ECE 477 Final Report

Fall 2007

ECE 477 Final Report (Fall 2007
Team 2(Hooked on Harmonix
[image: image1.jpg][image: image13.emf][image: image14.png][image: image15.png][image: image17.png]
Team Members:

#1: ____________________________
Signature: ____________________ Date: _________

#2: ____________________________

Signature: ____________________ Date: _________

#3: ____________________________ Signature: ____________________ Date: _________

#4: ____________________________ Signature: ____________________ Date: _________

	CRITERION
	SCORE
	MPY
	PTS

	Technical content
	0 1 2 3 4 5 6 7 8 9 10
	3
	

	Design documentation
	0 1 2 3 4 5 6 7 8 9 10
	3
	

	Technical writing style
	0 1 2 3 4 5 6 7 8 9 10
	2
	

	Contributions
	0 1 2 3 4 5 6 7 8 9 10
	1
	

	Editing
	0 1 2 3 4 5 6 7 8 9 10
	1
	

	Comments:
	TOTAL
	

	

TABLE OF CONTENTS

	Abstract
	1

	 1.0 Project Overview and Block Diagram
	2

	 2.0 Team Success Criteria and Fulfillment
	5

	 3.0 Constraint Analysis and Component Selection
	6

	 4.0 Patent Liability Analysis
	11

	 5.0 Reliability and Safety Analysis
	17

	 6.0 Ethical and Environmental Impact Analysis
	22

	 7.0 Packaging Design Considerations
	27

	 8.0 Schematic Design Considerations
	31

	 9.0 PCB Layout Design Considerations
	37

	10.0 Software Design Considerations
	42

	11.0 Version 2 Changes
	49

	12.0 Summary and Conclusions
	50

	13.0 References
	51

	Appendix A: Individual Contributions
	A 1

	Appendix B: Packaging
	B 1

	Appendix C: Schematic
	C 1

	Appendix D: PCB Layout Top and Bottom Copper
	D 1

	Appendix E: Parts List Spreadsheet
	E 1

	Appendix F: Software Listing
	F 1

	Appendix G: FMECA Worksheet
	G 1

Abstract

This document details the design and fabrication of the Hooked on Harmonix gaming system. Design considerations for both hardware and software are laid out as an attempt to document as much as possible what has been done this semester as Group 2 has traversed the engineering method of design and problem solving. Product pictures, part lists, complete code listings, schematic/pcb designs, as well as various analyses are presented in a manner intended to be read by a viewer foreign to the project described.
1.0 Project Overview and Block Diagram
[image: image2.jpg]
Figure 1-1. Project enclosure and input/output ports, back right isometric view.
[image: image3.jpg]
Figure 1-2. Project enclosure, front right isometric view.
The "Hooked on Harmonix" gaming system is designed to teach the user valuable piano skills as well as provide a fun and entertaining experience at the same time. The device will interface with a standard MIDI keyboard and a standard computer monitor provided by the user. Upon boot-up, the "Hooked on Harmonix" logo will appear with the instructions of "Press Middle C to Continue". This will display a song selection screen that will allow the user to choose the desired song to play. At this point the user is instructed to press middle C# to toggle songs, and to press middle C to select a track. After choosing a song to play, the software will load the MIDI file from flash memory and parse through it. The gaming screen is set up so that a keyboard is at the bottom of the screen and bars corresponding to the key directly below it fall from top to bottom. When the bar hits the top of the keyboard, the user is expected to play the corresponding note to the key that the bar is touching. If the user pressed the correct key in a timely fashion, the key will turn green and their score incremented. If no key is pressed at all, it will turn orange and their score is decremented. Otherwise, if they press the incorrect key, it will turn red and their score will also be decremented. Upon completion of the song, a final grade (A-F) will be displayed, and the user can press middle C to proceed to the song list screen.

[image: image4]
Figure 1-3. System block diagram.
2.0 Team Success Criteria and Fulfillment
1) An ability to (audibly) play and (internally) decode note/timing information from a pre-existing song/data file.

2) An ability to decode/encode data output by a standard MIDI keyboard into a format compatible with the aforementioned song/data file.

3) An ability to display the notes the user should play based on data provided by the decoded song file (as mentioned above).

4) An ability to compare user input from the MIDI keyboard with data generated by the decoded sound file on the basis of note/timing accuracy.

5) An ability to calculate (and display) a performance score for the user based on the accumulated note/timing accuracy.

All Team Success Criteria were fulfilled on Tuesday December 4th by demonstration to Phillip Kasper.
3.0 Constraint Analysis and Component Selection
3.1 Introduction

The Hooked on Harmonix system is an educational tool for a MIDI keyboard. By following along with what is displayed on the screen, users will test their ability to play the keyboard while the system critiques their performance.

The system will interface with several peripheral devices including a MIDI keyboard, a VGA display device, and speakers. The system will be required to interpret MIDI input from the keyboard, process the information received, calculate the user’s accuracy, and output signals to the display device and speakers. The processing unit chosen will need to process logic written in C and interface with a variety of peripheral chips that perform specific tasks for the system.

3.2 Design Constraint Analysis

The challenge of managing MIDI input, performance analysis calculations, dynamic audio output, and VGA-compatible video output imposes considerable constraints on the processing unit. The VGA monitor requires a sufficient stream of RGB data in order to update the entire display sixty times per second. Audio is played from a file stored in the system and sound alerts are added as part of real-time performance feedback. Meanwhile, the processor must perform calculations on the data it receives from the MIDI keyboard in order to critique the user’s performance. Processing all of this on a single chip would create a variety of timing hazards. Finding ways to “outsource” some of the work to other chips has become a major design consideration for this system. If the micro-processor’s work load can be reduced and extra memory can be interfaced as needed, the remaining design constraints are clock speed and availability of development tools.

3.3 Computation Requirements

The system will have to perform many computations simultaneously in order to keep up with the user during game play. Data from the MIDI keyboard has to be collected, analyzed, and compared to expected values. MIDI data collection will require the system to read a serial signal from a MIDI keyboard and correctly interpret it as note length, pitch, and volume information. The system has to provide visual feedback based on a comparison between user input and the stored MIDI file. Song data (stored in MIDI format) has to be read from memory and sent to the buffer of the MIDI synthesizer chip whenever the buffer’s “nearly empty” flag is set. To allow for the inclusion of a USB device, the system should be capable of reading song data (in MIDI format) from the USB drive and storing it in the system’s memory. Song data also has to be used to update the video display so that it shows the upcoming notes, and note information from the song file has to be loaded as the “expected value” to compare to the notes currently being played by the user. The entire array of RGB information has to be sent to the computer monitor sixty times per second, which is most readily accomplished by a hardware configuration dedicated to video output. Although the microprocessor will manage the overall operation of the system, the tasks mentioned herein may be shared by devices interfaced to the microprocessor, such as an FPGA for digital video control and a DAC for achieving an analog video signal.

3.4 Interface Requirements

General-purpose I/O pins will be used to interface with input devices, output devices, and external memory. The micro-processor must be capable of tracking the notes that the user is playing on the MIDI keyboard. Data from the MIDI keyboard will require five pins. Because the MIDI interface is a 5 mA current loop, one pin will source 5 mA and another pin will sink 5 mA. SDRAM will be interfaced for storage of C code. The SDRAM has 14 address pins and 16 data pins. The SDRAM chip will need a maximum current of 85 mA sourced from the processing unit. A digital-to-analog converter (DAC) will be used to convert video signal to a VGA-compatible format and will require 27 I/O pins. Considering these requirements, 64 general purpose I/O pins will be needed. With a large device such as an FPGA, all of these pins can be allocated from a GPIO bank.

3.5 On-Chip Peripheral Requirements

The microprocessor will need one SPI channel so that it can communicate with the MIDI synthesizer chip. Other system tasks such as sound and video output will be accomplished by off-chip devices and will not require special on-chip peripherals.

3.6 Off-Chip Peripheral Requirements

The video output of the processing unit will be in digital format. In order to become compatible with a standard VGA device, a digital-to-analog converter (DAC) will be needed. This DAC will receive digital input from the processing unit and will output RGB data as analog signals.

In order to remove some overhead from the microprocessor, a Field-Programmable Gate Array (FPGA) will be used to refresh the video display. The microprocessor will send data to the FPGA to indicate which pixels in the display need to be changed. The FPGA will use this information to update a pixel map stored in SRAM, and it will send the entire pixel map from SRAM to the video display monitor sixty times per second as required by the standard VGA refresh rate. [1]

3.7 Power Constraints

The major consumer of power in the entire system will be the video display monitor. Because we are using a commercial VGA-compatible computer monitor for the display, it will have its own independent power supply. Because the monitor has built-in speakers, the power for the speakers will also come from the monitor’s power source. Power will still need to be supplied to the microprocessor, the USB receiver, the DAC, and the SRAM. Standard 1.2V, 3.3V, and 5V DC supplies are needed for these devices. To achieve a stable power supply, a 9V input to the board will be converted to 5V by one voltage regulator and 1.2V and 3.3V regulators will further step down the input voltage. With the implementation of these three regulators (9 to 5, 5 to 3.3, and 5 to 1.2), plenty of power can be made available. The voltage regulators should be capable of supplying 800mA to the 1.2V and 5V planes and at least 1A to the 3.3V plane which sources the SRAM, DAC, and oscillator.

3.8 Packaging Constraints

The device should be portable and durable. Packaging considerations will require that space is left for I/O ports for external devices including a MIDI jack, audio jack, power jack, and VGA jack. The packaging should either have holes for these jacks or be made of material that can be cut into. The size of the PCB shall not exceed 60 square inches, as specified by the PCB fabricator. The packaging should be about two or three inches tall to account for chips on the top and bottom of the PCB, such as voltage regulator and header pins.

3.9 Cost Constraints

As a prototype, more money may be spent on this design than one would expect to pay for a final product. For the purpose of a prototype, the VGA monitor is the most expensive component. Other major expenses such as the FPGA could be reconsidered in the interest of finding a cheaper part. If this product is brought to market it will cost around $75. To turn a profit, the cost of parts should be kept below $50.
3.10 Component Selection Rationale

In differentiating between microprocessors, clock speed and I/O were the only limiting factors, and available development tools were a major consideration. When the screen is being refreshed, pixels are being drawn 80% of the time (called the “blanking factor” of the display). In order to refresh an 800x600 pixel display sixty times per second with a blanking factor of .8, the processing unit has to be capable of at least 36 MHz clock speed. If the micro were to interface with a standard FPGA, it would need several I/O pins for a large data bus to carry RGB data from the processor to the FPGA. To achieve 8-bit color resolution, a processor could use a 24-bit wide bus and transmit data at the same frequency as the display refresh rate. Bus width could be minimized by using a smaller bus and transmitting faster than the refresh rate so that all of the data is in place before the display gets refreshed. However, another method became apparent. The Cyclone II processing unit is an FPGA with an embedded microprocessor core. [2] It is set up like a typical FPGA, but a group of gates inside the device are arranged in such a manner that they comprise a microprocessor core. By using this device we could do all of our processing and video control on a single chip. In addition, several great development tools are available for the Cyclone II, and a development board is on-hand in the development lab. Two options were considered and are compared here.

First, an Atmel processor such as the AT91RM9200 could be used. [3] The Atmel AT91RM9200 has 122 I/O pins and a max clock speed of 180 MHz. Also, though expensive, there are several development boards available, including the Atmel AT91RM9200 (ARM9) Development Board. [4] With plenty of I/O, capability for fast clocking, and a good development environment, this option met our needs. This option, however, would require a separate FPGA, such as the Atmel AT40K05, which has 128 I/O pins and a max frequency of 100 MHz.

Our other option was the Cyclone II FPGA with embedded microprocessor. The Cyclone II comes in a variety of packages, many of which are ball grid array (BGA). In selecting the appropriate model of the Cyclone II, we chose the largest model available in a plastic quad flat-pack (PQFP) package, the 240-pin EP2C20. The Cyclone II has 260-MHz maximum operating frequency, meeting both the I/O and clock requirements. What set the Cyclone II apart was the availability of development tools. The development lab has an Altera development board on-hand. Furthermore, the development board has a VGA output, which would allow development of a prototype before the printed circuit board is completed. Primarily because of the availability of the Altera development board with VGA output, the Cyclone II processor was chosen.

3.11 Summary

Hooked on Harmonix will utilize several I/O devices to help the user learn to play the piano. Performance critiquing and video adjustment management will be handled by the microprocessor core while the FPGA manages the task of updating and refreshing the video display. Several other chips will be used on the board including external SDRAM and a DAC. Atmel and Altera both make processors that work for this project and meet the clock and I/O requirements, but the quality and availability of Altera’s development tools make the Altera processing unit a clear choice.
4.0 Patent Liability Analysis
4.1 Introduction
The Hooked on Harmonix system uses a gaming interface to teach users how to play an electronic keyboard. The system outputs a visual representation of stored MIDI song data to a standard VGA monitor, and the user is required to match the visual cues with a MIDI keyboard. Each noted to be played is represented by a scrolling bar, where the length of the scrolling bar indicates the duration for which the note should be played, and the scrolling speed of the bars indicates the tempo of the song. Furthermore, these bars will be arranged such that they align with a keyboard display at the bottom of the screen. The audio portion of the song will be output simultaneously to analog speakers, so that the user can synchronize the music with the monitor display and thereby understand the rhythm of the song better. As the user attempts to match the display with the keyboard, the output of the MIDI keyboard will be fed to the Hooked on Harmonix system, which will then determine if the user input matches each particular note based on key and timing accuracy. Once the song is complete, the system will provide quantitative feedback to the user indicating his/her performance.

Because there are numerous systems that integrate electronic gaming and music, it is not surprising that this device is quite susceptible to patent infringement. As discussed below, there are several patents which, while not necessarily mimicking the Hooked on Harmonix system in every design detail, describe technologies that perform similar functions to this device. Although it is certainly debatable whether or not certain devices perform ‘substantially the same function(s)’ as the Hooked on Harmonix system, there are several design criteria which can provide strong justification for one viewpoint over another. Among these system design features are: 1) a graphical display with scrolling icons and/or a keyboard layout style, 2) the conversion and synchronization of an audio signal to a visual representation of this audio data, and 3) the comparison of user input to an expected input for the purpose of providing feedback. These operations are considered to be potentially ‘infringing functions’ and are the guidelines by which the similarity between a given patent and the Hooked on Harmonix device is established. It will soon be shown that all of the patents selected for this analysis express functionalities which, to some degree, are similar to one or more of the infringing functions mentioned previously.

4.2 Results of Patent and Product Search

Patent 7030307 – “Music teaching device and method” (Inventor: Wedel, Douglas; Date filed: June 10, 2002) [5]
This patent describes the visual depiction (preferably on a computer screen) of musical notes using objects with a particular shape or size corresponding to the note pitch and duration. Furthermore, the patent specifies feedback options indicating whether or not the user played the note correctly. For example, a change in color, brightness, or icon shape could be used to indicate the accuracy of the user input. The patent also suggests a simplified keyboard tablature, which arranges note icons on the screen in such a way that their positions are in line with corresponding ‘key clusters’. Rather than lining up scrolling icons with individual keys, the icons are aligned with a key cluster containing the key to be pressed; the shape of the icon will determine which key within the key cluster must be selected. The patent holder chose this tablature because rather than having to display 43 lines corresponding to individual keyboard keys, he believes that he can account for all of the notes using only 10 key cluster lines, thereby greatly simplifying the visual song representation.

Infringing Functions: 1) a graphical display with scrolling icons and a keyboard layout style, 3) the comparison of user input to an expected input for the purpose of providing feedback

Patent 5286908 – “Multi-media system including bi-directional music-to-graphic display interface” (Inventor: Jungleib, Stanley; Date filed: April 30, 1991) [6]
This patent describes the methodology for bi-directional control of a musical instrument interfaced with a computer device. More specifically, this method allows the user to control a graphics display using the digitized input from a musical instrument, and conversely the instrument can be controlled by a graphics display the user constructs. The patent specifies that the digitized input is read by a main processing unit, and based on a stored algorithm, the processor, in conjunction with some media controller, will output a corresponding graphical display; a reverse procedure occurs for the video-to-audio conversion. Although not required specifically in the patent claims, the patent description heavily emphasizes the use of the MIDI data format for the digitized audio signals.

Infringing Functions: 2) the conversion and synchronization of an audio signal to a visual representation of this audio data
Patent 7081580 – “Computing device to allow for the selection and display of a multimedia presentation of an audio file and to allow a user to play a musical instrument in conjunction with the multimedia presentation” (Inventors: *listed in references*; Date filed: March 1, 2004) [7]
This patent explains how a computing device can be used to allow a user to select a desired song and then to play along with a multimedia representation of the song. The user provides an input to the computing device specifying what song file to play. This computing device then sends a file request to a separate server, which then transmits the requested song file and its corresponding multimedia data back to the computing device. The computing device will them present the full multimedia representation of the file, which includes both audio and video output. The user can then play along with the displayed song using almost any musical instrument (emphasis is placed on keyboard and guitar). Furthermore, the analog sound emanating from the instrument is actually transformed into a digital audio sequence using an analog-to-digital (A/D) converter which receives input from the musical instrument. The digital audio is then processed by the computing device, manipulated so that it matches the type of sound characterizing the song file, and is played back concurrently with the song file. For example, if the song being played contains guitar sounds, then the user input, regardless of what musical instrument it originated from, will be processed such that it will sound like a guitar when output to the device speakers. This prevents the awkwardness that would result if the instruments did not sound alike, and it allows the user to better learn how to play the instrument.

Infringing Functions: 2) the conversion and synchronization of an audio signal to a visual representation of this audio data
4.3 Analysis of Patent Liability
Patent 7030307 – “Music teaching device and method”
The Hooked on Harmonix device avoids literal infringement upon this patent in one critical aspect: the graphical key tablature. While the key tablature suggested in the patent involves the use of ‘key clusters’ indicating lines along which the notes must scroll, the Hooked on Harmonix system utilizes separate lines for every single note. Furthermore, the patent system requires that the scrolling icons have varying properties (intensity of shading, striping, etc.) to indicate which key within a particular cluster correspond to that note; the Hooked on Harmonix system however only alters the shading of the block, using a lighter color to represent white keys, and a darker color to represent black keys. Unfortunately, the remaining patent claims are listed in a general enough form that the Hooked on Harmonix operations could be considered to fall within the patent guidelines. For example, the general use of scrolling icons to depict music and the use of icon dimensions to indicate pitch and duration are quite similar to the functionalities of the Hooked on Harmonix system. In addition, because the Hooked on Harmonix system still utilizes a keyboard-based tablature, its scrolling methodology would not be considered ‘substantially different’ than the methodology expressed in the patent. Therefore, the doctrine of equivalents is satisfied, and infringement is likely to occur.

Patent 5286908 – “Multi-media system including bi-directional music-to-graphic display interface”
The Hooked on Harmonix system avoids literal infringement on this patent primarily because it does not use a commercial computer system for data processing; as mentioned before, it features it own modular unit for this functionality. In addition, the Hooked on Harmonix circuitry is rather simplified in comparison to the patented technology, since this system only allows the keyboard input to affect the graphical output, not vice versa. Although the Hooked on Harmonix graphical display is primarily controlled by the stored MIDI song data, the accuracy of the keyboard input will determine whether or not certain feedback messages are displayed in real-time on the screen. Unfortunately, the modular unit used in the Hooked on Harmonix device could be considered to be ‘substantially the same’ as a computer since it shares much of the same general construction (such as the use of a processor, audio interfaces, video interfaces, etc.). Thus, under the doctrine of equivalents, there is a potential for infringement.

Patent 7081580 – “Computing device to allow for the selection and display of a multimedia presentation of an audio file and to allow a user to play a musical instrument in conjunction with the multimedia presentation”
There are several aspects in which the Hooked on Harmonix system avoids literal infringement on this patent. First, this patent is intended for analog musical devices, such as a guitar or analog keyboard. However, the Hooked on Harmonix system requires the use of a MIDI keyboard, which has a digital signal output rather than an analog sound. Thus, the A/D conversion used in the input to the patented device does not exist in the Hooked on Harmonix system. Instead, the input consists of circuitry dedicated to the transfer of MIDI data to the processing unit. Also, the patented device requires the use of a separate server (with various security and networking protocols) to store and organize song data. The Hooked on Harmonix device however stores all song and graphical data in Flash memory internal to the device; as a result, no network interfacing and server communication exists in this system. Because the technology present in the two devices differs so extensively, the doctrine of equivalents cannot be reasonably satisfied. Therefore, patent liability is of little concern.
4.4 Action Recommended

Patent 7030307 – “Music teaching device and method”
There are several methods of avoiding patent infringement in this particular case. Perhaps the simplest way to avoid infringement is to pay royalties to the patent holder. More tedious methods of eliminating patent liability involve a substantial alteration in the programming of the graphical interface. For example, rather than having scrolling notes along lines representing keyboard keys, the notes could be fixed in position on the monitor display, and a thin line could merely scroll along the page crossing through the notes. Each time a line crosses through a note, the user would be required to play the key corresponding to that note (the key and the duration of the note can be expressed in any way, ranging from shape variations to actual written letters indicating note parameters). This scrolling pattern could be considered substantially different than the key cluster pattern suggested by the patent holder, and thus infringement could be avoided. Another manner of note display could involve the use of notes scrolling along a single line, where the length of the icon represents the duration of the note, and the letters written inside the icon indicate the key and octave of the note. Once again, because the notes are all moving along a single line, the pattern differs substantially from a keyboard layout display, and once again patent infringement could likely be avoided. Among the options provided here, the first one (paying royalties) is the preferred choice assuming that the royalty costs are not too large. This is because the original Hooked on Harmonix note display scheme is much simpler to understand in comparison to the alternatives mentioned here, and therefore alteration of this scheme is strongly discouraged.

