and empty blocks found earlier displays the filled

and empty parts of the battery then displays the right side of the battery. This is done again on

the fourth row to complete the symbol. Finally the function is exited to return to the main loop.

 3.3 Battery Filter Module (bat.c)

 This module contains the battery_alg() function which is called by the main function to

average the values read by the ADC from the battery voltage divisor to determine the voltage left

in the batteries. The flowchart is located in Figure 5 of Appendix A. It is called every second to

read a new value from the ADC and determine the new average which is used when updating the

LCD. The reason a filtered battery value is used to display the voltage left on the batteries is

because if there are power spikes or dips due to increasing or decreasing the motor speed this

will not be displayed to the rider. This module has been written, tested, and verified to work

correctly. The first operation the function performs is to read value from the ADC and store it in

the battery filter array. It then increments the array counter and uses a while loop to sum the

array. It then averages the value and converts to volts to be used in the LCD update function.

 3.4 Balance Update Module (bal.c)

 This module contains the balance_alg() function which is called by the main function to

determine the angle of tilt from vertical and update the motor controller PWM signals and

therefore the motor torque accordingly. The function executes every hundredth of a second. This

module has not been tested but is partially written and is laid out in pseudocode. The logic and

activity of this function was based on open source pseudocode provided by Trevor Blackwell [4]

as well as open source code provided by a group of MIT/Wayland High School students [5]

while designing a similar transportation vehicle. The flowchart can be viewed in Figure 6 of

Appendix A. The first operation performed is to read the ADC values for x axis accelerometer, y

axis accelerometer, gyroscope, and joystick. Then a constant is subtracted from the x and y axis

values to account for the positioning of the accelerometer. The angle in degrees is found by

taking the arctangent of the y axis divided by the x axis then converted from radians.

ECE 477 Digital Systems Senior Design Project Spring 2008

 -6-

 The balancing torque is then found using a Proportional-Derivative Controller. The angle

is multiplied by an appropriate constant and added to the rate multiplied by an appropriate

constant. These two values represent the proportional and derivative values respectively. The

balancing torque value is then set as the base motor value for the rest of the algorithm. Turning is

then accounted for by first reading the value from the joystick and subtracting a constant from it

to make a left turn a negative number and a right turn a positive number. This is then subtracted

from the base motor value so that if a left hand turn is needed the left motor slows and vice versa

for a right hand turn. Finally the motor value for the left and right side motors are written to the

left and right PWM duty registers respectively, and the function is exited.

4.0 Summary

 Those are the major design considerations for the Two Wheel Deal as well as the

software design narrative describing the overall code functionality. One final note is that as of

right now there are no safety functions or considerations taken into account. These are currently

out of the scope of the project, but if there is time after the main project specific success criteria

are completed, then they will be added as needed.

ECE 477 Digital Systems Senior Design Project Spring 2008

 -7-

List of References

[1] Engineering at University of Michigan, “Modeling an Inverted Pendulum”. [Online].

Available: http://www.engin.umich.edu/group/ctm/examples/pend/invpen.html. [Accessed:
Mar. 19, 2008].

[2] Atmel Corporation, “ATmega32/32L Microcontroller”. [Online]. Available:

http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf. [Accessed: Mar. 19,
2008].

[3] Atmel Corporation, “AVR505: Migration between ATmega16/32 and

Atmega164P/324P/644P”. [Online]. Available:
http://www.atmel.com/dyn/resources/prod_documents/doc8001.pdf. [Accessed: Mar. 19,
2008].

[4] Trevor Blackwell, “Building a Balancing Scooter”. [Online]. Available:

http://tlb.org/scooter.html. [Accessed: Mar. 19, 2008].

[5] Massachusetts Institute of Technology, “The DIY Segway”. [Online]. Available:

http://web.mit.edu/first/segway/. [Accessed: Mar. 19, 2008].

ECE 477 Digital Systems Senior Design Project Spring 2008

 -8-

Appendix A: Function Flowcharts

Figure 1: Main Loop Flowchart

Figure 2: ADC_ISR Flowchart Figure 3: TIM_ISR Flowchart

ADC
Interrupt

Read ADC
result and

Increment
ADC channel

Is channel
>= 7?