Patent 5286908 – “Multi-media system including bi-directional music-to-graphic display interface”
As mentioned previously, one method to avoid patent infringement would be to pay royalties to the patent holder. The alternate method for preventing infringement would be to make the graphics display independent of the keyboard input. Rather than displaying real-time messages corresponding to the accuracy of the user input, the performance messages would only be presented after the song has been played; this removes the requirement of real-time synchronization of the user input to the graphics display.
4.5 Summary

The Hooked on Harmonix system achieves similar functionalities to several other electronic music systems, as described by numerous patents. Fortunately, it was discovered that in one of the cases, there was enough of a difference in the manner in which these functionalities are achieved so that the doctrine of equivalents can not necessarily be satisfied, and therefore patent infringement will not likely occur. However, there were two cases discovered in which patent infringement was unavoidable, and corrective action must thus be taken. To prevent infringement, either royalties must be paid to the patent holder, or the graphics scheme and performance feedback methodology must be altered substantially.
5.0 Reliability and Safety Analysis
5.1 Introduction

The Hooked on Harmonix game system is an instructional game for an electronic keyboard. The game system consists of a populated PCB in a plastic enclosure with a MIDI cable. The Hooked on Harmonix game system will interface with an existing VGA monitor and a MIDI keyboard. The product will be placed on whatever surface is convenient within reach of both the keyboard and the monitor.

In examining the reliability of the Hooked on Harmonix system design, there are certain components that are the most critical for the system’s operation. The main components to be considered in the safety and reliability analysis are the components which use high amounts of power and have high complexity. The 5V low dropout linear voltage regulator is the main provider of power to the PCB, therefore it will be considered in the reliability analysis. The Cyclone II FPGA and the high speed SRAM draw significant power and will also be examined in the reliability analysis.

Safety analysis is an important step in any design process to ensure that the product does not cause any preventable danger. The error states of the design must be thoroughly examined to make certain that the product fails in a way that does not jeopardize the safety of the user. Fortunately the Hooked on Harmonix user’s safety is not directly affected by the reliability of the system, but care must be taken to ensure that failure states do not cause an unsafe condition. The main safety consideration in the design of the system is that the heat generated by the system in normal and error states does not pose a fire hazard. The following blocks of the Hooked on Harmonix system will be considered in the safety analysis: the power management circuitry, FPGA and configuration device, MIDI input and audio output, video DAC, and SRAM. Failure states for each block will be analyzed and criticality levels will be assigned.
5.2 Reliability Analysis

The three components most likely to fail in our design are the LD1117 5V low drop out linear voltage regulator, the Altera Cyclone II EP2C20 FPGA, and the IS61LV5128AL high speed SRAM. These components were chosen due to their high power consumption and complexity.
The first part analyzed is the LD1117 5V LDO linear voltage regulator. The reliability calculations were performed with the equations provided in the Military Handbook for Reliability Prediction of Electronic Components [8]. The voltage regulator was assumed to fit the linear MOS device model with less than 100 transistors. The maximum junction temperature for the device is 150°C [9]. This maximum junction temperature value was used to calculate (T. This value may be higher than the actual value for the reliability calculations, due to the fact that the device presumably will not be operating at the maximum junction temperature. This value was used as a worst case scenario estimation because the actual junction temperature is unknown. Ground benign condition and nonhermetic packaging were also assumed in the calculations. The reliability calculations for this device can be seen in Table 2.1. According to the calculations, the voltage regulator will have approximately 18.01 failures/106 hours, which gives a mean time to failure (MTTF) of approximately 6.34 years. This reliability is relatively low, but considering that the values used in the calculations related to a worse case scenario, this reliability is acceptable. The reliability could be improved by providing an efficient heat sink to keep the junction temperature of the device low.
	Parameter
	Value
	Justification

	C1
	0.01
	Linear MOS device (assuming < 100 transistors)

	(T
	180
	Linear MOS, w/ maximum junction temperature = +150°C

	C2
	0.0012
	TO220 3-pin (assuming nonhermetic) C2 = 3.6e-4 * (3)1.06

	(E
	0.50
	Assuming GB (ground benign)

	(Q
	10
	Commercial component

	(L
	1.0
	In production for > 2 years

	(P
	18.01
	(P = (C1(T + C2(E) (Q(L Failures/106 Hours

	MTTF
	5.554e4 hrs
6.34 years
	MTTF = 1/(P

Table 2.1 LD1117 LDO Linear Regulator

The second component to be considered in the reliability analysis is the Altera Cyclone II EP2C20 FPGA. Reliability analysis was performed on this component because the FPGA is the most complex of all of the components used in the design. The model used for the reliability analysis was a PLA with between 5,001 and 20,000 logic elements. The parameters for the reliability calculation were obtained by assuming that more than 5,000 logic elements in the FPGA would be used. (T was calculated by assuming that the junction temperature would be the maximum operational temperature for the device (85°C) [10]. This is a pessimistic assumption that will be reflected slightly in the reliability calculation. A ground benign condition was also assumed in the reliability calculations. In Table 2.2, the FPGA can be seen to have an estimated .6623 failures/106 hours and a mean time to failure of 171.6 years. From these calculations it can be seen that the FPGA is much more reliable than the voltage regulator. The reliability could be improved even more by using less logic elements in the FPGA configuration, and by having efficient cooling of the device with a heat sink.
	Parameter
	Value
	Justification

	C1
	0.0068
	FPGA with 18,700 logic elements (PLA w/ 5,001 < LE’s < 20,000)

	(T
	.96
	Digital CMOS, w/ maximum operational TJ = +85°C

	C2
	0.12
	240 pin PQFP, C2 = 3.6e-4 * (240)1.06

	(E
	0.50
	 Assuming GB (ground benign)

	(Q
	10
	Commercial component

	(L
	1.0
	In production for > 2 years

	(P
	.6653
	(P = (C1(T + C2(E) (Q(L Failures/106 Hours

	MTTF
	1.50e6 hrs
171.6 years
	MTTF = 1/(P

Table 2.2 Altera Cyclone II EP2C20Q240C8 FPGA

The third and final component analyzed is the IS61LV5128AL high speed SRAM. SRAM reliability is important because the SRAM draws a significant amount of current and will be operating at a high speed during the Hooked on Harmonix system operation. In the reliability analysis, the 1Mbit CMOS memory model was used. The actual size of the SRAM is 4Mbits [11], but due to the dated models in the military handbook, the largest memory model is 1Mbit. (T was also calculated by assuming that the junction temperature of the device will be the maximum operational temperature of 85°C. This assumption, like the previous components, represents a worst case temperature scenario. A ground benign environmental operating condition is also assumed for the calculations. As seen in Table 2.3, the SRAM will have an estimated 0.6947 failures/106 hours and a mean time to failure of 164.3 years. This reliability is relatively high, but it could be improved even more by keeping the device cool.
	Parameter
	Value
	Justification

	C1
	0.062
	SRAM (CMOS) 4Mbit (512K x 8)

	(T
	.96
	Digital CMOS, (assuming maximum operational TJ = +85°C)

	C2
	0.0199
	44 pin TSOP, C2 = 3.6e-4 * (240)1.06

	(E
	0.50
	 Assuming GB (ground benign)

	(Q
	10
	Commercial component

	(L
	1.0
	In production for > 2 years

	(P
	0.6947
	(P = (C1(T + C2(E) (Q(L Failures/106 Hours

	MTTF
	1.44e6 hrs
164.3 years
	MTTF = 1/(P

Table 2.3 IS61LV5128AL 512K x 8 High Speed SRAM

The reliability of the FPGA and SRAM is relatively good for this design, while the voltage regulator is only acceptable. The reliability of the FPGA could be improved even more by using less logic elements, and the reliability of all of the components can be improved by keeping the junction temperature well below the maximum ratings of the part. The analysis could be refined to give better reliability numbers by using a more accurate junction temperature for each component to be used in the calculations. The junction temperatures are over estimated, which are reflected in the low reliability numbers for the voltage regulator.
5.3 Failure Mode, Effects, and Criticality Analysis (FMECA)
The failure modes for any design must be analyzed carefully to ensure that any failure of the device poses a risk to the user. Determining the effects of failure modes also provides a reference to be used in repairs and troubleshooting of the system. Each failure mode varies in the criticality of the failure to the system’s operation and the user’s safety. The following three criticality levels are used in the FMECA of the Hooked on Harmonix game system:

Low Criticality – system still operates, but some functionality is lost

Medium Criticality – Operation Critical, system is inoperational, but undamaged

High Criticality – Design Critical, failure causes damage to system and creates an unsafe condition

An acceptable failure rate for the low criticality condition is ((10-4. The medium criticality should have a failure rate of ((10-4, and the high criticality failure modes should have a failure rate of ((10-9 to best protect the safety of the system and the users. The schematic for the Hooked on Harmonix system has been broken down into five functional blocks: the power management circuitry, FPGA and configuration device, MIDI input and audio output, video DAC, and SRAM. These functional blocks can be seen in Appendix A. The FEMCA worksheet in Appendix B shows the failure modes for each of these functional blocks as well as the effects, causes, and criticality.
5.4 Summary

In examining the reliability of the Hooked on Harmonix system design, the main components considered in the safety and reliability analysis were the 5V low dropout linear voltage regulator, the Cyclone II FPGA, and the high speed SRAM. The reliability of the FPGA and the SRAM was found to be very good, and the reliability of the voltage regulator was found to be acceptable, although steps could be taken to improve the reliability. The error states of the Hooked on Harmonix design were thoroughly examined to identify the effects of each failure mode and the possible causes. The failure modes involving the power management block of the system are the most critical, and should be protected against to ensure the safety of the user and the device itself.
6.0 Ethical and Environmental Impact Analysis
6.1 Introduction

Hooked on Harmonix combines a learning experience for the art of playing the piano with the entertaining environment of a video game into one package. Due to the docile nature of this gaming system, however, it poses very few ethical/environmental dangers over the course of its life-cycle. In fact, since this device is inanimate and produces no harmful chemicals/gases, the only environmental concerns associated with it occur pre/post life-cycle. This environmental impact is virtually the same that is common to most products using electrical components and a printed circuit board. For example, the use of substances such as lead and mercury in manufacturing can be detrimental to the environment if not disposed of properly, and since this device is available to the average person, it will most likely be thrown away in the garbage when it becomes no longer functional. Therefore, steps must be taken during the manufacturing stages of design to protect against such situations. Moreover, from an ethical standpoint, since the device has little possibility of injuring the user and no security issues, the only ethical issues that arise are that of copyright violations for the music that is displayed, as well as the fact that we are interfacing to devices that the user owns, thus creating a potential for damaging them. To ignore the rights of the musician to protect his/her work as an artist or to fail to protect against damaging devices that interface with this product would be a clear violation of ethics.
6.2 Ethical Impact Analysis

As previously mentioned, the Hooked on Harmonix gaming console does not pose any immediate risk of injury or security to the average user, but as is with almost all electrical devices there are certain situations that must be taken into account as a safety precaution. For example, steps must be taken in order to properly handle the case of a power surge or possibly a short across power and ground that causes a sudden spike in current. This could not only severely heat or even damage the device itself, but from the ethical standpoint this current spike could feedback into the external devices that are interfaced with it such as the monitor, speakers, and keyboard. Therefore, if not protected against, a failure in the Hooked on Harmonix device could potentially cause damage to other expensive equipment belonging to the end user. As bad as this may seem, however, these issues can be easily protected against. For example a metal oxide varistor (MOV) could be placed across the power input that clamps at a specified voltage and effectively behaves as a surge protector. Similarly, in order to protect against shorts within the gaming device, varistors could be placed on the outputs to the monitor and speakers that would prevent the analog signal from spiking higher than a certain threshold, thus containing the short within the product. As for the keyboard, the only point of connections is through the MIDI input line, which is optically isolated from the circuit within the device, so if the isolator were to fail from a spike in voltage the keyboard would be disconnected.

Another issue that could potentially damage the aforementioned interfaced monitor is if some malfunction in the FPGA (Field Programmable Gate Array) caused the horizontal or vertical syncing signals to exceed their respective maximum frequency tolerances [12]. Corruption of the clock frequency, or perhaps even a short of the power to the FPGA could cause this. However, a simple solution to the problem would be to pass the horizontal sync signal through a band-pass filter that allows for frequencies within a given tolerance, and to pass the vertical sync signal through a low pass filter set to the specified maximum frequency allowed. Therefore, in the event of too high of a frequency, the signals would be driven low and no damage would be done to the monitor.

No ethical analysis would be complete without the analysis of the target user. Since Hooked on Harmonix is intended to be used in the home, testing in extreme temperature conditions is perhaps overkill. However, due to the fact that it will most likely be within reach of small children or pets, a certain amount of childproofing of the enclosure is required in order to be ethically sound. This will prevent such things as a curious child putting his/her fingers through any holes or lifting the lid off and poking around inside, and even help protect against spilled liquids. There will still have to be holes for the ports to stick out of, but as long as the enclosure is fairly tight against the ports and the lid is securely fastened down, these issues should be avoided. Although this is not a high voltage device, a good idea would be to place a warning label on the lid describing the dangers of tampering with electrical circuitry, incase one were to open it up. This issue could even be reinforced in the user's manual.

Aside from design issues, the very fact that this device is showing you how to play music written by another individual, as well as the fact that it is potentially using said music to turn a profit, constitutes the need for permission from the artist. Using their work without their permission is not only a clear violation of ethics, but it is against the law. Therefore, permission will have to be obtained for all copyrighted songs used in Hooked on Harmonix.

Finally, since the product is inanimate and requires little physical contact with the user, any logic bugs in software/hardware code would not pose any threat to the user. As mentioned previously, if the syncing signals were programmed out of tolerance the monitor could incur some damage, but this is a pretty obvious bug to find and would more likely occur due to some corruption within the FPGA. All other software bugs would simply cause the game to misbehave, which would most likely end in losing the customer due to dissatisfaction.
6.3 Environmental Impact Analysis

Since this product will spend most of its life indoors and produces no environmental dangers as a byproduct, all environmental issues will have to be taken care of during manufacturing and disposal. Two main issues arise in the production and disposal of such an electrical device. These issues are basically the overuse of natural substances such as copper that are in limited supply, and the use of certain substances that are detrimental to society. Since someone uneducated in the composition of electrical components will most likely be using this product, they will most likely throw it in the trash at the end of its life-cycle, thus exposing those detrimental materials to the environment. Therefore, the second of the two issues is especially important.

The issue of recycling materials used in the design of this product can be addressed both in the manufacturing as well as the disposal stages of its life-cycle. Since other companies will manufacture most of the components in the design as well as the printed circuit board, it is important to choose carefully which companies to work with. Metallic elements on a printed circuit board such as copper, nickel, tin, lead, gold, palladium, and silver can all be recovered by recycling [13], and when millions of these boards are ordered from a company any little bit to conserve the earth's natural resources helps. Since the end user has control over how the device is disposed of, it is important to do as much as possible in the manufacturing stage. However, even though the user has control over how the device is disposed of, various steps can be made to make sure that they are informed. For instance, instructions can be given in the user's manual on the proper method of disposal so that as much of the product gets recycled as possible. Furthermore, since not everybody reads the user's manual, a warning label would most likely be put on the device stating that the components inside are possibly detrimental to the environment and should be disposed of properly, referencing the user's manual as to the proper methodology.

Unfortunately, one cannot always rely on others to make good decisions regarding the environment, and therefore steps must be taken in order to anticipate improper disposal. This is done in the manufacturing stage of the design by things such as choosing ROHS compliant parts. The ROHS directive restricts the use of lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, and pollybrominated diphenyl ether to .1% (or .01% for cadmium) by weight of homogeneous material [14]. As an indication of the importance of such compliance, lead poisoning can cause anemia, damage to your nervous system or brain, kidney disease, and impotence [15], and although we do not always see the effects of this, the animals whose habitats are filled with our lead waste most certainly do.

Consumer electronics are the fastest growing segment of the municipal solid waste stream in the US, accounting for 2.63 million tons of waste in 2005 (or 1.1 percent of the waste stream), an increase of 7.8 percent over 2004. Of this 2.63 million tons, 87.5 percent was disposed of rather than recycled. Toxic substances contained in electronic products can pose threats to human and environmental health after those products have been sent to landfill or burned in incinerators. For this reason, numerous products have been classified as hazardous waste. Recent lifecycle analyses show that recovering many of the materials contained in electronics, as opposed to extracting raw materials from the earth, makes environmental sense. [16]
6.4 Summary

Although many companies these days do not take up the initiative to help save the environment, it is the responsibility of those manufacturing the products that we use in everyday life to both conserve natural resources as well as limit the amount of harmful substances that are eventually dumped in our ecosystem. Many times when people think of ethical responsibilities they think about the unfair treatment of humans, but in actuality these two issues overlap a great deal. Just as there is an inherent responsibility for companies to protect their customers, it is also a question of ethics that guides the environmental considerations in the design of a product. Hooked on Harmonix is a gaming system whose functionality has no negative effects on the environment, but much still needs to be done to ensure safety in society and nature (as outlined in this document) should this product be taken to production. Steps such as protective circuitry and childproof enclosures would need to be taken to protect the user, while artist consent would need to be obtained in order to display information regarding songs to be displayed. Furthermore, an emphasis on environmental integrity is imperative for the furtherance of society, especially with the technological direction in which we are headed. Without some methods of conservation, we will soon run out of the materials necessary for the composition of such devices. This is not always the cheapest route, but it far outweighs the negative press associated with violating environmental regulations. However, as much as these decisions are business driven, the responsibility still lies within the company to make good decisions from an ethical and environmental standpoint.
7.0 Packaging Design Considerations

7.1 Introduction

The Hooked on Harmonix game system provides the user with an interactive keyboard playing experience that helps develop musical and rhythm skills by scrolling notes on a VGA monitor and playing the song over speakers while grading the user’s performance as he attempts to play along with the song. The three major high level components of the Hooked on Harmonix system are the MIDI keyboard, VGA LCD display with built in speakers, and the enclosed circuitry unit. The user will provide the input to the Hooked on Harmonix system with a MIDI keyboard through a MIDI cable connected to the printed circuit board (PCB) which performs all game play logic and outputs the appropriate video and audio signals to the monitor and speakers. The MIDI keyboard and monitor are not packaged with the PCB, but rather they are connected with the appropriate cables and connectors. The PCB is packaged in an enclosure that will rest on whatever surface is supporting the monitor.

7.2 Commercial Product Packaging

The top two commercial products similar to the Hooked on Harmonix system are I can Play! Piano by Fisher Price and Piano Wizard by Allegro Rainbow. These two products differ slightly in their packaging approach, with unique advantages and disadvantages.
7.3 Product #1 – “I Can Play! Piano” by Fisher Price

[image: image5.png]
Figure 1. “I Can Play! Piano” Packaging Example
The “I can Play! Piano” is packaged as a standalone MIDI keyboard with an audio and video NTSC television output. [17] The keyboard packaging houses all of the circuitry, which provides the functionality both for the MIDI keyboard itself and for the interactive video game played on the television. The advantage to this packaging approach is that the only additional equipment necessary to play the “I Can Play! Piano” is a television set. It is not necessary to interface the keyboard with a personal computer and to install separate software. The disadvantage of this packaging method is that the product can not easily interface to peripherals for the user to add custom songs or content. Additional songs can be added through expansion cartridges, but the song selection is limited to available cartridges. [17] The user is limited to playing the song selection chosen by the manufacturer.

7.4 Product #2 – “Piano Wizard” by Allegro Rainbow

The Piano Wizard is packaged differently than the Fisher Price “I Can Play! Piano” with the most complete package including a stand alone 49 key MIDI keyboard, a MIDI to USB converter, piano wizard software, and a set of colored stickers to be placed on your keys. [18]
[image: image6.png][image: image7.png]
Figure 2. “Piano Wizard” Packaging Example
The game is displayed over the computer monitor attached to the PC (or Mac) running the software. The main advantage of this packaging design is that any MIDI keyboard can be connected to the computer to interface with the software. This gives the user flexibility when choosing a MIDI keyboard, because any MIDI keyboard will function with the system. Also having the game run on a computer allows the possibility of adding additional songs to the game library and updating the software.

The newest version of “Piano Wizard”, “Piano Wizard Premier”, allows the user to upload any MIDI song file desired into the program so that the user can play the song. [18] The ability to add songs to the program is a feature that is possible due to the flexible PC based packaging design, which provides the interface necessary to load MIDI files into the program.
7.5 Project Packaging Specifications

The Hooked on Harmonix system is packaged in a manner to maximize the advantages of both of the aforementioned products, while minimizing their disadvantages. The Hooked on Harmonix system PCB is packaged in a small box enclosure with the dimensions 9x8.5x2 inches (see Appendix A). The box also features a removable aluminum top panel, which provides easy access to the active serial programming header on the PCB. These enclosure dimensions are used due to the size of the PCB being approximately 7x6 inches. The extra space available in the enclosure is useful for arranging the PCB in the box to facilitate connector placement and switch placement. This box houses the populated PCB board with all of the components necessary to run the Hooked on Harmonix system apart from the MIDI keyboard, LCD monitor, and speakers. The box enclosure has 4 openings milled into the rear panel of the enclosure. The rear openings provide access to the power connector, the VGA monitor connector, the audio jack, and the MIDI connector. These openings required a 5/16” drill bit for the power connector, ½” bit for the VGA D-Sub connector, ¼” bit for the audio jack, and a ¾” bit for the MIDI connector (see Appendix B). A power drill was used to mill these openings and then a Dremel tool was used to shape the openings to the appropriate proportions..

There are many advantages to having a standalone box enclosure with convenient I/O capabilities. This packaging method provides the advantages of upgradability and song expansion by removing the aluminum panel. The packaging will also allow a user without a computer to utilize the system. In this way, the Hooked on Harmonix system packaging incorporates the advantages of both the “I Can Play! Piano” and the “Piano Wizard” products.

7.6 PCB Footprint Layout

The major component selected for the Hooked on Harmonix system was the Cyclone II FPGA with an embedded soft core NIOS II processor. The Cyclone II FPGA comes in different packages and varying numbers of logic elements, with models ranging from 144 pins in the EP2C5 model to 896 pins in the EP2C70 model. [19] The PCB footprints for these various models also differ greatly. When making the decision regarding the Cyclone II model selection, several main factors were considered. The first factor considered was our limited manufacturing and soldering resources. Due to lack of the necessary equipment, all of the Cyclone II FPGA models available only in BGA type packages had to be ruled out of the design. Another important consideration for the FPGA was having a sufficient number of I/O pins available to interface with the many various peripherals of the system. After carefully examining the candidate parts, the EP2C35 model was chosen with the 240pin PQFP package option. This Cyclone II model has the most I/O pins of any of the non-BGA packaged models. The PQFP packaging option was an easy decision as it was the only feasible option given the limited manufacturing resources available to the team. The size of the FPGA footprint was not a factor in determining which part to use in the design, because the size of the PCB is not a major constraint for the project. The initial estimate for the PCB size after dimensioning all major components is 5 x 4 inches. (See Appendix C) The packaging enclosure dimensions detailed in section 3.0 were estimated from this PCB size.
7.7 Summary
The advantages of the packaging design of two similar commercial products were carefully examined in order to optimize the packaging design for the Hooked on Harmonix system. The Hooked on Harmonix system packaging design implements the convenience of a standalone, non-computer based product such as the “I Can Play! Piano” along with the song expandability of a PC based product such as “Piano Wizard.” Because the PCB will be approximately 4x5 inches, the packaging design for Hooked on Harmonix processing unit consists of a 9x8.5x2 inch enclosure box with milled openings to provide access to the various device interfaces. The MIDI keyboard and Monitor will interface to this box to complete the Hooked on Harmonix system.
8.0 Schematic Design Considerations

8.1 Introduction
The Hooked on Harmonix System is a gaming tool designed to teach users how to play a keyboard. When a user wishes to play a particular MIDI song stored in the system, the MIDI data comprising that song will be converted to an analog audio output and will also be represented by a series of scrolling bars displayed on the included monitor. The audio and video representations of the MIDI song will be synchronized such that the rate of the scrolling display, the keyboard key indicated by a particular bar, and the length of the bar will correspond precisely with the tempo, keynote, and note duration of the real-time audio output, respectively. As the song plays through, the user will attempt to match the song by pressing the keyboard keys indicated by the scrolling display bars. If the user presses the wrong key, or if the correct key is pressed but at the wrong time instant, the system will record these errors and notify the user of his/her performance after the song is finished. By practicing these songs multiple times and by utilizing the feedback the Hooked on Harmonix System provides, the user will steadily improve his/her keyboard-playing skills.

The Hooked on Harmonix System utilizes numerous hardware interfaces for various signal inputs and outputs. For example, the MIDI song files are loaded into the system through a USB interface. Programming the FPGA is achieved through an RS-232 connection. Sound is output to speakers via a Stereo audio line. Because of this variety of data standards, the circuit design requires several controllers or translators which can convert these different data standards into a format directly usable by the FPGA. Another aspect of the circuit design which has required substantial consideration is the power supply and voltage regulator selection. The power components must be selected such that they satisfy the different power supply requirements for various system components, but simultaneously the circuit design must ensure that the maximum current or power ratings of any of the regulators are not exceeded. These hardware considerations are addressed in the next section.
8.2 Theory of Operation

The datasheets for all of the major components listed below can be found in Reference [22].

Memory

The M4K memory blocks in the Altera EP2C20 Cyclone II FPGA can store a total of 239,616 data bits, not including the memory available on the Nios II processor [20. However, the data comprising the MIDI files, program instructions, and graphics information has an aggregate size on the order of millions of bits (Mb). In order to expand data storage capabilities, the FPGA is interfaced to external SRAM and Flash chip modules, providing memory sizes of approximately 4 Mb and 32 Mb, respectively. The Flash module is needed to store configuration data and the Nios program in a nonvolatile memory location, while the SRAM modules provide memory buffers which will allow efficient processing and storage of real-time graphics signals. The modules are connected individually to the FPGA via an address bus, a bidirectional data bus, and several control signals.

Audio Output
It is important that the user be able to hear a song as it is being displayed on the screen, thereby allowing the user to synchronize himself / herself with the rhythm of the song. The Hooked on Harmonix system achieves this functionality using a MIDI synthesizer IC (BU8793KN). When a sound is desired, MIDI song data is passed from the FPGA to the MIDI synthesizer, which then converts the digital MIDI data into an analog stereo output. This analog audio signal is then sent through an audio jack directly to a set of speakers to produce the sound output.

Graphics Processing
The graphics data processing is handled by the main FPGA as well as a specialized DAC (digital to analog converter), namely the ADV7125. While a MIDI song is output to the speakers and its corresponding bar pattern is displayed, the FPGA continuously calculates which pixels need to be refreshed or updated. Because the external SRAM module stores all of the pixel data at any given time, the FPGA works in tandem with the SRAM chip at all times, retrieving pixel values from the SRAM which need to be displayed as well as writing new pixel data to the SRAM for future use. Digital color data is sent from the FPGA to the DAC via a 24-bit RGB data bus (this 24-bit bus is subdivided into three 8-bit buses, where each bus contains the data for red, blue, or green pixel color). The DAC converts the digital color data input to an analog RGB output, which is then sent directly to the monitor to be displayed. In addition to outputting display data, the FPGA also sends several control signals to the DAC and the monitor itself.

USB Interface
The Hooked on Harmonix System receives MIDI song data from an external USB device, such as a USB flash drive. When a new MIDI song is downloaded into the system from an external drive, the data is immediately passed to a USB controller (ISP1181A). This device configures the serial USB data so that it is readily compatible with the FPGA I/O interface. The data is then passed through a high speed 16-bit parallel bus to the FPGA processor. For this particular application, the FPGA does not need to supply any signals to the USB controller, and thus the only connections that exist are for data input to the FPGA.

Keyboard Input
The keyboard is plugged into the system using a standard 5-pin MIDI jack [22]. The data coming from the jack is then passed through an optical isolator, after which the keyboard signal is input to the FPGA via a single pin serial connection.
Programming Interface
The FPGA is programmed via an RS-232 interface. Program data is passed through an RS-232 connector and directly into an RS-232 level translator. This device configures the data in a manner compliant with the FPGA data standard and passes this data to the FPGA using a serial connection. The FPGA then writes the program data to the external Flash module, where the program is stored until the FPGA needs to access it.
Power Supply and Voltage Regulation
The Hooked on Harmonix System is powered by a 9V, 500mA DC wall adapter which connects to the system via a DC power jack. This main power supply is then stepped down to several different voltage levels using linear regulators. The selection of these linear voltage regulators was determined partially based on the voltage requirements of various system components. For example, the RS-232 level translator, USB controller, and external Flash module all require a 5V power supply, and a 5V regulator was required. Similarly, a 3.3V regulator was chosen because the external SRAM chip, MIDI synthesizer, and many of the FPGA I/O pins require a 3.3V supply. A 1.2V regulator was also used in order to power the FPGA processing core. The 9V power supply will serve as the input to the 5V regulator, and the output of the 5V regulator will serve as the input to the other voltage regulators.

In addition to the system component voltage requirements, the current output capabilities of the regulators were also a critical factor in their selection. Even though there are numerous regulators available with a given supply voltage, they do not all exhibit the same current output maximum. The use of a voltage regulator with a low current rating could not only lead to an insufficient current supply to various system components, but if the regulator is forced to source or sink current which exceeds its maximum rating, it could be severely damaged and cause rapid heat buildup in the system. As a result, all of the voltage devices were selected from the same family of LD1117D regulators with a current rating of 800 mA. The advantage of this decision is twofold. First, using voltage regulators from the same family ensures some degree of compatibility and similarity of construction/quality. Secondly, because these regulators are rated for 800mA, there is little risk of the 500mA power supply causing damage to these components.

Another vital aspect of power regulation is the use of bypass and decoupling capacitors. Every pair of power and ground pins on the FPGA is bypassed using 0.1 uF ceramic capacitors. The decoupling capacitors for the voltage regulators (ranging from 10 uF to 1000 uF) are implemented primarily using electrolytic capacitors. Individual components, such as the DAC and MIDI LSI, have specific capacitor and resistor requirements, as shown in the hardware schematic. Nevertheless, additional 0.1 uF ceramic bypass capacitors have been placed between the power and ground pins of most of these components in order to provide greater power supply stability. Refer to the hardware schematic and PCB layout for details regarding the exact locations and values of discrete components used in the design.

Clock Frequencies

In order to provide a display resolution of 800 x 600 pixels on a monitor with a 60 Hz refresh rate, the required pixel clock speed is 40 MHz [21]. As a result, the clock signal sent to the DAC from the FPGA must be 40 MHz. Furthermore, since the FPGA must process and output this pixel data to the DAC, which itself is outputting at 40 MHz, the FPGA must be clocked faster than the basic monitor pixel rate. Ultimately, 80 MHz was chosen as the clock speed for the FPGA not only because it greatly exceeded the basic pixel rate requirement, but also because it could easily be frequency divided to the 40 MHz clock signal required by the DAC. Frequency division in digital devices generally only allows for division of a signal by an integer value, and so fortunately the 80 MHz signal can be divided by 2 in order to achieve 40 MHz. In addition, the MIDI synthesizer device requires a clock signal between 12.5 and 18 MHz in order to process the digital audio input at a sufficiently quick pace. The FPGA thus outputs a 13.333 MHz (80 MHz divided by 6) signal to the MIDI synthesizer in order to satisfy this requirement.

8.3 Hardware Design Narrative

Altera Cyclone II FPGA is a nontraditional microcontroller in the sense that although it contains an integrated NIOS II processor, it lacks the internal modules typically found in many microprocessors, including the PWM (pulse width modulation module), ATD (analog to digital conversion module), RTI (real-time interrupt module), etc. However, by carefully programming the FPGA and by using the external controllers listed above, the presence of dedicated processor modules becomes unnecessary. For example, the system does not require a PWM module for sound output because the MIDI synthesizer is able to directly convert the MIDI file data to an analog audio signal. Though there are no modules to select in the FPGA, there are a wide variety of I/O standards with which the FPGA pins can be programmed. Furthermore, the selection of the pin standards is dependent upon the devices with which these pins interface. In the Hooked on Harmonix system, all of the devices described above which interface with the FPGA require data I/O voltages ranging from approximately 2.0 to 5.0 V. In addition, all of the devices are compatible with the TTL (transistor-transistor logic) interface standard. Thus, the FPGA I/O pins were all chosen to operate with the 3.3 V LVTTL pin standard. Although the MIDI keyboard I/O voltage is roughly 5 V, this device can still be interfaced with the 3.3 V pin standard by using appropriately sized resistors (1 Kohm) in series with the connection.

8.4 Summary

The Hooked on Harmonix System utilizes several different data input standards, including USB, MIDI, RS-232 and others. Although the simultaneous usage of different data standards initially seemed very complex, implementing several controllers or translators to convert these differing standards into a common format has greatly simplified the operation of the circuit. Another concern regarding the FPGA interface was that the I/O pin voltages and data standards of the various external devices may not be compatible with those of the FPGA. However, the flexibility of the FPGA has allowed for the selection of a single I/O pin standard, 3.3V LVTTL, which is compatible with all of the external devices used in the system.
9.0 PCB Layout Design Considerations
9.1 Introduction

The Hooked on Harmonix system is an educational tool for a MIDI keyboard. By following along with what is displayed on the screen, the user will test their ability to play the keyboard while the system critiques the user’s performance.

The system is controlled by a microprocessor embedded within a Field Programmable Gate Array (FPGA). The microprocessor coordinates the computational functions of the system. The FPGA interprets data stored in external memory, modifies and interprets data stored in the video buffer, and outputs digital video data.

Several other on-board chips interface with the FPGA through general purpose I/O pins. A Digital to Analog Converter (DAC) receives digital video information from the FPGA and converts it to an analog signal for an external VGA-compatible video display device. Two SRAM chips are used for buffering the video output. A Serial Configuration Device is used to reconfigure the FPGA each time the system is turned on, and a MIDI synthesizer chip is used for audio output.

A variety of other components are needed for the circuit. The design calls for three voltage regulators, two ferrite beads, two crystal oscillators of different frequencies, several headers and test points, and 66 bypass and decoupling capacitors.

9.2 PCB Layout Design Considerations - Overall

Throughout the process of arranging the PCB layout, a “big-picture” understanding of the entire design is essential. The interfacing pins between the various components must be accounted for, and special precautions should be taken to minimize Electromagnetic Interference (EMI).

The peripheral devices must be carefully arranged around the FPGA to simplify data bus routing. Each of the SRAM chips has nineteen address pins and eight data pins, occupying a total of 27 FPGA pins each. These two chips each occupy a separate side of the FPGA. The DAC is also on its own side of the FPGA, and 25 pins from the FPGA go to the DAC. The fourth side of the FPGA has outputs to the MIDI synthesizer chip and a bank of 23 unused general purpose I/O (GPIO) pins. Arranging the chips in this way makes it easier to route the data buses.

Several contributing factors put the system at risk for EMI disruption. Analog signals generate an electromagnetic field that can be coupled into nearby traces. Clock signals from the two oscillators are an EMI liability. The many power and ground pin pairs that power the FPGA processing core and I/O pins are susceptible to interference, and noise is reduced by bulk, decoupling, and bypass capacitors in the power circuit. As recommended by Altera, a 1000 µF capacitor is positioned at the output of each of the voltage regulators. [23] Within three inches of the FPGA, 100 µF capacitors are placed on the Vcc input to the FPGA. Finally, there is a .1 µF bypass capacitor for each power and ground pin pair. The 80MHz and 40MHz oscillators are placed near the FPGA and DAC respectively in order to minimize the clock trace lengths. Minimizing these lengths will minimize the affect that clock-generated EMI has on the rest of the circuit. Finally, the analog signals on the board must be isolated and the associated traces should be short. The analog audio output is generated by the MIDI synthesizer and routed directly to the audio output jack. Minimizing the trace length from the synthesizer to the jack and keeping it away from other traces reduces the affects of the EMI caused by the audio signal. Several PCB layout considerations were included in the DAC datasheet. [24] The DAC is kept close to the VGA connector to minimize noise pickup and reflections that could be caused by impedance mismatch. Digital input and analog output signal lines are kept isolated as much as possible, and the oscillator is placed right next to the DAC to minimize noise pickup. Inductive ringing is minimized by minimizing the trace length between groups of VAA and GND pins. Most importantly, the digital power and ground planes should be kept isolated from the analog power and ground planes. The digital and analog planes should only be connected at one point, and they should be connected through a ferrite bead. These requirements and considerations were implemented by carefully arranging the chips around the FPGA starting first with the FPGA and major components such as the DAC, SRAM, oscillator, and voltage regulators, then the ports on the edge of the PCB, and finally small discrete components.

9.3 PCB Layout Design Considerations - Microcontroller

Routing traces to the FPGA presents perhaps the most significant challenge of this layout. There are 240 pins on the FPGA and they are grouped in a rather inconvenient way on the chip’s pinout. [25] GPIO pins dominate the chip, and power and ground pins are scattered intermittently throughout with no resemblance of a pattern. Furthermore, the pinout identifies VCCINT and VCCIO pins separately, but the pins are not separated on the chip. Since VCCINT pins need 1.2 V and VCCIO need 3.3 V, there is some difficulty in arranging the power circuitry for the FPGA. As mentioned above, each power/ground pin pair has a bypass capacitor. Each ground pin is internally associated with either VCCIO or VCCINT. The bypass capacitors should be connected between a power/ground pair of either INT or IO. Connecting a bypass capacitor between pins of opposite association could couple noise from one group into the other instead of filtering out noise in the circuit. The power and ground traces quickly become difficult to route, and because of the pin arrangement on the Cyclone II FPGA the IO pins have to work around the power traces.
 Clock circuitry is often the biggest generator of wide-band noise in a microcontroller system. [26] If not properly addressed, this noise can compromise the digital signal outputs of the FPGA or render the system clock unreliable. These affects can be minimized by avoiding coupling between the clock-signal and adjacent digital logic pins. Since the 80MHz oscillator is only used by the FPGA, it is placed near the FPGA to minimize lead length.

For system reliability, it is important to have reliable power circuitry. Power trace routing around the FPGA is an essential consideration. This is facilitated by wide traces to power and ground, one hundred mils or greater being preferred. The pins on the FPGA are spaced twenty mils center-to-center. [27]

The power input to the microprocessor is protected by bypass capacitors on every VCC to GND pin pair. As the digital outputs of the FPGA change, the rapid change in output current creates a voltage spike. Bypass capacitors help regulate this voltage. Altera recommends that a .01 µF - .1 µF capacitor be used on each pin pair. [23] After consulting with professor Mark Johnson, we chose to use a .1 µF capacitor on each VCC / GND pin pair, except in three places where VCCINT and VCCIO pins are adjacent. In these three places, the VCC / GND pairing is uncertain. After attempting to research the pin pairing and contacting Altera, these capacitors have been left out of the design. This should not be a problem because the Altera documentation acknowledges that it may not be possible to put capacitors on every pin pair, and only suggests that as many capacitors as possible be included. [23] Additionally, the schematic of the DE2 development board indicates that some pin pairs do not have capacitors on them and board operation is not compromised. [28]
9.4 PCB Layout Design Considerations - Power Supply

Due to the arrangement of the power and ground pins on the Cyclone II FPGA and the advice of the course staff, it has been decided that a four layer PCB is preferred. [25] With this implementation, separate layers of the board will be dedicated to power and ground. On each of these layers, separate planes must be kept isolated. The power layer will include a 5V trace to the optical isolator, a 1.2 V plane under the FPGA, and a 3.3 V plane around the outside of the board surrounding the FPGA. These layers must be connected by wide (100 mil minimum) traces to the respective voltage regulators. This necessity has dictated that the power supply and regulators be positioned near the optical isolator. With this arrangement, the regulators are in a corner of the board and a single trace runs to the optical isolator, a track runs diagonally into the center of the board to connect with the 1.2 V layer, and the 3.3 V layer encompasses the rest of the board. The ground layer will be dominated by the GND net, but a small portion under the DAC and video output components will be isolated as an analog ground plane. All digital signals on the board will be connected through a via to GND, and all analog ground signals will connect to the analog ground below the DAC.

With these separate power and ground layers available, power and ground traces on the top and bottom of the PCB are kept short. They are as wide as possible, with a minimum of 100 mils except where the traces connect to the DAC and FPGA pins, which are spaced 50 mils center-to-center. In general, power and ground traces will be brought through vias out of the power and ground layers in close proximity to the chips they connect to.

The power system is protected against voltage spikes by several sizes of capacitors. Small .1 µF capacitors are placed on most of the VCC / GND pin pairs on the FPGA to regulate high frequency current changes that demand fast current sourcing. Three 100 µF capacitors are placed near the FPGA to further regulate the overall power into the FPGA. Included on the output of the 1.2 V and 3.3 V regulators are large 1000 µF capacitors that still have stored charge when the .1 µF and 100 µF capacitors are depleted. This capacitor arrangement is recommended by Altera. [1]
9.5 Summary

The complexity of the system design and the number and size of the chips involved demands careful consideration to be taken before beginning the PCB routing. Trace routing for the 240-pin FPGA large peripheral components amidst various power supply voltages and separate analog and digital ground planes is facilitated by using a four-layer PCB. EMI is reduced in many places by minimizing trace lengths for data busses, clock signals, and analog signals, and including a plethora of capacitors of various capacitance values. The peripheral chips are carefully placed around the FPGA to facilitate bus routing. These considerations facilitate the PCB layout process and bring the project closer to a reliable system design.