Set channel
to 0

Set register to
channel

Start
conversion

Return

Yes

No

TIM
Interrupt

Set 1 ms flag

Increment
hcnt, tcnt, ocnt

Is hcnt = 10? Set huns and
clear hcnt

Is tcnt = 100?

Return

Yes

No

Is ocnt =
1000?

Set tens and
clear tcnt

Set ones and
clear ocnt

No

No

Yes

Yes

Power
On

Initialization
- LCD - Micro
- Battery Array
- Print Greeting
- Enable Interrupts

Is hundredths
flag set?

Is tenths flag
set?

Is ones flag
set?

No

No

Update
Balancing Alg.

Update LCD

Update Battery
Filter Array

Yes

Yes

Yes

No

ECE 477 Digital Systems Senior Design Project Spring 2008

 -9-

 Figure 4: Battery Function Flowchart Figure 5: LCD Function Flowchart

 Figure 6: Balance Function Flowchart

balance_alg
function call

Read accel, gyro,
and joystick values

Subtract offset from
x and y accel values

Derive angle by
arctan(y/x)*180/pi

Determine PD
controller balance

torque by
Kp*angle+Kd*rate

Is (joystick value –
2.5) != 0?

Set balance torque
as base L/R motor

values

Subtract Ks*turn
from correct L or R

motor value

Write L/R motor values
to L/R motor controller

PWM duty registers

Return to
main

Yes

No

lcd_update
function call

Read filtered
battery value

Determine number
of full/empty

blocks

Display strings for
value labels

Display angle and
battery values

Display custom
battery symbol

based on number
of full/empty

blocks

Return to
main

battery_alg
function call

Clear battery total

Read raw ADC
output and store in

battery array

Increment array
counter

Is counter > 60? Set counter to 0

Sum all values in
battery array

Find the average
value, convert to
volts, and store as

filtered value

Return to
main

Yes

No

ECE 477 Digital Systems Senior Design Project Spring 2008

 -10-

Appendix B: Hierarchical Block Diagram of Code Organization

main()

Initialization
Functions

- ioinit()
- varinit()
- perinit()
- print_greeting()
- lcdcch()
- delay_ms()

balance_alg() lcd_update() battery_alg()

Sub Functions
- lcd_rc()
- lcd_addr()
- lcd_rite()
- lcd_str()
- lcd_num()

ISR Functions

ADC_ISR() TIM_ISR()

ECE 477 Digital Systems Senior Design Project Spring 2008

 -11-

Appendix C: Tables

Register Name Address Peripheral Function
PORTA $3B ADC/GIO PA0 – Battery Level

PA1 – Accelerometer X Axis
PA2 – Accelerometer Y Axis
PA3 – Gyroscope Rate
PA4 – GIO
PA5 – Joystick Value
PA6 – GIO
PA7 – Not Used

PORTB $38 SPI/GIO PB0 – GIO
PB1 – GIO
PB2 – GIO
PB3 – GIO
PB4 – GIO
PB5 – MOSI
PB6 – MISO
PB7 – SCK

PORTC $35 LCD PC0 – LCD Data Bit 0
PC1 – LCD Data Bit 1
PC2 – LCD Data Bit 2
PC3 – LCD Data Bit 3
PC4 – LCD Data Bit 4
PC5 – LCD Data Bit 5
PC6 – LCD Data Bit 6
PC7 – LCD Data Bit 7

PORTD $32 LCD/PWM/GIO PD0 – Right Motor Controller F/R Pin
PD1 – Left Motor Controller F/R Pin
PD2 – Not Used
PD3 – Not Used
PD4 – Right Motor Controller PWM
PD5 – Left Motor Controller PWM
PD6 – LCD RS (Command/Data) Pin
PD7 – LCD E (Clock) Pin

Table 1: Port and Pin Descriptions

Peripheral Register Values
ADC ADMUX = 20h, ADCSRA = CFh

16-bit PWM TCCR1A = A2h, TCCR1B = 19h, ICR1 = 01EAh
8-bit TIM TCCR0 = 0Bh, OCR0 = FAh, TIMSK = xxxxxx10b

Table 2: Peripheral Register Initializations