10.0 Software Design Considerations
10.1 Introduction

The "Hooked on Harmonix" learning device provides both an educational and entertaining experience for those with aspirations of playing the piano. This game will store a list of songs stored in MIDI format (about 5 for the purposes of this project) that the user will be prompted to select from. The top-level design of the software will be modeled like a state machine. Upon boot, the start screen will be loaded into the video buffer (controlled by an FPGA – Field Programmable Gate Array) displaying the text "Press Middle C To Continue" as well as the project name. After middle C is pressed, the song selection screen will be displayed, listing the currently available songs to play. Once the user chooses one of the available songs, the main gaming screen is loaded (mostly black screen with keyboard at the bottom, and scoring bar on the right side). The software will remain in this state for most of the user interaction with the game. Within this gaming state, the code will be driven in a round robin style. The processor will first parse the selected MIDI file and build an array obtaining the timing information for the song. Following this, the processor will enter a wait loop that constantly monitors whether it is time to add a bar or remove a bar from the screen, as well as when the MIDI synthesizer chip's buffer needs to be refilled. In other words, it is sequentially updating the bars from the parsed MIDI file, as well as playing the audio from the parsed MIDI file. This whole time, in hardware, the FPGA is deciding which data gets output to the screen, as well as managing how it is output to the computer monitor via VGA interface. The whole display is rendered dynamically rather than in a video buffer, meaning the pixel counter on the screen was monitored and the appropriate color was outputted based on the current pixel location. Once the song is complete, the program then moves into the final state of the state machine, which is just a screen that displays the user's performance grade. Once middle C is pressed in this state, it returns back to the song selection page and begins the process over again. There is an asynchronous reset button on the enclosure that acts as a "soft" reset, and restore the program back to the startup page. Any "hard" resets will be taken care of by simply power cycling.
10.2 Software Design Considerations
When designing a standalone videogame of any kind, it is integral to obtain a robust software design due to the fact that in addition to receiving external input and responding accordingly, visual output can easily become a headache. In order to achieve success with these tasks, it is very important that they be broken into different modules to avoid as much confusion as possible. From a top-level perspective, the tasks of handling external input and computations vs. visual output have been separated into different programs. As previously mentioned, the Cyclone II FPGA will handle the VGA output and MIDI input, while the Nios II embedded processor will parse the MIDI file and handle audio output. It is for this reason that the software design for this device is quite unique from any other group. Early on, the decision was made to keep the screen to be as large as possible, so that it was easier for the user to translate the scrolling blocks on the screen to the appropriate key. This quickly ruled out using an LCD, so this meant the eventual use of a VGA interface. However, it quickly became apparent that the any normal processor would not be sufficient to achieve video output via VGA interface due to the fact that it must always be sending out pixel information, thus using up all of its processing power. However, this can be achieved through hardware circuits. Thus, an FPGA was used to handle VGA output, and although this is technically a hardware implementation, it will be discussed further in this document, since it still involves coding. As you can see, from the start it was important to have a clear separation between which coding style will handle which task, and communication between the two programs is very essential. The further sub-modules of these two different coding styles will be further described in section 3.0.
The Altera Cyclone II FPGA in use contains about 239 Kb of on-chip programmable RAM/ROM memory in what is referred to as the EPCS Controller Core (as seen in Figure 1 below) [29]. However, the primary configuration device is an external serial flash chip called the EPCS Serial Configuration Device (also shown in Figure 1). This configuration device is split into two sections: configuration memory, and general purpose memory. The EPCS Controller provides a boot-loader feature that allows the Nios II system to store the main program code in an external EPCS configuration device [29]. In order to configure the Nios in this manner, you must set the reset address to the base address of the EPCS Controller [30]. After reset, the CPU first executes code from the boot-loader ROM, which copies data from the EPCS general-purpose memory region into RAM. Then, the program-control transfers to RAM. The FPGA configuration data is also stored in this configuration memory location [29]. The rest of the memory in this chip is available as general purpose memory. This device uses the 16 MB version of this chip, and will therefore have plenty of flash memory to work with (originally it was unclear how much video-sprite information would need to be stored). It is divided into 32 sectors of 512 Kb each, and thus ranges in address from 000000h to 1FFFFFh [31]. The actual Controller Core reserves addresses 000h-0FFh (using 32-bit words) for the boot loader code [29]. The next 7 words are control and data registers (each 32 bits long) [29]. In addition to the Boot-loader ROM and 7 control/data registers on the EPCS Controller Core, there are also 32 general purpose registers [32]. A few of these registers include the stack pointer, frame pointer, global pointer, etc. Any variables within the C code are stored in one of the two SRAM chips on the PCB. Two external 512 Kb x 8 SRAM chips that were originally meant to hold the video buffers in addresses 00000h-A1E7Fh respectively are used, but it was soon determined that it is much easier to dynamically output video. Therefore, one of the SRAM chips is now being used to store the C program, and the other is not being used at all. The five MIDI files are stored on the serial flash device in the general-purpose memory. The text sprites that are needed for quick access (such as song names and the "Hooked on Harmonix" logo) are stored within the VHDL code as an array of std_logic_vectors (the Cyclone II FPGA has 18,752 logic elements available).

[image: image16.png]

Since the VHDL code is synthesized in hardware, it will all be running concurrently. However, the C code is coded in round robin style. This is due to the fact that once the user selects a song from the menu the processor will parse the whole MIDI file, and then the processor will need to constantly update the bars on the screen as well as the audio being played, sequentially. It will loop continuously, until the song is over.

An aspect just as important to the design of this device as keeping each module separate is the communication between said modules. Obviously, this will be easy when communicating within the same code, but this design is unique in light of the use of hardware as well as a soft processor on the same chip (using both C and VHDL to program). Therefore, there had to be certainty in how to communicate between the two before commencement of coding in order to ensure correct logic. Fortunately, it turned out to be fairly simple. Since the soft processor is simply a configuration of the FPGA (still uses logic elements of the FPGA), it is possible to route signals between the two systems in a top-level file upon compilation. In other words, there is a top-level file written in VHDL that maps inputs/outputs of the CPU to inputs/outputs of the different hardware blocks. This turned out to be much simpler than the alternative of using Memory Mapped I/O.

In order to assist the debugging process, headers and test points were scattered throughout the PC board. All powers and grounds are brought to a header, both in order to test their values, as well as to have the option of fly-wiring a circuit, post-fabrication. Also, both data and address buses as well as the read/write flags of the SRAM chips are brought out to headers so that it can be seen if the correct values are sent to them. Also, about 20 I/O pins are brought out to headers in case signals within the code need to be tested, or even need to add circuitry. Since this device's hardware design was so complex it became evident that as many headers as could fit were needed, so that the designed circuit could be fully understood. From a programming perspective, the nice aspect of working with VHDL is that you can simulate a given design and view the waveform for each signal. This makes debugging easier, because every signal sent to each external device at a given instant in time can be seen if needed.
10.3 Software Design Narrative

Output Control (VHDL)

This is the highest level module of the code. It is basically a state machine implemented in VHDL that tells the C program which MIDI file it needs to parse at the appropriate time, as well as what should be displayed to the screen at a given time. The start state corresponds to the start screen that appears on boot-up (simply displaying the "Hooked on Harmonix" logo and stating “Press Middle C To Continue”). Once middle C is pressed, the state machine moves into the song selection state, which is where the user chooses a song to play. The user can toggle between songs by pressing middle C#, and he/she can select a song by pressing middle C (this is displayed on the screen). Once a song is chosen, the state machine moves into the game-play state, which it will remain in for the duration of the song. This is where the bars (corresponding to a given key) scroll down the screen and the user actually plays the song. This section of code will accept the top row of pixels to be output to the screen from software (controlling when bars get displayed). This information is stored in the top row of a matrix 84 bits wide (one bit per key) and 116 bits deep (one bit per 4 pixels on the screen). Each row of this matrix is propagated down the screen once every 0.02 seconds until it reaches the keyboard at the bottom (about 2.5 seconds to make the full decent). This block of code also controls what color each key is shown as, based on whether it was accurately pressed. Once this stage is completed, the final state is the end of song state, which basically shows the user’s final grade. This code block used no I/O pins. It was merely an intermediate block that passed information to the VGA Out block based on information from the MIDI Parse block and MIDI Receiver block.

MIDI Parse (C)
This module is coded in C, and accepts the song to be played from the Output Control block of code. It then accesses the corresponding location in memory and reads each byte until the end of the MIDI file. Based on the note timing information provided in the MIDI file, the program will build a large timing array. Based on this timing array, it will send updates to the FPGA at the appropriate moment in time, telling it to add or remove a bar for a certain key. Each vector sent will be 84 bits long (one bit corresponding to each key) and will simply be a mapping of each key that is pressed at that moment in time during the song. This information controls the very top row of pixels on the screen, and the FPGA propagates this information down the screen at a certain speed. The nice feature of MIDI format is that it simply lists the key-events and at what time offset they occur. Therefore, in between key-events the processor fills the MIDI LSI FIFO buffer via SPI. The MIDI LSI synthesizes sound from a modified MIDI note format input. This MIDI parse block is interfaced with the EPCS Flash device in order to obtain the MIDI file to be parsed.

MIDI Receiver (VHDL)
This module is coded in VHDL, and is basically two state machines that watch the MIDI input line. The reason that there are two state machines is that according to the MIDI standard there are two different styles of data packets that can be sent at a given time - either a 19 bit packet or a 29 bit packet. These state machines read in each bit at the appropriate data rate and advance to the next state if a certain pattern is matched. If the pattern is not matched, the state machine jumps back to the idle state, otherwise it sets the appropriate bit of the keypress array to logic '1' or '0' depending on whether it was a note-on or note-off event. The Control Unit accepts this array and determines the color of the given key based on whether it was pressed correctly or incorrectly. This code block uses one input pin as the serial MIDI input line and passes the interpreted data package along to the Output Control block.

Audio Output (C)

The Audio Out module simply feeds appropriate MIDI information to the MIDI LSI synthesizer on the PCB based on the MIDI file parsed upon song selection. The MIDI LSI chip has a FIFO buffer size of 512 bytes, so the C code is constantly checking a status register to see if this buffer needs to be refilled, and if so it sends note information from the note timing array built within the code into the FIFO. The MIDI synthesizer does the rest of the work (as far as actually outputting the audio signal). This block outputs the MIDI data to be played to the MIDI synthesizer chip over an SPI peripheral of the soft microprocessor.
Scoring Logic (VHDL)
The Scoring Logic module simply checks a certain tolerance of pixels that the key can be pressed in relation to the falling bar (for instance the user should press the key at the bottom of the screen + or – 10 pixels). If the bar is in that pixel region when the key is pressed, their score will be increased, otherwise it will be reduced. The score can be viewed in a bar on the right side of the screen. The percentage that it is filled is proportionally to how well you are doing. Finally, at the song complete screen, a final grade is given (A-F). This is an intermediate block that uses no I/O and simply determines note pressing accuracy from the MIDI Receiver and relays the information to the Output Control block.
VGA Out (VHDL)

The VGA Out module runs continuously the entire time that the device is turned on. It is configured for 800 x 600 resolution, and makes sure that the correct RGB values are output for each pixel every 25 ns (pixel clock for that resolution) [33]. It is also responsible for sending the appropriate blanking signal, and vertical and horizontal sync pulses at the specified times for 800 x 600 resolution during each refresh [33]. This code uses a vertical counter and a horizontal counter to track its position on the monitor and sets a new color-code every 25 ns. This color-code is mapped to RGB values based on a lookup table built into the VHDL code. The VGA Out block also must send a horizontal sync signal after every row of pixels is written, and must send a vertical sync signal after the whole screen is written (each a designated width of clock pulses). The entire screen is refreshed 60 times every second. This block accepts information from the Output Control block and outputs the digital RGB values to the DAC at the given frequency (40 MHz).

10.4 Summary

This Software Design Narrative has shown in detail how certain project restrictions have guided the coding as a whole for this project (Hooked on Harmonix). The main software has been coded in the round robin style of coding, with the processor servicing both the bar outputs and audio outputs sequentially and continuously. The VHDL code, on the other hand, will be running concurrently and handling all video output considerations as well as receiving MIDI input. A detailed mapping of the various locations in memory has also been outlined. This helped increase knowledge of how the program will be working, but most of the memory storage considerations will be taken care of by the Nios II IDE compiler. The pin mappings for each external component have also been briefly described, as well as how each circuit can be debugged in post-fabrication of the PCB. Finally, each module of code was described in detail. Laying out a complete software design before the commencement of coding was essential, because with all of the hardware considerations experienced, not as much time for software as expected was allowed.
11.0 Version 2 Changes
Version 2 of the Hooked on Harmonix system would firstly remedy the mistakes and changes made to the PCB. There are several mistakes that were made in the first PCB layout that have been remedied by fly-wiring components and pins to achieve the desired operation. The schematic and PCB would need to be fixed to reflect the current wiring of the board. After these changes had been made there are a few other additional changes that would enhance the Hooked on Harmonix product.

The second iteration would implement some of the original functionality that had been hoped for but was ultimately discarded in the interest of time and simplicity. The first change to be made would be a form of tempo control. Currently the tempo of the song being played is governed by the tempo set by the MIDI file. Although this is the actual tempo of the song, it is quite difficult for a user to begin playing a new song at full speed. Tempo control could probably be implemented most easily through a software and hardware configuration, but it also could be implemented with a potentiometer or a digital rotary encoder. The next major addition to the functionality of the game system would be a method for easily introducing new songs to be played by the user. This could be accomplished through a USB flash drive or a CFI SD flash card. Supporting components would need to be added to the PCB to facilitate this functionality along with some minor software changes.
12.0 Summary and Conclusions
Designing and constructing the Hooked on Harmonix system has been an invaluable learning experience for our team. In regards to the technical aspects of the project, the knowledge we have gained over the course of this semester is staggering. We learned how to design a complicated device schematic and then convert it into an actual PCB layout, all using the OrCad software suite. Some of us gained a great deal of experience with soldering, since having to solder extremely tiny components to our board forced us to become more deft with this particular skill. Some of us also acquired a great deal of knowledge regarding VHDL and C programming, as well as the implementation of PLL and SPI processor modules. Furthermore, we had to learn on a fundamental level how to interface with basic external devices such as a VGA monitor, a set of speakers, and a MIDI keyboard.

There were also several key non-technical lessons we learned over the course of this project. For example, we learned the basic process involved in the design and production of devices such as these, and we have a much better appreciation for the degree of planning and care that must go into this process. Much of our PCB flywiring and late component ordering was due to improper planning during the initial design phase. We have also gained more experience with how to work effectively and personably in a team dynamic. Our team has also gained a better sense of the documentation involved in this type of design project. In industry, it is critical to document all of the technical details of a particular project, and thus the documentation practice we have gained through this project will be quite valuable when we enter the work force. Finally, we have a greater appreciation for the non-technical considerations that an engineer must make in order to produce a successful product. There are numerous ethical, environmental, safety, and general socioeconomic issues which an engineer must account for in product development, and by analyzing potential problems our Hooked on Harmonix system could pose in the context of these issues, we now understand the importance of designing a product with these factors in mind.

13.0 References

[1] MIT. VGA Video Output by Nathan Ickes. April 12, 2007. http://www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml
[2] Altera. (2007) Literature: Cyclone II Devices. Available: http://www.altera.com/literature/lit-cyc2.jsp. September 13, 2007 [date accessed]
[3] Atmel. (2007) Arm920T Techinical Reference Manual. Available: http://www.atmel.com/dyn/resources/prod_documents/ARM_920T_TRM.pdf
[4] Atmel. (2007) Atmel AT91RM9200. Available: http://microcontrollershop.com/product_info.php?products_id=1227

[5]
United States Patent: 7030307. Inventor: Wedel, Douglas. Date Filed: June 10, 2007.

Available: http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=283&f=G&l=50&d=PTXT&p=6&S1=(keyboard+AND+MIDI)&OS=keyboard+AND+MIDI&RS=(keyboard+AND+MIDI) [Accessed October 30, 2007]

[6] United States Patent: 5286908. Inventor: Jungleeib, Stanley. Date Filed: April 30, 1991.

Available: http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=90&f=G&l=50&d=PTXT&p=2&S1=(display.TI.+AND+MIDI)&OS=TTL/display+AND+MIDI&RS=(TTL/display+AND+MIDI) [Accessed October 30, 2007]

[7] United States Patent: 7081580. Inventors: Brinkman, John; Hamilton, Dave; Longawa,

 John; Rampley, Rob; Randall, Charles Corris; Ryle, Marcus. Date Filed: March 1, 2004.

 Available: http://patft1.uspto.gov/netacgi/nph-

 Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-

 adv.htm&r=233&f=G&l=50&d=PTXT&p=5&S1=(keyboard+AND+MIDI)&OS=

 keyboard+AND+MIDI&RS=(keyboard+AND+MIDI)
 [Accessed October 30, 2007]
[8] Department of Defense, “Military Handbook, Reliability Prediction of Electronic Equipment,” [Online Document], 1991, Available: http://cobweb.ecn.purdue.edu/~dsml/ece477/Homework/Fall2006/Mil-Hdbk-217F.pdf
[9] STMicroelectronics, “LD1117 Series,” [Online Document], 2007, Available: http://www.st.com/stonline/products/literature/ds/2572/ld1117xx.pdf
[10] Altera, “Cyclone II Family Data Sheet,” [Online Document], 2007, Available: http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1_01.pdf
[11] ISSI, “512K x 8 High-Speed CMOS Static RAM,” [Online Document], 2007, Available: http://www.issi.com/pdf/61LV5128AL.pdf
[12] Tomi Engdahl (Tomi.Engdahl@iki.fi), "VGA to Workstation Monitor FAQ", 2000, http://www.epanorama.net/documents/vga2rgb/basics.html
[13] Martin Tarr, "PCB recycling issues", [Online Document] http://www.ami.ac.uk/courses/topics/0113_prei/index.html
[14] Wikipedia, "Restriction of Hazardous Substances Directive", http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive
[15] Thomas Detwyler (tdetwyle@uwsp.edu), "Lead in the Environment", October 2000, http://www.uwsp.edu/geo/courses/geog100/Lead-InEnv.htm
[16] Inform, "Benefits of recycling electronics in the US", [Online Document], http://www.informinc.org/FS_SWP_Why_Recycle_FINAL.pdf
[17] Fisher Price. (2007) I Can Play! Piano. Available: http://www.fisher-price.com/fp.aspx?st=2640&e=product&pid=35911 [Accessed September 19, 2007]
[18] Allegro Rainbow. (2007) Piano Wizard PREMIER Keystation 49e Package. Piano Wizard. Available: http://www.pianowizard.com/purchase.php [Accessed September 19, 2007]
[19] Altera. (2007) Literature: Cyclone II Devices. Available: http://www.altera.com/literature/lit-cyc2.jsp [Accessed September 20, 2007]
[20] Altera. (2007) Literature: Cyclone II Devices. Available: http://www.altera.com/literature/lit-cyc2.jsp [Accessed: September 27, 2007]

[21] MIT. (2007) VGA Video Output. Available:

http://www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml [Accessed: September 26, 2007]

[22] ECE 477 Group 2 (2007) Hooked on Harmonix Documents. Available:

http://cobweb.ecn.purdue.edu/~477grp2/Documents/Documents.html [Accessed: September 27, 2007]
[23] Altera. (2007) Literature: Power Integrity. Available: http://www.altera.com/support/devices/power/integrity/pow-integrity.html
[24] Analog Devices. (2007) DAC Analog Devices ADV7125. Available: http://cobweb.ecn.purdue.edu/~477grp2/Documents/Parts/Datasheets/DAC%20Analog%20Devices%20ADV7125.pdf

[25] Motorola . (1995) Semiconductor Application Note. Available: http://cobweb.ecn.purdue.edu/~dsml/ece477/Homework/CommonRefs/AN1259.pdf
[26] Altera. (2007) Cyclone II Device Handbook, Volume 1, Chapter 15: Package Information for Cyclone II Devices. Available: http://www.altera.com/literature/lit-cyc2.jsp

[27] Altera. (2007) Cyclone II pin information. Available: http://cobweb.ecn.purdue.edu/~477grp2/Documents/Parts/Datasheets/Cyclone_Pin_Information.pdf

[28] Altera. (2007) DE2 Development Board Schematic. Available: http://cobweb.ecn.purdue.edu/~477grp2/Documents/AlteraDocs/DE2_schematics.pdf
[29] Altera Corporation, “EPCS Device Controller Core”, [Online Document], October 2007, http://www.altera.com/literature/hb/nios2/n2cpu_nii51012.pdf
[30] Altera Corporation, “Instantiating the Nios II Processor in SOPC Builder”, [Online Document], October 2007, http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
[31] Altera Corporation, “Configuration Handbook Volume 1, Section 1, Chapter 4: Serial Configuration Devices Data Sheet”, [Online Document], August 2007, http://www.altera.com/literature/hb/cfg/cyc_c51014.pdf
[32] Altera Corporation, “Introduction to the Altera Nios II Soft Processor”, [Online Document], http://users.ece.gatech.edu/~hamblen/DE1/DE1_CDROM/DE1_tutorials/tut_nios2_introduction.pdf
[33] Nathan Ickes, “VGA Video Output”, [Online Document], http://www-mtl.mit.edu/Courses/6.111/labkit/vga.shtml

Appendix A: Individual Contributions

A.1 Contributions of Tom Bottonari:

As team leader, I did my best throughout the semester to make sure we were all on task, and all had things to work on. This was done in the form of set meetings early on in the semester. However, as the workload began to grow, tasks were simply assigned and then completed on an individual basis. In hindsight, it probably would have been a better idea if I were to work on software from day one (as the software leader), but since we were bound to a 4-layer board, it took the collective effort of all of us to meet the necessary deadlines. Therefore, I helped with the schematic and PCB design until we submitted about a week before the PCB was due. At this point I began writing the VHDL code for our project (being the only member that knows VHDL, I was unanimously chosen for this role). This began with writing some code that will output a video signal over VGA interface to a computer monitor. After I could successfully output colors to the monitor, I coded a state machine that controlled output to the monitor based on which screen the user was at (start screen, song selection screen, gameplay screen, song complete screen). Then, after I was able to output some text sprites (mappings of '1's and '0's) to the screen, I made an arrow move along the screen based on when a button was pressed (to be used in our song selection screen). After this, I coded the MIDI receiver (also in VHDL) that was able to receive the serial MIDI data and determine which key was pressed, as well as whether it was a note-on or note-off message. Next, I worked on the gameplay screen. This screen displayed an 84-key keyboard at the bottom and based on the output of the MIDI receiver changed the color of the keys based on whether the note was hit correctly. Furthermore, this screen keeps track of a matrix 84 bits wide and 116 bits deep that corresponds to the whether or not there is a bar on the screen or not. The C code feeds the top row of this matrix with whether or not there is a bar to be output at a given moment in time, and the VHDL code propagates each row down to the next every 0.02 seconds (taking about 2.5 seconds to traverse the whole screen). Also, I implemented a scoring algorithm that checked the pixel values near the keyboard at the bottom of the screen and either incremented or decremented the users score (shown in the score bar on the right of the screen) based on if a key was accurately pressed. I also picked out our enclosure and helped spray paint it as well as cut out the holes for our ports. Finally, I was responsible for homework 9 (Software Design Considerations) and homework 12 (Ethical and Environmental Analysis).
A.2 Contributions of Curtis Verner:

As a member of the Hooked on Harmonix team, I contributed in various capacities to greater and lesser degrees. In the beginning stages of our design, I contributed to the major component selection considerations and thoroughly investigated similar past designs that could give us useful information. As the design progressed, I focused on the MIDI out and MIDI in circuitry that would be needed for audio output and user input. After much searching, I found the Rohm Melody LSI, which could serve our purposes as a MIDI synthesizer. Fortunately I was able to request documentation that would give us hope of using the complicated Rohm LSI. I developed the MIDI input circuit as well as the audio output circuit using the LSI. I helped with routing our first version of the PCB and I soldered a few components onto the PCB once we received it from the manufacturer.

After we submitted our PCB design for manufacturing, I focused primarily on the software that would control the game play of the Hooked on Harmonix System. Before I could even begin software development, I had to familiarize myself with the Altera design suite including Quartus II, NIOS II IDE, and the SOPC Builder. This was a task that involved much frustration and many long hours of scouring forums for answers to very vague and unhelpful error messages. Through countless hours of trial and error and using all of the resources at my disposal, I slowly gained some level of expertise in using the often frustrating Altera design tools.

Since I had volunteered to learn how to use Quartus II and the SOPC builder, I took on a lot of responsibility in getting our FPGA system up and running. Eventually I was able to build a system using SOPC builder, which contained a NIOS II soft processor along with all of the necessary peripherals for our project. Eventually I was able to begin software development for this processor using the NIOS II IDE. Endeavoring to program this processor opened up a whole new world of concepts to learn. I read through many of the Altera documents and familiarized myself with the hardware abstraction layer and the basic component drivers that would be necessary for our project. Using my previous experience and a lot of new knowledge, I wrote the C code for the system, which controls much of the game’s functionality. The C code opens a MIDI file stored in flash memory and parses the file storing all of the note information into a NotesArray. Before I could do this though, I had to become an expert in the MIDI data standard. I read many documents about the MIDI standard, and eventually I was able to write software that could parse a MIDI file. After the MIDI file is parsed, the software sends melody data to the Rohm melody LSI to keep its FIFO buffer full, while outputting falling bars to the screen with the correct timing delays.

In addition to the software and hardware I also completed the packaging constraints and consideration homework as well as the reliability and safety analysis. We made our final packaging decisions as a team, but I proposed a few different options that were taken under consideration. For the reliability and safety analysis, I analyzed three major components of our design to examine the reliability of these components.
A.3 Contributions of Bryan Hermsen:

For the past four months I have been heavily involved with the hardware of the Hooked on Harmonix system. During the first few weeks our team worked together to create the parts list and schematic. I undertook the DAC portion and designed the circuit that interfaced the DAC with the rest of the system. I also consulted with Mark Johnson and read Altera literature to decide the best possible bypass capacitor arrangement which was important for system stability.

When the schematic was done our team worked together on a first draft of the Printed Circuit Board layout, but we decided that we needed to start over. For the second draft, I worked exclusively on the layout myself so that the layout was cohesive and so that the rest of the team could start focusing on software. The final PCB layout that we had fabricated was my handiwork.

Once the PCB was fabricated I played a major role in the soldering and testing of the circuit. I soldered the FPGA, the DAC, the SRAM, the oscillator, all of the power components, some discrete components and jacks, the optical isolator, and the level translator. I tested each component with the rest of the system as I went. I coordinated my efforts with Vik, who soldered most of the discrete components, so that he had capacitors in place around the devices before I soldered and tested each device. Part way through, we realized that there had been an error in the schematic that caused many of the capacitor values to get changed to incorrect values. Vik and I reviewed all of the capacitors on the circuit to make sure the correct capacitance was put on the board, and I carefully tested each remaining component as it was put on the board. Along the way problems were encountered and a significant amount of fly-wiring was necessary. I performed troubleshooting on the system and fixed many of the problems as they arose.

In between soldering and troubleshooting, I began the work of decoding the MIDI signal from the keyboard, which was eventually taken over by Tom. I discovered some of the basics of what a MIDI keyboard translates and what to look for in order to recognize notes. Once the system was built on the PCB, I started the long learning curve to understand what Curtis and Tom had learned about the Altera FPGA and Serial Configuration Device. After about ten days of watching and learning I was familiar with what they knew and was helping develop both the C code and VHDL scripts. At first I was only able to help with logic for portions of code since I was unfamiliar with the complete software project and how it ran on the FPGA, but as time went on I understood enough to help write new code to improve and debug the software. I also made all of the sprite graphics for the project. The first few were made by typing 0’s and 1’s in a text file, but I found an effective way to generate 0’s and 1’s from a .bmp file using MATLAB, so I was able to create any sprites needed relatively quickly.

Apart from the development of the Hooked on Harmonix system, I contributed to the team in other ways. I completed the Design Considerations and PCB layout reports, kept the team informed of due dates as “the organized one,” and contributed to team reports, presentations, and the video.
A.4 Contributions of Vikram Anand:

During the initial component selection phase, my primary contribution was the selection of power supply and oscillator components. Using the input voltage requirements for various devices as well as the component datasheets to determine a power consumption estimate, I found the appropriate voltage regulators for our board. Although these components needed to be updated as other components were changed, I was the one who found replacement regulators and ordered them. I also determined the 9V power supply we needed, in addition to the DC power jack the power supply would plug into on our board.

When we were developing the schematic for our device, I helped construct block diagrams for parts which did not already exist in the library and also routed connections for several parts (such as the SRAM block connections on page 3 of the schematic). After this was completed however, I discovered that Altera sells both a USB-Blaster cable and a serial configuration device, which can both be used in conjunction with a header to program the Cyclone II FPGA. Given that this option would be significantly more convenient to implement than the original RS-232 interface, we then altered our design to implement these new devices. We all participated in making modifications to our schematic and finalizing the design before creating the PCB layout. Furthermore, I helped create and modify footprints for some of the components to be used in our PCB layout. Once we actually imported our schematic into the PCB software, I helped route some of the traces to various components.

While we were waiting for the PCB to be fabricated and sent back to us, I helped Tom with some initial VHDL coding. Together, we were able to produce color for the first time on our VGA monitor, and we even created a ‘Hooked on Harmonix’ starting screen (which was later replaced by an improved title screen). During this time I also ordered a through-hole oscillator and read through some SOPC builder and PLL documentation, hoping to determine how to use the FPGA PLL to divide the 80 MHz clock frequency to the desired levels. Although I did determine how SOPC builder could be used to divide the clock frequency, it was ultimately Curtis and Tom who actually produced the clock output in software.

Once the PCB arrived, Bryan and I focused heavily on soldering all of the components to the board, while Curtis and Tom focused primarily on software. I soldered the vast majority of discrete components to our board, and also soldered a few other components, such as the potentiometer, MIDI LSI, and some headers and jacks. As the semester progressed, we discovered that there were several components which we needed to flywire, and once again Bryan and I primarily performed this flywiring. For example, because we initially had difficulties with the EPCS64 active serial programming, we had to glue a JTAG header to our board, and I subsequently soldered all of the connections to the header. Another noteworthy example of flywiring occurred when the MIDI LSI on our PCB did not work, and thus we had to connect our PCB to a separate MIDI LSI test board through a header. To facilitate this, I had to solder a completely new board section to the original LSI board using resistors, wires, and new header pins, such that the LSI test board could simply be plugged into one of the headers on our PCB.

In between soldering, I also assisted Tom and Curtis to some extent with a few software issues. For example, I helped Curtis determine the programming logic necessary to implement the MIDI LSI buffer loading routine. I also helped Tom briefly with making sprites for the song list, as well as a few logical issues regarding the graphical display. Once soldering was completed, the final significant contribution I made for our project was assisting in the construction of the outer casing. I glued support stubs to the bottom of the PCB so it would sit in the correct position in the box. I also helped bore out holes in the casing to allow various ports to be accessed.

In addition to helping these specific project tasks, I also assisted in various reports and presentations throughout the semester.

Appendix B: Packaging

[image: image8.emf]
Figure B-1. Enclosure Packaging Dimensions

Appendix C: Schematic

[image: image9.emf]C28

0.1 uF

C49

0.1 uF

C5

0.1 uF

C27

0.1 uF

C37

0.01 uF

C22

0.1 uF

R1

120 ohm

C44

0.1 uF

R2

10k

C6

0.1 uF

C7

100 uF

C13

0.1 uF

C31

10 uF

Vin

3

Vout

2

GND

1

V3

LD1117V50C

C14

0.1 uF

C50

0.1 uF

C18

0.1 uF

Vin

3

Vout

2

GND

1

V1

LD1117S12

SW1

SW PUSHBUTTON-SPST

C39

33 uF

1

2

J1

HEADER 2

C23

0.1 uF

C45

0.1 uF

C29

0.1 uF

C11

100 uF

C4

0.1 uF

R3

10k

C41

.01u

C32

22 uF

C30

.01u

NC

GND

PWR

J6

PWRJACK

C38

100 uF

C19

0.1 uF

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

nCONFIG

2

nCE

2

CONF_DONE

2

Title

Size

Document Number

Rev

Date:

Sheet

of

1

1.0

FPGA PWR/GND

1

3

Tuesday, November 13, 2007

C51

0.33 uF

C52

0.1 uF

C17

1000 uF

C33

1000 uF

1.2 V

5 V

3.3 V

C16

10 uF

R5

10k

1

2

J7

HEADER 2

C47

0.1 uF

C25

0.1 uF

C8

0.1 uF

C34

0.1 uF

C40

1uF

C10

0.1 U

1

2

J4

HEADER 2

C24

0.1 uF

C46

0.1 uF

1

2

J2

HEADER 2

C9

0.1 uF

C36

0.1 uF

Vin

3

Vout

2

GND

1

V2

LD1117S33

C43

0.1 uF

R4

10k

C12

0.1 uF

C20

0.1 uF

C26

0.1 uF

VCCINT

28

VCCINT

40

VCCINT

76

VCCINT

82

VCCINT

93

VCCINT

99

VCCINT

104

VCCINT

108

VCCINT

148

VCCINT

158

VCCINT

196

VCCINT

201

VCCINT

204

VCCINT

211

VCCINT

220

VCCINT

224

GND

12

GND

17

GND

32

GND

43

GND

45

GND

48

GND

71

GND

74

GND

75

GND

81

GND

85

GND

89

GND

98

GND

102

GND

103

GND

107

GND

112

GND

133

GND

138

GND

145

GND

163

GND

169

GND

172

GND

193

GND

198

GND

202

GND

227

GND

225

GND

221

GND

217

GND

215

GND

206

GND

205

GND_PLL3

1

VCCD_PLL3

2

GND_PLL3

3

VCCIO2

10

VCCIO2

19

TDI (VCC)

22

TCK (GND)

23

TMS (VCC)

24

TDO (NC)

25

nCE (GND)

29

CLK1

31

nCONFIG

33

CLK2

34

CLK3

35

VCCIO1

36

VCCIO1

53

GND_PLL1

59

VCCD_PLL1

60

GND_PLL1

61

VCCA_PLL1

62

GNDA_PLL1

63

VCCIO8

69

VCCIO8

77

VCCIO8

83

CLK15

91

CLK13

94

CLK12

95

VCCIO7

101

VCCIO7

115

GNDA_PLL4

120

VCCA_PLL4

121

GND_PLL4

122

VCCD_PLL4

123

GND_PLL4

124

VCCIO6

129

VCCIO6

142

nSTATUS (OD)

143

CONF_DONE (OD)

144

MSEL1

146

MSEL0

147

CLK7

151

CLK6

152

CLK5

153

CLK4

154

VCCIO5

160

VCCIO5

176

GND_PLL2

179

VCCD_PLL2

180

GND_PLL2

181

VCCA_PLL2

182

GNDA_PLL2

183

VCCIO4

190

VCCIO4

207

CLK8

209

CLK9

210

CLK10

212

CLK11

213

VCCIO3

219

VCCIO3

229

GNDA_PLL3

239

VCCA_PLL3

240

U1A

ALTERA EP2C20Q240

Version = 1.0

1

2

J3

HEADER 2

C48

0.1 uF

C21

0.1 uF

C3

0.1 uF

C35

0.1 uF

1

2

J5

HEADER 2

C42

0.1 uF

C2

0.1 uF

C15

0.1 uF

C1

0.1 uF

C280.1 uF

C490.1 uF

C5

0.1 uF

C270.1 uF

C370.01 uF

C220.1 uF

R1

120 ohm

C440.1 uF

R2

10k

C6

0.1 uF

C7

100 uF

C13

0.1 uF

C31

10 uF

Vin

3

Vout

2

GND

1

V3

LD1117V50C

C14

0.1 uF

C500.1 uF

C180.1 uF

Vin

3

Vout

2

GND

1

V1

LD1117S12

SW1

SW PUSHBUTTON-SPST

C3933 uF

1

2

J1

HEADER 2

C230.1 uF

C450.1 uF

C290.1 uF

C11

100 uF

C4

0.1 uF

R3

10k

C41.01u

C32

22 uF

C30.01u

NC

GND

PWR

J6

PWRJACK

C38

100 uF

C190.1 uF

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 1.2 V

VCC 3.3 V

nCONFIG2

nCE2

CONF_DONE2

Title

SizeDocument NumberRev

Date:Sheetof

11.0

FPGA PWR/GND

13Tuesday, November 13, 2007

C51

0.33 uF

C52

0.1 uF

C17

1000 uF

C33

1000 uF

1.2 V

5 V

3.3 V

C16

10 uF

R5

10k

1

2

J7

HEADER 2

C470.1 uF

C250.1 uF

C80.1 uF

C340.1 uF

C401uF

C100.1 U

1

2

J4

HEADER 2

C240.1 uF

C460.1 uF

1

2

J2

HEADER 2

C90.1 uF

C360.1 uF

Vin

3

Vout

2

GND

1

V2

LD1117S33

C430.1 uF

R4

10k

C12

0.1 uF

C200.1 uF

C260.1 uF

VCCINT

28

VCCINT

40

VCCINT

76

VCCINT

82

VCCINT

93

VCCINT

99

VCCINT

104

VCCINT

108

VCCINT

148

VCCINT

158

VCCINT

196

VCCINT

201

VCCINT

204

VCCINT

211

VCCINT

220

VCCINT

224

GND

12

GND

17

GND

32

GND

43

GND

45

GND

48

GND

71

GND

74

GND

75

GND

81

GND

85

GND

89

GND

98

GND

102

GND

103

GND

107

GND

112

GND

133

GND

138

GND

145

GND

163

GND

169

GND

172

GND

193

GND

198

GND

202

GND

227

GND

225

GND

221

GND

217

GND

215

GND

206

GND

205

GND_PLL3

1

VCCD_PLL3

2

GND_PLL3

3

VCCIO2

10

VCCIO2

19

TDI (VCC)

22

TCK (GND)

23

TMS (VCC)

24

TDO (NC)

25

nCE (GND)

29

CLK1

31

nCONFIG

33

CLK2

34

CLK3

35

VCCIO1

36

VCCIO1

53

GND_PLL1

59

VCCD_PLL1

60

GND_PLL1

61

VCCA_PLL1

62

GNDA_PLL1

63

VCCIO8

69

VCCIO8

77

VCCIO8

83

CLK15

91

CLK13

94

CLK12

95

VCCIO7

101

VCCIO7

115

GNDA_PLL4

120

VCCA_PLL4

121

GND_PLL4

122

VCCD_PLL4

123

GND_PLL4

124

VCCIO6

129

VCCIO6

142

nSTATUS (OD)

143

CONF_DONE (OD)

144

MSEL1

146

MSEL0

147

CLK7

151

CLK6

152

CLK5

153

CLK4

154

VCCIO5

160

VCCIO5

176

GND_PLL2

179

VCCD_PLL2

180

GND_PLL2

181

VCCA_PLL2

182

GNDA_PLL2

183

VCCIO4

190

VCCIO4

207

CLK8

209

CLK9

210

CLK10

212

CLK11

213

VCCIO3

219

VCCIO3

229

GNDA_PLL3

239

VCCA_PLL3

240

U1A

ALTERA EP2C20Q240

Version = 1.0

1

2

J3

HEADER 2

C480.1 uF

C210.1 uF

C3

0.1 uF

C350.1 uF

1

2

J5

HEADER 2

C420.1 uF

C2

0.1 uF

C150.1 uF

C1

0.1 uF

Figure C-1. Schematic Page 1 of 3. Voltage regulators and FPGA power pins.
[image: image10.emf]Title

Size

Document Number

Rev

Date:

Sheet

of

1

1.0

FPGA I/O

2

3

Wednesday, November 14, 2007

C65

0.1 uF

C66

0.1 uF

C67

1 uF

C68

0.1 uF

R15

10 k

VCC 5.0 V

VCC 3.3 V

R16

10 k

MIDI IN

CLK

VCCA

1

GND

2

A

3

VCCB

6

DIR

5

B

4

U9

Level Translator

MIDI LSI

R13

10 k

DAC

RED

BLUE

GREEN

VCC 5.0 V

vsync

hsync

R14

10 k

1

2

J9

HEADER 2

I/O 27

126

nCEO

127

I/O 25

119

I/O 26

125

I/O 24

118

SRAM_CE

232

SRAM_WE

223

SRAM_OE

188

SCLK

56

S I/O

57

SEL

55

SO

58

NRST

54

MCLK

52

MIDI_IN

117

nCSO

5

ASDO

4

I/O 29

238

VGA_R0

113

VGA_R1

111

VGA_R3

109

VGA_R2

110

VGA_R4

106

VGA_R5

105

VGA_R6

100

VGA_R7

97

VGA_G0

96

VGA_G1

90

VGA_G2

88

VGA_G3

87

VGA_G4

86

VGA_G5

84

VGA_G6

80

VGA_G7

79

VGA_B0

73

VGA_B1

72

VGA_B2

70

VGA_B3

68

VGA_B4

67

VGA_B5

66

VGA_B6

65

VGA_B7

64

SRAM2_A7

161

SRAM2_A6

162

SRAM2_A5

164

SRAM2_A4

173

SRAM2_A3

174

SRAM2_A2

175

SRAM2_A1

177

SRAM2_A0

178

SRAM2_A15

134

SRAM2_A14

141

SRAM2_A13

149

SRAM2_A12

150

SRAM2_A11

155

SRAM2_A10

156

SRAM2_A9

157

SRAM2_A8

159

SRAM2_OE

135

SRAM2_WE

165

SRAM2_CE

171

SRAM2_A18

130

SRAM2_A17

131

SRAM2_A16

132

SRAM_A7

216

SRAM_A6

218

SRAM_A5

222

SRAM_A4

233

SRAM_A3

234

SRAM_A2

235

SRAM_A1

236

SRAM_A0

237

SRAM_A15

187

SRAM_A14

195

SRAM_A13

197

SRAM_A12

199

SRAM_A11

200

SRAM_A10

203

SRAM_A9

208

SRAM_A8

214

SRAM_A18

184

SRAM_A17

185

SRAM_A16

186

I/O 1

6

I/O 2

7

I/O 3

8

I/O 4

9

I/O 5

11

I/O 6

13

I/O 7

14

I/O 8

15

I/O 9

16

I/O 10

18

I/O 11

20

I/O 12

21

I/O 13

37

I/O 14

38

I/O 15

39

I/O 16

41

I/O 17

42

I/O 18

44

I/O 19

46

I/O 20

47

I/O 21

49

I/O 22

50

INT

51

SRAM_D7

189

SRAM_D6

191

SRAM_D5

192

SRAM_D4

194

SRAM_D3

226

SRAM_D2

228

SRAM_D1

230

SRAM_D0

231

VGA_BLANK

78

VGA_VSYNC

116

VGA_HSYNC

114

I/O 28

128

SRAM2_DQ7

136

SRAM2_DQ6

137

SRAM2_DQ5

139

SRAM2_DQ4

140

SRAM2_DQ3

166

SRAM2_DQ2

167

SRAM2_DQ1

168

SRAM2_DQ0

170

DATA0 (GND)

27

DCLK (GND)

26

CLK0

30

CLK14

92

U1B

FPGA

D1

1N4148

C64

1 uF

1

2

3

4

5

6

7

8

9

10

J12

HEADER 10

1

TP1

TEST POINT

C63

33 uF

Tri-State

1

GND

2

CLK OUT

3

Vdd

4

O1

ASFL1_80MHz

C59

0.1 uF

2

4

6

8

10

1

3

5

7

9

J13

HEADER 2

C57

0.1 uF

8

7

5

3

2

6

ISO1

6N137

C60

0.1 uF

C56

0.01 uF

C58

0.1 uF

D2

LTST-C170EKT

C54

0.1 uF

IOG

32

CLOCK

24

IOR

34

VAA

13

IOG

31

PSAVE

38

COMP

35

VAA

30

SYNC

12

VREF

36

IOB

27

RSET

37

VAA

29

GND

25

IOR

33

GND

15

IOB

28

BLANK

11

GND

26

GND

14

GND

2

GND

1

G0

3

G1

4

G2

5

G3

6

G4

7

G5

8

G6

9

G7

10

B0

16

B1

17

B2

18

B3

19

B4

20

B5

21

B6

22

B7

23

GND

39

GND

40

R0

41

R1

42

R2

43

R3

44

R4

45

R5

46

R6

47

R7

48

U2A

Altera DAC

?

ADV7123JST330

1

2

3

4

5

6

J8

HEADER 6

R8

1k

V0

1

V1

2

V2

3

V3

4

V4

5

V5

6

V6

7

V7

8

V8

9

V9

10

V10

11

V11

12

V12

13

V13

14

V14

15

1

6

11

5

15

VGA

1

TP2

TEST POINT

C62

10 uF

R9

75 ohm

1

2

3

4

5

6

7

8

9

10

11

12

J11

HEADER 12

A

1

B

2

U4

Ferrite Bead

1

2

3

4

5

JR1

164-7150

C55

0.01 uF

R10

75 ohm

Vcc

1

Vcc

2

N.C.

3

N.C.

4

N.C.

5

N.C.

6

N.C.

11

N.C.

12

N.C.

13

N.C.

14

ASDI

15

DCLK

16

nCS

7

DATA

8

GND

10

Vcc

9

SC1

EPCS64

R11

75 ohm

A

1

B

2

U3

Ferrite Bead

R12

75 ohm

1

2

3

J10

161-3507

Test-out1

15

Test-out0

6

INT

20

LED

17

DVdd

14

DVss

16

Test-in2

21

Test-in3

22

Test-in0

7

Test-in1

8

ANOUT-R

28

VREF

1

ANOUT-L

2

Avss

3

Avdd

27

ANOUT-Mono

5

Test-Mode0

24

Test-Mode1

26

MCLK

23

SO

9

SI/O

10

SCLK

12

SEL

13

NRST

19

NC

4

NC

11

NC

18

NC

25

U6

MIDI Melody LSI

C53

0.1 uF

R7

1k

C61

0.01 uF

R6

220

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 3.3 V

VCC 5.0 V

VAA 3.3 V

VCC 3.3 V

VCC 3.3 V

VCC 3.3 V

CONF_DONE

1

nCE

1

S1_OE

3

nCONFIG

1

S1_CE

3

S1_WE

3

S1_A1

3

S1_A0

3

S1_A3

3

S1_A2

3

S1_A5

3

S1_A4

3

S1_A7

3

S1_A6

3

S1_A9

3

S1_A8

3

S1_A11

3

S1_A10

3

S1_A13

3

S1_A12

3

S1_A15

3

S1_A14

3

S1_A17

3

S1_A16

3

S1_IO5

3

S1_A18

3

S1_IO1

3

S1_IO0

3

S1_IO3

3

S1_IO2

3

S1_IO6

3

S1_IO4

3

S2_A1

3

S1_IO7

3

S2_A2

3

S2_IO5

3

S2_A3

3

S2_IO0

3

S2_A4

3

S2_IO1

3

S2_A5

3

S2_IO2

3

C73

0.1 uF

S2_A6

3

S2_IO3

3

S2_A7

3

S2_IO4

3

S2_A8

3

S2_IO6

3

S2_A9

3

S2_IO7

3

S2_A11

3

S2_A10

3

S2_A13

3

S2_A12

3

S2_OE

3

S2_A14

3

S2_WE

3

S2_A15

3

S2_CE

3

S2_A16

3

S2_A0

3

S2_A17

3

S2_A18

3

C74

0.1 uF

Title

SizeDocument NumberRev

Date:Sheetof

11.0

FPGA I/O

23Wednesday, November 14, 2007

C650.1 uF

C660.1 uF

C671 uF

C68

0.1 uF

R15

10 k

VCC 5.0 VVCC 3.3 V

R16

10 k

MIDI IN

CLK

VCCA

1

GND

2

A

3

VCCB

6

DIR

5

B

4

U9

Level Translator

MIDI LSI

R13

10 k

DAC

RED

BLUE

GREEN

VCC 5.0 V

vsync

hsync

R14

10 k

1

2

J9HEADER 2

I/O 27

126

nCEO

127

I/O 25

119

I/O 26

125

I/O 24

118

SRAM_CE

232

SRAM_WE

223

SRAM_OE

188

SCLK

56

S I/O

57

SEL

55

SO

58

NRST

54

MCLK

52

MIDI_IN

117

nCSO

5

ASDO

4

I/O 29

238

VGA_R0

113

VGA_R1

111

VGA_R3

109

VGA_R2

110

VGA_R4

106

VGA_R5

105

VGA_R6

100

VGA_R7

97

VGA_G0

96

VGA_G1

90

VGA_G2

88

VGA_G3

87

VGA_G4

86

VGA_G5

84

VGA_G6

80

VGA_G7

79

VGA_B0

73

VGA_B1

72

VGA_B2

70

VGA_B3

68

VGA_B4

67

VGA_B5

66

VGA_B6

65

VGA_B7

64

SRAM2_A7

161

SRAM2_A6

162

SRAM2_A5

164

SRAM2_A4

173

SRAM2_A3

174

SRAM2_A2

175

SRAM2_A1

177

SRAM2_A0

178

SRAM2_A15

134

SRAM2_A14

141

SRAM2_A13

149

SRAM2_A12

150

SRAM2_A11

155

SRAM2_A10

156

SRAM2_A9

157

SRAM2_A8

159

SRAM2_OE

135

SRAM2_WE

165

SRAM2_CE

171

SRAM2_A18

130

SRAM2_A17

131

SRAM2_A16

132

SRAM_A7

216

SRAM_A6

218

SRAM_A5

222

SRAM_A4

233

SRAM_A3

234

SRAM_A2

235

SRAM_A1

236

SRAM_A0

237

SRAM_A15

187

SRAM_A14

195

SRAM_A13

197

SRAM_A12

199

SRAM_A11

200

SRAM_A10

203

SRAM_A9

208

SRAM_A8

214

SRAM_A18

184

SRAM_A17

185

SRAM_A16

186

I/O 1

6

I/O 2

7

I/O 3

8

I/O 4

9

I/O 5

11

I/O 6

13

I/O 7

14

I/O 8

15

I/O 9

16

I/O 10

18

I/O 11

20

I/O 12

21

I/O 13

37

I/O 14

38

I/O 15

39

I/O 16

41

I/O 17

42

I/O 18

44

I/O 19

46

I/O 20

47

I/O 21

49

I/O 22

50

INT

51

SRAM_D7

189

SRAM_D6

191

SRAM_D5

192

SRAM_D4

194

SRAM_D3

226

SRAM_D2

228

SRAM_D1

230

SRAM_D0

231

VGA_BLANK

78

VGA_VSYNC

116

VGA_HSYNC

114

I/O 28

128

SRAM2_DQ7

136

SRAM2_DQ6

137

SRAM2_DQ5

139

SRAM2_DQ4

140

SRAM2_DQ3

166

SRAM2_DQ2

167

SRAM2_DQ1

168

SRAM2_DQ0

170

DATA0 (GND)

27

DCLK (GND)

26

CLK0

30

CLK14

92

U1B

FPGA

D1

1N4148

C64

1 uF

12345678910

J12HEADER 10

1

TP1

TEST POINT

C63

33 uF

Tri-State

1

GND

2

CLK OUT

3

Vdd

4

O1

ASFL1_80MHz

C59

0.1 uF

2

4

6

8

10

1

3

5

7

9

J13

HEADER 2

C57

0.1 uF

8

7

5

3

2

6

ISO1

6N137

C60

0.1 uF

C56

0.01 uF

C58

0.1 uF

D2

LTST-C170EKT

C54

0.1 uF

IOG

32

CLOCK

24

IOR

34

VAA

13

IOG

31

PSAVE

38

COMP

35

VAA

30

SYNC

12

VREF

36

IOB

27

RSET

37

VAA

29

GND

25

IOR

33

GND

15

IOB

28

BLANK

11

GND

26

GND

14

GND

2

GND

1

G0

3

G1

4

G2

5

G3

6

G4

7

G5

8

G6

9

G7

10

B0

16

B1

17

B2

18

B3

19

B4

20

B5

21

B6

22

B7

23

GND

39

GND

40

R0

41

R1

42

R2

43

R3

44

R4

45

R5

46

R6

47

R7

48

U2A

Altera DAC

?

ADV7123JST330

1

2

3

4

5

6

J8

HEADER 6

R81k

V0

1

V1

2

V2

3

V3

4

V4

5

V5

6

V6

7

V7

8

V8

9

V9

10

V10

11

V11

12

V12

13

V13

14

V14

15

1

6

11

515

VGA

1

TP2

TEST POINT

C62

10 uF

R9

75 ohm

123456789101112

J11HEADER 12

A

1

B

2

U4

Ferrite Bead

1

2

3

45

JR1

164-7150

C55

0.01 uF

R10

75 ohm

Vcc

1

Vcc

2

N.C.

3

N.C.

4

N.C.

5

N.C.

6

N.C.

11

N.C.

12

N.C.

13

N.C.

14

ASDI

15

DCLK

16

nCS

7

DATA

8

GND

10

Vcc

9

SC1

EPCS64

R1175 ohm

A

1

B

2

U3

Ferrite Bead

R12

75 ohm

1

2

3

J10161-3507

Test-out1

15

Test-out0

6

INT

20

LED

17

DVdd

14

DVss

16

Test-in2

21

Test-in3

22

Test-in0

7

Test-in1

8

ANOUT-R

28

VREF

1

ANOUT-L

2

Avss

3

Avdd

27

ANOUT-Mono

5

Test-Mode0

24

Test-Mode1

26

MCLK

23

SO

9

SI/O

10

SCLK

12

SEL

13

NRST

19

NC

4

NC

11

NC

18

NC

25

U6

MIDI Melody LSI

C530.1 uF

R7

1k

C61

0.01 uF

R6

220

VCC 3.3 V

VCC 5.0 V

VCC 3.3 V

VCC 3.3 V

VCC 5.0 V

VAA 3.3 V

VCC 3.3 V

VCC 3.3 V

VCC 3.3 V

CONF_DONE1

nCE1

S1_OE3

nCONFIG1

S1_CE3

S1_WE3

S1_A13

S1_A03

S1_A33

S1_A23

S1_A53

S1_A43

S1_A73

S1_A63

S1_A93

S1_A83

S1_A113

S1_A103

S1_A133

S1_A123

S1_A153

S1_A143

S1_A173

S1_A163

S1_IO53

S1_A183

S1_IO13

S1_IO03

S1_IO33

S1_IO23

S1_IO63

S1_IO43

S2_A1

3

S1_IO73

S2_A2

3

S2_IO5

3

S2_A3

3

S2_IO0

3

S2_A4

3

S2_IO1

3

S2_A5

3

S2_IO2

3

C73

0.1 uF

S2_A6

3

S2_IO3

3

S2_A7

3

S2_IO4

3

S2_A8

3

S2_IO6

3

S2_A9

3

S2_IO7

3

S2_A11

3

S2_A10

3

S2_A13

3

S2_A12

3

S2_OE

3

S2_A14

3

S2_WE

3

S2_A15

3

S2_CE

3

S2_A16

3

S2_A0

3

S2_A17

3

S2_A18

3

C74

0.1 uF

Figure C-2. Schematic Page 2 of 3. FPGA GPIO, DAC, Serial Config, MIDI LSI, and other components.
[image: image11.emf]SRAM 2

Title

Size

Document Number

Rev

Date:

Sheet

of

SRAM

3

3

Tuesday, November 13, 2007

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

J14

HEADER 22

NC

1

NC

2

A0

3

A1

4

A2

5

A3

6

A4

7

CE

8

I/O0

9

I/O1

10

VDD

11

GND

12

I/O2

13

I/O3

14

WE

15

A5

16

A6

17

A7

18

A8

19

A9

20

NC

21

NC

22

NC

23

A16

39

A15

38

OE

37

I/O7

36

I/O6

35

GND

34

VDD

33

I/O5

32

I/O4

31

A14

30

A13

29

A12

28

A11

27

A10

26

NC

25

NC

24

A17

40

A18

41

NC

43

NC

42

NC

44

U8

SRAM IS61LV5128AL

NC

1

NC

2

A0

3

A1

4

A2

5

A3

6

A4

7

CE

8

I/O0

9

I/O1

10

VDD

11

GND

12

I/O2

13

I/O3

14

WE

15

A5

16

A6

17

A7

18

A8

19

A9

20

NC

21

NC

22

NC

23

A16

39

A15

38

OE

37

I/O7

36

I/O6

35

GND

34

VDD

33

I/O5

32

I/O4

31

A14

30

A13

29

A12

28

A11

27

A10

26

NC

25

NC

24

A17

40

A18

41

NC

43

NC

42

NC

44

U7

SRAM IS61LV5128AL

C71

0.1 uF

C69

0.1 uF

C72

1 uF

C70

1 uF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

J15

HEADER 22

1

2

3

4

5

6

7

8

J17

HEADER 8

1

2

3

4

5

6

7

8

J16

HEADER 8

VCC 3.3 V

VCC 3.3 V

S1_WE

2

S1_OE

2

S1_A0

2

S1_CE

2

S1_A2

2

S1_A1

2

S1_A4

2

S1_A3

2

SRAM 1

S1_A6

2

S1_A5

2

S1_A8

2

S1_A7

2

S1_A10

2

S1_A9

2

S1_A12

2

S1_A11

2

S1_A14

2

S1_A13

2

S1_A16

2

S1_A15

2

S1_A17

2

S1_A18

2

S1_IO1

2

S1_IO0

2

S1_IO3

2

S1_IO2

2

S1_IO5

2

S1_IO4

2

S1_IO6

2

S1_IO7

2

S2_A15

2

S2_A14

2

S2_A18

2

S2_A16

2

S2_A0

2

S2_A17

2

S2_A1

2

S2_OE

2

S2_WE

2

S2_IO0

2

S2_IO1

2

S2_A2

2

S2_A3

2

S2_CE

2

S2_A4

2

S2_IO2

2

S2_A5

2

S2_IO3

2

S2_A6

2

S2_IO4

2

S2_A7

2

S2_IO5

2

S2_A8

2

S2_IO7

2

S2_A9

2

S2_IO6

2

S2_A11

2

S2_A10

2

S2_A13

2

S2_A12

2

SRAM 2

Title

SizeDocument NumberRev

Date:Sheetof

SRAM

33Tuesday, November 13, 2007

123456789

10111213141516171819202122

J14

HEADER 22

NC

1

NC

2

A0

3

A1

4

A2

5

A3

6

A4

7

CE

8

I/O0

9

I/O1

10

VDD

11

GND

12

I/O2

13

I/O3

14

WE

15

A5

16

A6

17

A7

18

A8

19

A9

20

NC

21

NC

22

NC

23

A16

39

A15

38

OE

37

I/O7

36

I/O6

35

GND

34

VDD

33

I/O5

32

I/O4

31

A14

30

A13

29

A12

28

A11

27

A10

26

NC

25

NC

24

A17

40

A18

41

NC

43

NC

42

NC

44

U8

SRAM IS61LV5128AL

NC

1

NC

2

A0

3

A1

4

A2

5

A3

6

A4

7

CE

8

I/O0

9

I/O1

10

VDD

11

GND

12

I/O2

13

I/O3

14

WE

15

A5

16

A6

17

A7

18

A8

19

A9

20

NC

21

NC

22

NC

23

A16

39

A15

38

OE

37

I/O7

36

I/O6

35

GND

34

VDD

33

I/O5

32

I/O4

31

A14

30

A13

29

A12

28

A11

27

A10

26

NC

25

NC

24

A17

40

A18

41

NC

43

NC

42

NC

44

U7

SRAM IS61LV5128AL

C71

0.1 uF

C69

0.1 uF

C72

1 uF

C70

1 uF

123456789

10111213141516171819202122

J15

HEADER 22

12345678

J17

HEADER 8

12345678

J16

HEADER 8

VCC 3.3 V

VCC 3.3 V

S1_WE2

S1_OE2

S1_A02

S1_CE2

S1_A22

S1_A12

S1_A42

S1_A32

SRAM 1

S1_A62

S1_A52

S1_A82

S1_A72

S1_A102

S1_A92

S1_A122

S1_A112

S1_A142

S1_A132

S1_A162

S1_A152

S1_A172

S1_A182

S1_IO12

S1_IO02

S1_IO32

S1_IO22

S1_IO52

S1_IO42

S1_IO62

S1_IO72

S2_A152

S2_A142

S2_A182

S2_A162

S2_A02

S2_A172

S2_A12

S2_OE2

S2_WE2

S2_IO02

S2_IO12

S2_A22

S2_A32

S2_CE2

S2_A42

S2_IO22

S2_A52

S2_IO32

S2_A62

S2_IO42

S2_A72

S2_IO52

S2_A82

S2_IO72

S2_A92

S2_IO62

S2_A112

S2_A102

S2_A132

S2_A122

Figure C-3. Schematic Page 3 of 3. SRAMs and headers.
Appendix D: PCB Layout Top and Bottom Copper

A copy of the top and bottom copper PCB layout (with silkscreen) should be included here – note that all figures should be numbered and captioned.
[image: image12.png]
Figure D-1. Top copper of PCB with silkscreen.

Figure D-2. Bottom copper of PCB.

Figure D-3. PCB Ground Layer.

Figure D-4. PCB Power Layer.

Appendix E: Parts List Spreadsheet

	Vendor
	Manufacturer
	Part No.
	Description
	Unit Cost
	Qty
	Total Cost

	Altera
	Altera
	Cyclone II EP2C20AQ240C8ES
	FPGA
	sample
	1
	$0.00

	Altera
	Altera
	EPCS64
	Serial Configuration Device
	sample
	1
	$0.00

	Analog Devices
	Analog Devices
	ADV7125JST330
	DAC
	sample
	1
	$0.00

	Digikey
	ISSI
	IS61LV5128AL
	SRAM
	 $ 5.50
	2
	$11.00

	Digikey
	Abracon
	ASFL1-80MHz-EC-T
	80 MHz Oscillator
	 $ 4.95
	1
	$4.95

	ROHM
	ROHM
	BU8793KN
	MIDI Melody LSI
	sample
	1
	$0.00

	Mouser
	Fairchild Semiconductors
	6N137
	Optical Isolator
	 $ 1.09
	1
	$1.09

	Mouser
	Texas Instruments
	SN74LVC1T45
	Level Translator
	 $ 0.56
	1
	$0.56

	Mouser
	STMicroelectronics
	LD1117D50
	5V Regulator
	 $ 1.39
	1
	$1.39

	Mouser
	ON Semiconductor
	NCP1086D2T-33R4G
	3.3V Regulator
	 $ 1.44
	1
	$1.44

	Mouser
	STMicroelectronics
	LD1117D33
	1.2V Regulator
	 $ 0.65
	1
	$0.65

	Mouser
	Deltron
	164-7150
	MIDI Jack
	 $ 1.47
	1
	$1.47

	Mouser
	Harting
	09 56 152 7612
	VGA Jack
	 $ 4.68
	1
	$4.68

	Kobiconn
	Kobiconn
	161-3507
	Audio Jack
	 $ 0.79
	1
	$0.79

	Mouser
	Kobiconn
	16PJ031
	Power Jack
	 $ 0.93
	1
	$0.93

	Mouser
	Carling Technologies
	RGSCA901
	Power Switch
	 $ 1.97
	1
	$1.97

	EE Parts Room
	unknown
	unknown
	Push button
	 $ 0.50
	1
	$0.50

	ECE 477 lab
	unknown
	unknown
	1N4148 Diode
	 sample
	1
	$0.00

	Mouser
	Murata
	BLM31PG121SN1L
	Ferrite Bead
	 $ 0.23
	2
	$0.46

	ECE 477 lab
	unknown
	unknown
	.01uF capacitor
	 sample
	4
	$0.00

	Mouser
	Kemet
	C1206C103KARACTU
	.01uF polarized capacitor
	 $ 0.18
	2
	$0.36

	Mouser
	Kemet
	C1206C104M1RACTU
	.1uF capacitor
	 $ 0.55
	51
	$28.05

	Mouser
	Cornell Dubilier
	AVS105M50B12T-F
	1uF capacitor
	 $ 0.16
	1
	$0.16

	Mouser
	Kemet
	C1206C106K4PACTU
	10uF capacitor
	 $ 0.19
	3
	$0.57

	ECE 477 lab
	unknown
	unknown
	22uF capacitor
	 sample
	1
	$0.00

	ECE 477 lab
	unknown
	unknown
	33uF capacitor
	 sample
	2
	$0.00

	ECE 477 lab
	unknown
	unknown
	100uF capacitor
	 sample
	3
	$0.00

	Mouser
	Kemet
	T520Y108M2R5ATE0157
	1000uF capacitor
	 $ 4.68
	2
	$9.36

	Mouser
	KOA Speer
	RK73H2BTTD75R0F
	75 ohm resistor
	 $ 0.10
	4
	$0.40

	Mouser
	Vishay/Dale
	CRCW1206120RFKEA
	120 ohm resistor
	 $ 0.07
	1
	$0.07

	Mouser
	Vishay/Dale
	CRCW1206220RJNEA
	220 ohm resistor
	 $ 0.05
	1
	$0.05

	Mouser
	Vishay/Dale
	CRCW12061K00FKEA
	1k ohm resistor
	 $ 0.07
	2
	$0.14

	Mouser
	Vishay/Dale
	CRCW120610K0JNEB
	10k ohm resistor
	 $ 0.04
	8
	$0.32

	ECE 477 lab
	unknown
	unknown
	Single Row Header
	 sample
	2
	$0.00

	ECE 477 lab
	unknown
	unknown
	Double Row Header
	 sample
	1
	$0.00

	Radio Shack
	Radio Shack
	273-0029
	Power Supply
	 $ 20.00
	1
	$20.00

	Newark
	Bud Industries
	PC-11493
	Enclosure
	18.24
	1
	$18.24

Appendix F: Software Listing

-- File: Output_ctrl

-- Author: Tom Bottonari

-- Class: ECE477

-- Function: This file determines what is outputted to the screen at a given instance in time. It accepts the

-- key-pressed information from the MIDI_rcvr.vhd file as well as the bar display information from

-- the CPU. It then sets the correct color_code based on where the hcount and vcount variables are

-- at on the screen. The color of the keys on the keyboard are changed based on whether or note the

-- current key pressed is correct or not, and bars are propagated down the screen one row every 0.02

-- seconds. Also, the key-press accuracy is judged and a scorebar is shown based on this. From a

-- top-level perspective, this code is a giant state machine with a start state, song selection state,

-- gameplay state, and song complete state where a final performance grade is given.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity Output_ctrl is

port(clk, reset : in std_logic;

First32, Second32 : in std_logic_vector(31 downto 0);

Last20 : in std_logic_vector(19 downto 0);

vcount, hcount : in std_logic_vector(10 downto 0);

blackkeys_pressed : in std_logic_vector(0 to 48);

whitekeys_pressed : in std_logic_vector(0 to 48);

song_length : in std_logic_vector(8 downto 0);

color_code_out : out std_logic_vector(3 downto 0);

gameplay_flag : out std_logic;

song_chosen : out std_logic_vector(2 downto 0);

go : out std_logic

);

end Output_ctrl;

architecture synt of Output_ctrl is

signal color_code : std_logic_vector(3 downto 0);

type state_type is (start, songlist, gameclear, gameplay, endsong);

signal state, nextstate : state_type;

signal arrow_pos : std_logic_vector(2 downto 0);

signal arrow_pos_next : std_logic_vector(2 downto 0);

type white_bar_map is array(0 to 118) of std_logic_vector(0 to 48);

signal barmap_white : white_bar_map;

type black_bar_map is array(0 to 118) of std_logic_vector(0 to 48);

signal barmap_black : black_bar_map;

signal propagate : std_logic_vector(20 downto 0);

signal loop_count, loop_count3 : std_logic_vector(7 downto 0);

signal loop_count2 : std_logic_vector(6 downto 0);

signal hit_status_white, hit_status_black : std_logic_vector(1 downto 0);

signal score, nextscore : std_logic_vector(10 downto 0);

signal ff1_midc, ff2_midc, ff1_midcsharp, ff2_midcsharp : std_logic;

signal score_cnt : std_logic_vector(6 downto 0);

signal song_time, next_song_time : std_logic_vector(8 downto 0);

signal second_cnt : std_logic_vector(25 downto 0);

constant C_BLACK : std_logic_vector(3 downto 0) := "0000";

constant C_RED : std_logic_vector(3 downto 0) := "0001";

constant C_GREEN : std_logic_vector(3 downto 0) := "0010";

constant C_BLUE : std_logic_vector(3 downto 0) := "0011";

constant C_DARK_BLUE : std_logic_vector(3 downto 0) := "0100";

constant C_WHITE : std_logic_vector(3 downto 0) := "0101";

constant C_GRAY : std_logic_vector(3 downto 0) := "0110";

constant C_HOH_BLUE : std_logic_vector(3 downto 0) := "0111";

constant C_DARK_RED : std_logic_vector(3 downto 0) := "1000";

constant C_DARK_GREEN : std_logic_vector(3 downto 0) := "1001";

constant C_YELLOW : std_logic_vector(3 downto 0) := "1010";

constant C_GOLD : std_logic_vector(3 downto 0) := "1011";

constant C_ORANGE : std_logic_vector(3 downto 0) := "1100";

constant C_DARK_ORANGE : std_logic_vector(3 downto 0) := "1101";

constant C_NONE : std_logic_vector(1 downto 0) := "00";

constant C_MISS : std_logic_vector(1 downto 0) := "01";

constant C_GOOD : std_logic_vector(1 downto 0) := "10";

constant C_MISS_NO_PRESS : std_logic_vector(1 downto 0) := "11";

type start_screen is array(0 to 11) of std_logic_vector(0 to 199);

type hoh_text is array(0 to 97) of std_logic_vector(0 to 400);

type song_100 is array(0 to 15) of std_logic_vector(0 to 72);

type song_tetris is array(0 to 15) of std_logic_vector(0 to 41);

type song_bells is array(0 to 15) of std_logic_vector(0 to 34);

type song_simpsons is array(0 to 15) of std_logic_vector(0 to 71);

type song_existentialism is array(0 to 15) of std_logic_vector(0 to 100);

type arrow is array(0 to 15) of std_logic_vector(0 to 19);

type songlisttext is array(0 to 24) of std_logic_vector(0 to 111);

type selectinstructions is array(0 to 35) of std_logic_vector(0 to 153);

type songover is array(0 to 17) of std_logic_vector(0 to 219);

type letter is array(0 to 65) of std_logic_vector(0 to 67);

constant C_ARROW : arrow :=

(

"00000000000000000000",

"00000000000000000000",

"00000000000000000000",

"00000011110000000000",

"00000000111100000000",

"00000000001111000000",

"00000000000011110000",

"11111111111111111100",

"11111111111111111100",

"00000000000011110000",

"00000000001111000000",

"00000000111100000000",

"00000011110000000000",

"00000000000000000000",

"00000000000000000000",

"00000000000000000000");

constant C_A : letter :=

(

"00",

"00000000000000000000000000000000011100000000000000000000000000000000",

"00000000000000000000000000000000011100000000000000000000000000000000",

"00000000000000000000000000000000111100000000000000000000000000000000",

"00000000000000000000000000000000111110000000000000000000000000000000",

"00000000000000000000000000000001111110000000000000000000000000000000",

"00000000000000000000000000000001111111000000000000000000000000000000",

"00000000000000000000000000000011111111000000000000000000000000000000",

"00000000000000000000000000000011111111100000000000000000000000000000",

"00000000000000000000000000000011111111100000000000000000000000000000",

"00000000000000000000000000000111111111100000000000000000000000000000",

"00000000000000000000000000000111111111110000000000000000000000000000",

"00000000000000000000000000001111111111110000000000000000000000000000",

"00000000000000000000000000001111111111111000000000000000000000000000",

"00000000000000000000000000011111111111111000000000000000000000000000",

"00000000000000000000000000011111111111111000000000000000000000000000",

"00000000000000000000000000111111111111111100000000000000000000000000",

"00000000000000000000000000111110111111111100000000000000000000000000",

"00000000000000000000000000111110111111111110000000000000000000000000",

"00000000000000000000000001111100011111111110000000000000000000000000",

"00000000000000000000000001111100011111111111000000000000000000000000",

"00000000000000000000000011111000011111111111000000000000000000000000",

"00000000000000000000000011111000001111111111000000000000000000000000",

"00000000000000000000000111111000001111111111100000000000000000000000",

"00000000000000000000000111110000000111111111100000000000000000000000",

"00000000000000000000001111110000000111111111110000000000000000000000",

"00000000000000000000001111100000000011111111110000000000000000000000",

"00000000000000000000001111100000000011111111110000000000000000000000",

"00000000000000000000011111000000000011111111111000000000000000000000",

"00000000000000000000011111000000000001111111111000000000000000000000",

"00000000000000000000111110000000000001111111111100000000000000000000",

"00000000000000000000111110000000000000111111111100000000000000000000",

"00000000000000000001111100000000000000111111111100000000000000000000",

"00000000000000000001111100000000000000111111111110000000000000000000",

"00000000000000000011111000000000000000011111111110000000000000000000",

"00000000000000000011111000000000000000011111111111000000000000000000",

"00000000000000000011111000000000000000001111111111000000000000000000",

"00000000000000000111110000000000000000001111111111100000000000000000",

"00000000000000000111110000000000000000000111111111100000000000000000",

"00000000000000001111100000000000000000000111111111100000000000000000",

"00000000000000001111100000000000000000000111111111110000000000000000",

"00000000000000011111000000000000000000000011111111110000000000000000",

"00000000000000011111111111111111111111111111111111111000000000000000",

"00000000000000111111111111111111111111111111111111111000000000000000",

"00000000000000111111111111111111111111111111111111111000000000000000",

"00000000000000111100000000000000000000000000111111111100000000000000",

"00000000000001111100000000000000000000000000111111111100000000000000",

"00000000000001111100000000000000000000000000111111111110000000000000",

"00000000000011111000000000000000000000000000011111111110000000000000",

"00000000000011111000000000000000000000000000011111111111000000000000",

"00000000000111110000000000000000000000000000001111111111000000000000",

"00000000000111110000000000000000000000000000001111111111000000000000",

"00000000001111100000000000000000000000000000001111111111100000000000",

"00000000001111100000000000000000000000000000000111111111100000000000",

"00000000001111000000000000000000000000000000000111111111110000000000",

"00000000011111000000000000000000000000000000000011111111110000000000",

"00000000011111000000000000000000000000000000000011111111110000000000",

"00000000111110000000000000000000000000000000000011111111111000000000",

"00000000111110000000000000000000000000000000000011111111111000000000",

"00000001111110000000000000000000000000000000000001111111111100000000",

"00000001111110000000000000000000000000000000000001111111111110000000",

"00000011111110000000000000000000000000000000000001111111111110000000",

"00000111111110000000000000000000000000000000000011111111111111000000",

"00001111111111000000000000000000000000000000000111111111111111100000",

"01111111111111111100000000000000000000000000111111111111111111111110",

"11111111111111111111000000000000000000000011111111111111111111111111");

constant C_B : letter :=

(

"00",

"00",

"00000111111111111111111111111111111111111110000000000000000000000000",

"00000000011111111111111111111111111111111111111000000000000000000000",

"00000000000111111111111111111111111111111111111110000000000000000000",

"00000000000001111111111111110000001111111111111111100000000000000000",

"00000000000001111111111000000000000000011111111111111000000000000000",

"00000000000001111111111000000000000000000111111111111100000000000000",

"00000000000001111111111000000000000000000011111111111110000000000000",

"00000000000000111111111000000000000000000000111111111111000000000000",

"00000000000000111111111000000000000000000000011111111111100000000000",

"00000000000000111111111000000000000000000000011111111111100000000000",

"00000000000000111111111000000000000000000000001111111111110000000000",

"00000000000000111111111000000000000000000000000111111111110000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000011111111111000000000",

"00000000000000111111111000000000000000000000000011111111111000000000",

"00000000000000111111111000000000000000000000000011111111111000000000",

"00000000000000111111111000000000000000000000000011111111111000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000000111111111000000000000000000000000111111111110000000000",

"00000000000000111111111000000000000000000000000111111111110000000000",

"00000000000000111111111000000000000000000000001111111111100000000000",

"00000000000000111111111000000000000000000000001111111111100000000000",

"00000000000000111111111000000000000000000000011111111111000000000000",

"00000000000000111111111000000000000000000001111111111110000000000000",

"00000000000000111111111000000000000000000111111111111100000000000000",

"00000000000000111111111111110000000011111111111111111000000000000000",

"00000000000000111111111111111111111111111111111111100000000000000000",

"00000000000000111111111111111111111111111111111110000000000000000000",

"00000000000000111111111111111111111111111111111111110000000000000000",

"00000000000000111111111111000000000111111111111111111100000000000000",

"00000000000000111111111000000000000000001111111111111111000000000000",

"00000000000000111111111000000000000000000001111111111111100000000000",

"00000000000000111111111000000000000000000000011111111111110000000000",

"00000000000000111111111000000000000000000000001111111111111000000000",

"00000000000000111111111000000000000000000000000111111111111100000000",

"00000000000000111111111000000000000000000000000011111111111100000000",

"00000000000000111111111000000000000000000000000001111111111110000000",

"00000000000000111111111000000000000000000000000001111111111110000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000011111111111000000",

"00000000000000111111111000000000000000000000000000011111111111000000",

"00000000000000111111111000000000000000000000000000011111111111000000",

"00000000000000111111111000000000000000000000000000011111111111000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000111111111111000000",

"00000000000000111111111000000000000000000000000000111111111110000000",

"00000000000000111111111000000000000000000000000001111111111110000000",

"00000000000000111111111000000000000000000000000001111111111100000000",

"00000000000000111111111000000000000000000000000011111111111100000000",

"00000000000000111111111000000000000000000000000111111111111000000000",

"00000000000001111111111000000000000000000000001111111111110000000000",

"00000000000001111111111000000000000000000000111111111111100000000000",

"00000000000001111111111100000000000000000011111111111111000000000000",

"00000000000011111111111111111100000001111111111111111110000000000000",

"0000000000011000000000000000",

"000000000111000000000000000000",

"0000011000000000000000000000");

constant C_C : letter :=

(

"00000000000000000000000000000011111111111111100000000000001000000000",

"00000000000000000000000000011111111111111111111100000000011000000000",

"00000000000000000000000001111111111111111111111111100000111000000000",

"00000000000000000000000111111111111100000111111111111001111100000000",

"00000000000000000000011111111111000000000000011111111111111100000000",

"00000000000000000001111111111000000000000000000011111111111100000000",

"00000000000000000011111111110000000000000000000001111111111100000000",

"00000000000000000111111111000000000000000000000000011111111100000000",

"00000000000000001111111110000000000000000000000000001111111100000000",

"00000000000000011111111100000000000000000000000000000111111100000000",

"00000000000000111111111000000000000000000000000000000111111100000000",

"00000000000001111111111000000000000000000000000000000011111100000000",

"00000000000011111111110000000000000000000000000000000001111100000000",

"00000000000011111111110000000000000000000000000000000001111100000000",

"00000000000111111111100000000000000000000000000000000000111100000000",

"00000000001111111111100000000000000000000000000000000000111100000000",

"00000000001111111111000000000000000000000000000000000000011100000000",

"00000000011111111111000000000000000000000000000000000000011100000000",

"00000000011111111110000000000000000000000000000000000000001100000000",

"00000000011111111110000000000000000000000000000000000000001100000000",

"00000000111111111110000000000000000000000000000000000000001100000000",

"000000001111111111100100000000",

"00000001111111111100",

"00000001111111111100",

"00000001111111111100",

"00000001111111111100",

"00000011111111111100",

"00000011111111111100",

"00000011111111111100",

"00000011111111111100",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111000",

"00000011111111111100",

"00000011111111111100",

"00000011111111111100",

"00000011111111111100",

"00000001111111111100",

"00000001111111111100",

"0000000111111111111000",

"0000000111111111111000",

"0000000011111111111000",

"0000000011111111111000",

"0000000001111111111100",

"000000000111111111110011000000",

"00000000001111111111100000000000000000000000000000000000000111000000",

"00000000001111111111100000000000000000000000000000000000001110000000",

"00000000000111111111110000000000000000000000000000000000011110000000",

"00000000000111111111111000000000000000000000000000000000011100000000",

"00000000000011111111111000000000000000000000000000000000111100000000",

"00000000000001111111111100000000000000000000000000000001111000000000",

"00000000000000111111111110000000000000000000000000000011110000000000",

"00000000000000111111111111100000000000000000000000000111100000000000",

"00000000000000011111111111110000000000000000000000011111000000000000",

"00000000000000000111111111111100000000000000000000111110000000000000",

"00000000000000000011111111111111000000000000000111111100000000000000",

"00000000000000000001111111111111111110000001111111111000000000000000",

"00000000000000000000011111111111111111111111111111100000000000000000",

"00000000000000000000000111111111111111111111111110000000000000000000",

"00000000000000000000000001111111111111111111111000000000000000000000",

"00000000000000000000000000001111111111111111000000000000000000000000");

constant C_D : letter :=

(

"00",

"00",

"00",

"00111111111111111111111111111111111111111000000000000000000000000000",

"00000011111111111111111111111111111111111111100000000000000000000000",

"00000000011111111111111111111111111111111111111100000000000000000000",

"00000000001111111111111111100000111111111111111111100000000000000000",

"00000000001111111111100000000000000000111111111111111000000000000000",

"00000000001111111111000000000000000000001111111111111100000000000000",

"00000000001111111111000000000000000000000011111111111110000000000000",

"00000000000111111111000000000000000000000000111111111111100000000000",

"00000000000111111111000000000000000000000000001111111111111000000000",

"00000000000111111111000000000000000000000000000111111111111000000000",

"00000000000111111111000000000000000000000000000011111111111100000000",

"00000000000111111111000000000000000000000000000001111111111110000000",

"00000000000111111111000000000000000000000000000000111111111110000000",

"00000000000111111111000000000000000000000000000000111111111111000000",

"00000000000111111111000000000000000000000000000000011111111111100000",

"00000000000111111111000000000000000000000000000000011111111111100000",

"00000000000111111111000000000000000000000000000000001111111111110000",

"00000000000111111111000000000000000000000000000000001111111111110000",

"00000000000111111111000000000000000000000000000000000111111111110000",

"00000000000111111111000000000000000000000000000000000111111111111000",

"00000000000111111111000000000000000000000000000000000111111111111000",

"00000000000111111111000000000000000000000000000000000011111111111000",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000001111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111100",

"00000000000111111111000000000000000000000000000000000011111111111000",

"00000000000111111111000000000000000000000000000000000011111111111000",

"00000000000111111111000000000000000000000000000000000111111111111000",

"00000000000111111111000000000000000000000000000000000111111111110000",

"00000000000111111111000000000000000000000000000000000111111111110000",

"00000000000111111111000000000000000000000000000000001111111111110000",

"00000000000111111111000000000000000000000000000000001111111111100000",

"00000000000111111111000000000000000000000000000000011111111111100000",

"00000000000111111111000000000000000000000000000000011111111111000000",

"00000000000111111111000000000000000000000000000000111111111111000000",

"00000000000111111111000000000000000000000000000000111111111110000000",

"00000000000111111111000000000000000000000000000001111111111100000000",

"00000000000111111111000000000000000000000000000011111111111100000000",

"00000000000111111111000000000000000000000000000111111111111000000000",

"00000000000111111111000000000000000000000000001111111111110000000000",

"00000000000111111111000000000000000000000000011111111111100000000000",

"00000000000111111111000000000000000000000000111111111111000000000000",

"00000000001111111111000000000000000000000011111111111110000000000000",

"00000000001111111111000000000000000000001111111111111000000000000000",

"00000000001111111111100000000000000000111111111111110000000000000000",

"00000000011111111111111111100000011111111111111111000000000000000000",

"00000000111111111111111111111111111111111111111000000000000000000000",

"00000011111111111111111111111111111111111111100000000000000000000000",

"00111111111111111111111111111111111111110000000000000000000000000000");

constant C_F : letter :=

(

"00",

"00",

"00",

"000000000011000000000000",

"0000000000000011000000000000",

"000000000000000011100000000000",

"00000000000000000011111111110000000000000000011111111111100000000000",

"00000000000000000011111111110000000000000000000000111111100000000000",

"00000000000000000011111111110000000000000000000000011111100000000000",

"00000000000000000011111111110000000000000000000000001111100000000000",

"00000000000000000001111111110000000000000000000000000111100000000000",

"00000000000000000001111111110000000000000000000000000111100000000000",

"00000000000000000001111111110000000000000000000000000011100000000000",

"00000000000000000001111111110000000000000000000000000011100000000000",

"00000000000000000001111111110000000000000000000000000011100000000000",

"00000000000000000001111111110000000000000000000000000011100000000000",

"00000000000000000001111111110000000000000000000000000001100000000000",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"00000000000000000001111111110000000000000000000010000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000001110000000000000000000",

"00000000000000000001111111110000000000000000001110000000000000000000",

"00000000000000000001111111110000000000000000011110000000000000000000",

"00000000000000000001111111110000000000000000111110000000000000000000",

"00000000000000000001111111110000000000001111111110000000000000000000",

"00000000000000000001111111111111111111111111111110000000000000000000",

"00000000000000000001111111111111111111111111111110000000000000000000",

"00000000000000000001111111111111111111111111111110000000000000000000",

"00000000000000000001111111110000000000000111111110000000000000000000",

"00000000000000000001111111110000000000000000111110000000000000000000",

"00000000000000000001111111110000000000000000001110000000000000000000",

"00000000000000000001111111110000000000000000001110000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000000110000000000000000000",

"00000000000000000001111111110000000000000000000010000000000000000000",

"00000000000000000001111111110000000000000000000010000000000000000000",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"000000000000000000011111111100",

"00000000000000000011111111111000000000000000000000000000000000000000",

"00000000000000000011111111111000000000000000000000000000000000000000",

"00000000000000000011111111111000000000000000000000000000000000000000",

"00000000000000000011111111111000000000000000000000000000000000000000",

"00000000000000000111111111111110000000000000000000000000000000000000",

"00000000000000111111111111111111100000000000000000000000000000000000",

"00000000001111111111111111111111111110000000000000000000000000000000");

constant C_SONGCOMPLETE : songover :=

(

"0001111110000000000001111110000011111100000001111111000000011111110100000000000000000111111001000000000111111000000111111000000000000111111111111111110000111111111000000001111111111111100011111111111111101111111111111100",

"0011000011100000000110000011100000011110000000001100000001110000011110000000000000011100001111000000011000001110000001111000000000000111100001111000111100000111000000000000011100000001100011000011100001100011100000001100",

"0111000001100000011100000001110000001111000000001000000011100000001110000000000000110000000011000001110000000111000000111100000000001111000000111000011110000111000000000000011100000000100010000011100000100011100000000100",

"0110000000100000011000000000111000001111000000001000000111000000000110000000000001110000000001000001100000000011100000111100000000001111000000111000001110000111000000000000011100000000100010000011100000100011100000000100",

"0110000000100000111000000000111000001011100000001000001110000000000110000000000011100000000001100011100000000011100000101110000000011111000000111000001110000111000000000000011100000000000000000011100000000011100000000000",

"0111000000000001111000000000011100001001110000001000001110000000000010000000000011100000000000100111100000000001110000101110000000011111000000111000001110000111000000000000011100000010000000000011100000000011100000010000",

"0111110000000001110000000000011100001001111000001000011100000000000000000000000111100000000000000111000000000001110000100111000000010111000000111000001110000111000000000000011100000010000000000011100000000011100000010000",

"0011111000000001110000000000011100001000111100001000011100000000000000000000000111000000000000000111000000000001110000100111000000110111000000111000011110000111000000000000011100000010000000000011100000000011100000010000",

"0001111110000001110000000000011100001000011100001000011100000000111111100000000111000000000000000111000000000001110000100011100000100111000000111000111100000111000000000000011111111110000000000011100000000011111111110000",

"0000011111100001110000000000011100001000001110001000011100000000001110000000000111000000000000000111000000000001110000100011100001100111000000111111110000000111000000000000011100000010000000000011100000000011100000010000",

"0000001111110001110000000000011100001000001111001000011100000000001110000000000111000000000000000111000000000001110000100001110001000111000000111000000000000111000000000000011100000010000000000011100000000011100000010000",

"0000000011110001110000000000011100001000000111101000011110000000001110000000000111000000000000000111000000000001110000100001110011000111000000111000000000000111000000000000011100000010000000000011100000000011100000010000",

"0100000001111001111000000000011100001000000011111000011110000000001110000000000111100000000000000111100000000001110000100001111010000111000000111000000000000111000000000000011100000000000000000011100000000011100000000000",

"0100000000111000111000000000111000001000000001111000001110000000001110000000000011100000000000100011100000000011100000100000111110000111000000111000000000000111000000000000011100000000010000000011100000000011100000000010",

"0100000000110000111000000000111000001000000000111000000111000000001110000000000011110000000001000011100000000011100000100000111100000111000000111000000000000111000000001000011100000000010000000011100000000011100000000010",

"0110000000110000011100000001110000001000000000111000000111100000001110000000000001111000000011000001110000000111000000100000011100000111000000111000000000000111000000011000011100000000110000000011100000000011100000000110",

"0111100001100000001110000011100000011100000000011000000001111000011110000000000000111100000110000000111000001110000001110000011100000111100001111000000000000111000000111000011100000001100000000111100000000011100000001100",

"0100111111000000000011111110000001111111000000001000000000011111110000000000000000001111111000000000001111111000000111111100001000011111111111111110000000111111111111110001111111111111100000011111111000001111111111111100");

constant C_INSTRUCTIONS : selectinstructions :=

(

"111000000011100110000000001100000000011001100000000000000000000001111000000000000000000011111100000000000000011000",

"1111000001111001100000000011000000000110011000000000000000000001111111100000000000000001111111100000000000000110000000000000000000000011000000000000000000",

"1111000001111000000000000011000000000110011000000000000000000011100000110000000000000011100001110000000000000110000000000000000000000011000000000000000000",

"1111000001111000000000000011000000000110011000000000000000000011000000011000000000000011000000110000000000000110000000000000000000000011000000000000000000",

"1101100011011001100001111011000011110110011000011111000000000110000000000000110000000011000000000000111110000110000111110000001111000111110000000000000000",

"1101100011011001100011111111000111111110011000111111100000000110000000000000110000000001110000000001111111000110001111111000011111100111110000000000000000",

"1101100011011001100111000111001110001110011001110001100000000110000000000000000000000000111110000011100011000110011100011000111001110011000000000000000000",

"1101100011011001100110000011001100000110011001100000110000000110000000000000000000000000000111100011000001100110011000001100110000000011000000000000000000",

"1100110110011001100110000011001100000110011001111111110000000110000000000000000000000000000000110011111111100110011111111100110000000011000000000000000000",

"1100110110011001100110000011001100000110011001111111110000000110000000011000000000000110000000110011111111100110011111111100110000000011000000000000000000",

"1100110110011001100110000011001100000110011001100000000000000011000000110000000000000110000000110011000000000110011000000000110000000011000000000000000000",

"1100010100011001100111000111001110001110011001110000110000000011100001110000000000000011100001110011100001100110011100001100111001110011000000000000000000",

"1100011100011001100011111111000111111110011000111111100000000001111111100000110000000011111111100001111111000110001111111000011111100011110000000000000000",

"1100011100011001100001111011000011110110011000011111000000000000011110000000110000000000111110000000111110000110000111110000001111000001110000000000000000",

"00",

"00",

"00",

"00",

"1110000000111001100000000011000000000110011000000000000000000000011110000000001100110000000000001111111111000000000000000000000000000000000001100000000000",

"1111000001111001100000000011000000000110011000000000000000000001111111100000001100110000000000001111111111000000000000000000000000000000000001100000000000",

"1111000001111000000000000011000000000110011000000000000000000011100000110000011001100000000000000000110000000000000000000000000000000000000001100000000000",

"1111000001111000000000000011000000000110011000000000000000000011000000011011111111111000000000000000110000000000000000000000000000000000000001100000000000",

"1101100011011001100001111011000011110110011000011111000000000110000000000011111111111001100000000000110000000011111000000111101100001111011001100001111100",

"1101100011011001100011111111000111111110011000111111100000000110000000000000011001100001100000000000110000000111111100001111111100011111111001100011111110",

"1101100011011001100111000111001110001110011001110001100000000110000000000000011001100000000000000000110000001110001110011100011100111000111001100111000110",

"1101100011011001100110000011001100000110011001100000110000000110000000000000110011000000000000000000110000001100000110011000001100110000011001100110000011",

"1100110110011001100110000011001100000110011001111111110000000110000000000011111111111000000000000000110000001100000110011000001100110000011001100111111111",

"1100110110011001100110000011001100000110011001111111110000000110000000011011111111111000000000000000110000001100000110011000001100110000011001100111111111",

"1100110110011001100110000011001100000110011001100000000000000011000000110000110011000000000000000000110000001100000110011000001100110000011001100110000000",

"1100010100011001100111000111001110001110011001110000110000000011100001110000110011000000000000000000110000001110001110011100011100111000111001100111000011",

"1100011100011001100011111111000111111110011000111111100000000001111111100001100110000001100000000000110000000111111100001111111100011111111001100011111110",

"1100011100011001100001111011000011110110011000011111000000000000011110000001100110000001100000000000110000000011111000000111101100001111011001100001111100",

"001100000000011000000000000000",

"00011000011100110000111000000000000000",

"00011111111000111111110000000000000000",

"000111110000001111100000000000000000");

constant C_100_YEARS : song_100 :=

(

"0111000000111100000111100000000111111000111110000000000000000000000000000",

"1111000001100110001100110000000011110000011100000000000000000000000000000",

"0011000011100111011100111000000001110000010000000000000000000000000000000",

"0011000011100111011100111000000000111000110000111110001111101110110011111",

"0011000011000011011000011000000000011101100001110111011111101111110110011",

"0011000011000011011000011000000000001111000001100011011001100110000110011",

"0011000011000011011000011000000000001111000001111111000111100110000111000",

"0011000011000011011000011000000000000110000001100000001111100110000111110",

"0011000011100111011100111000000000000110000001110000011101100110000001111",

"0011000011100111011100111000000000000110000001110011011001100110000100011",

"0011000001100110001100110000000000001111000001111111011111111110000111011",

"1111110000111100000111100000000000011111100000111110011111111111000111110",

"000",

"000",

"000",

"000");

constant C_TETRIS : song_tetris :=

(

"000000000000000000000000000000001100000000",

"111111111111000000000010000000001100000000",

"110001100011000000000110000000000000000000",

"100001100001000000000110000000000000000000",

"100001100001001111101111111101111100011111",

"000001100000011101110110011111111100110011",

"000001100000011000110110001100001100110011",

"000001100000011111110110001100001100111000",

"000001100000011000000110001100001100111110",

"000001100000011100000110001100001100001111",

"000001100000011100110110001100001100100011",

"000011110000011111110111111100011110111011",

"000111111000001111100111111110011110111110",

"00",

"00",

"00");

constant C_BELLS : song_bells :=

(

"00000000000000000000111011100000000",

"11111111100000000000111011100000000",

"01110001110000000000011001100000000",

"00110000110000000000011001100000000",

"00110000110000111110011001100011111",

"00110000110001110111011001100110011",

"00111111100001100011011001100110011",

"00110001111001111111011001100111000",

"00110000111001100000011001100111110",

"00110000011001110000011001100001111",

"00110000111001110011011001100100011",

"01110001111001111111111111110111011",

"11111111110000111110111111110111110",

"00000000000000000000000000000000000",

"00000000000000000000000000000000000",

"00000000000000000000000000000000000");

constant C_SIMPSONS : song_simpsons :=

(

"0111110100011000",

"1110011100011000",

"1100001100",

"111000010011101110111101111011101111000011111000011111001110111100011111",

"111100000011101111011110111011110011100110011000110111001111011100110011",

"011111000001100110001100011001100011100110011001110011100110001100110011",

"000111110001100110001100011001100001100111000001100001100110001100111000",

"000001111001100110001100011001100001100111110001100001100110001100111110",

"100000111001100110001100011001100001100001111001110001100110001100001111",

"110000011001100110001100011001100011100100011001110001100110001100100011",

"111000111011111110011110111101110011000111011000111011001110001110111011",

"101111110011111111011110111101111110000111110000111110001111011110111110",

"0000000000000000000000000000011000",

"0000000000000000000000000000011000",

"0000000000000000000000000000111100",

"0000000000000000000000000000111100");

constant C_EXISTENTIALISM : song_existentialism :=

(

"00000000000000000000011000000000000000000000000000000000000011000000000111001100000000000000000000000",

"11111111110000000000011000000000001000000000000000000000100011000000000111001100000000000000000000000",

"00110000110000000000000000000000011000000000000000000001100000000000000011000000000000000000000000000",

"00110000010000000000000000000000011000000000000000000001100000000000000011000000000000000000000000000",

"00110001000111101111111000111110111110011111011101111011111111000111110011011100011111011101111011110",

"00110011000011101110111001100110011000111011111110111001100111001111110011011100110011011110111101110",

"00111111000001111100011001100110011000110001101100011001100011001100110011001100110011001100011000110",

"00110011000001111000011001110000011000111111101100011001100011000011110011001100111000001100011000110",

"00110001000000111000011001111100011000110000001100011001100011000111110011001100111110001100011000110",

"00110000000001111100011000011110011000111000001100011001100011001110110011001100001111001100011000110",

"00110000011001001100011001000110011000111001101100011001100011001100110011001100100011001100011000110",

"00110000111010000110111101110110011110111111111100011101111111101111111111111110111011011100111101111",

"11111111110111001111111101111100011110011111011110111101111111101111111111111110111110011110111101111",

"000",

"000",

"000");

constant C_SONGLIST : songlisttext :=

(

"000001111111001100000000000001100000000000000000001000",

"00011111111111001100000000000001100000000000000000011000",

"0011100000011110001100000000000000000000000000000000011000",

"0111000000000110001100000000000000000000000000000000011000",

"0110000000000011001100000000000000000000000000000000011000",

"0110000000000011000000111110000000110011111000000000111100110000000000001100000000000001100000011111000001111111",

"0111000000000000000011111111100000111111111100000011111110110000000000001100000000000001100001111111110001111111",

"0011100000000000000111000001110000111100001110000111000011110000000000001100000000000001100011100000111000011000",

"0011111111000000000110000000110000111000000110000110000001110000000000001100000000000001100011000000011000011000",

"0001111111111000001110000000111000110000000110001100000000110000000000001100000000000001100011000000000000011000",

"0000000111111110001100000000011000110000000110001100000000110000000000001100000000000001100011110000000000011000",

"0000000000011110001100000000011000110000000110001100000000110000000000001100000000000001100001111111000000011000",

"0000000000000111001100000000011000110000000110001100000000110000000000001100000000000001100000111111111000011000",

"1100000000000011001100000000011000110000000110001100000000110000000000001100000000000001100000000111111000011000",

"1100000000000011001100000000011000110000000110001100000000110000000000001100000000000001100000000000011100011000",

"1110000000000011001110000000111000110000000110001100000000110000000000001100000000000001100011000000001100011000",

"0111000000000110000110000000110000110000000110000110000001110000000000001100000000000001100011100000001100011000",

"0011100000001110000111000001110000110000000110000111000011110000000000001100000000000001100001110000011000011000",

"0001111111111100000011111111100000110000000110000011111110110000000000001111111111110001100000111111111000011111",

"0000011111110000000000111110000000110000000110000000111100110000000000001111111111110001100000011111100000001111",

"0011000000001100",

"0011000000011100",

"0011100000111000",

"00011111111100",

"000111111000");

constant any_key : start_screen :=

(

"11111100010010000000100100000010000001001000000000000000111001000000000000000000000000",

"100000100100110000011000000000100000010010000000000000010001000000010000000000000000000000000000000000010000000000000000000000000000",

"100000100100110000011000000000100000010010000000000000100000100000010000000000000000000000000000000000010000000000000000000000000000",

"10000010010001110000111000011100001110000000101100010100111000011100001110000000101000101001000110100011010010001110000000100000000000111000111000000001110000111000101100111001001011000100010001110000",

"10000010010010001001000100100010010001000000110010011001000100100010010001000000101000101001001001100100110010010001000000100000000000010001000100000010001001000100110010010001001100100100010010001000",

"11111100010010001000000100100000010001000000100010010001000100100000010000000000100101001001001000100100010010010001000000100000000000010001000100000010000001000100100010010001001000100100010010001000",

"10000000010011111000111100011100011111000000100010010001111100011100001110000000100101001001001000100100010010011111000000100000000000010001000100000010000001000100100010010001001000100100010011111000",

"10000000010010000001000100000010010000000000100010010001000000000010000001000000100101001001001000100100010010010000000000100000100000010001000100000010000001000100100010010001001000100100010010000000",

"10000000010010001001001100100010010001000000110010010001000100100010010001000000100010001001001000100100010010010001000000010001000000010001000100000010001001000100100010010001001000100100010010001000",

"10000000010001110000110100011100001110000000101100010000111000011100001110000000100010001001000111100011110010001110000000001110000000011000111000000001110000111000100010011001001000100011110001110000",

"001000",

"001000");

constant hooked : hoh_text :=

(

"00011100000000000011100",

"00011111110000000001111111000",

"00011111110000000001111111000",

"000111000001111110000000111000011100000111000011100000011111111111111111111111111000111111111111111100000000011111000",

"000111111111100111111111110000100000011100000110000011100000000000111000000000111100000000111111111111100000000000011111000",

"000111111111100111111111110000100000011100000110000011100000000000111000000000111100000000111111111111100000000000011111000",

"001000000000011110000001100000001110001110000000111000000000111000000011110000000001111100000000000000000000000011000",

"001100000000011110000001100000001110001110000000111000000000111000000111000000000001111100000000000000000000111011000",

"001100000000011110000001100000000010001110000000011000000000111000011100000000000001111111000000000000000111111111000",

"001100000000011110000001100000000010001110000000011000000000111000011100000000000001111111000000000000000111111111000",

"001111111111111110000001100000000011101110000000011100000001111000111100000000000001111111111111110000000111000111100",

"001100000100011100000001100000000011101110000000011100000000111111111100000000000000111111111111110000001110000011100",

"001100000100011100000001100000000011101110000000011100000000111111111100000000000000111111111111110000001110000011100",

"001100000000001110000001100000001111101110000000111000000001111111100111000000000000111100000000000000001110000011100",

"001100000000001100000001100000001110001110000000111000000000111110000111100000000001111100000000000000001110000011100",

"001100000000001100000001100000001110001111000000111000000001111000000011110000000001111100000000000000001111000111100",

"001100000000001100000001100000001110001111000000111000000001111000000011110000000001111100000000000000001111000111100",

"000111111110001111111111000011100001110000011100001110000000000111111000000001111000000011110000000000000000011101111111000",

"001111111111000001111111111000000111111111111001111111111110001111110001000000000001111111111111000",

"001111111111000001111111111000000111111111111001111111111110001111110001000000000001111111111111000",

"0001111111000000000111111100000001111111111110001111111111100011111111111111111000000011100",

"0001111000000000001111000000000000000000000000000000000000001111111111111111100",

"000",

"000",

"000",

"000",

"000",

"000",

"000",

"000",

"000",

"000",

"0010011111100",

"0010011111100",

"0010011000011100000111111100000111111111000",

"00010011000000000000000000011000001100000111111111000111111111000110000000000000000000000000000",

"001100110010000000000000000000001000000011100000001111110000111111000110000000000000000000000000000",

"001100110010000000000000000000001000000011100000001111110000111111000110000000000000000000000000000",

"00111001001100000000000000000000001000000011100000001111111000011111000110000000000000000000000000000",

"00100110011100000000000000000000000010000000001000000011111111110111000110000000000000000000000000000",

"00100110011100000000000000000000000010000000001000000011111111110111000110000000000000000000000000000",

"0011100010011000000000000000000000000010000000001000000011110001111111001111100110000000000000000000000000000",

"0000000000110000111000000000000000111111111111111110000000000000000000000111000100100100000000000000000000000010000000111000000011110000011111000111000000000000000011111111000110000000000000000000000000000",

"000000011111111111111111111000111111111111111111111100000000000000000000000100011001000000000000000000000000000010000000111000000011110000001111001100000000001111111111000110000000000000000000000000000",

"000000011111111111111111111000111111111111111111111100000000000000000000000100011001000000000000000000000000000010000000111000000011110000001111001100000000001111111111000110000000000000000000000000000",

"0000000111111111111111111110000111111111111111111111000000000000000000000001100011100011100000110000000000000000000000100000001110000000111100000001110011111000001111111111000110000000000000000000000000000",

"00000000011111111111111111100000011111111111111111100000000000000000000000001001110011100000000000000000000000000000000111000111000000001111000000011111000111111111111111000110000000000000000000000000000",

"00000000011111111111111111100000011111111111111111100000000000000000000000001001110011100000000000000000000000000000000111000111000000001111000000011111000111111111111111000110000000000000000000000000000",

"00000000001111111111111111100000000111111111111101100000000000000000000000001110001100011100000000001000000000000000000000011111110000000111111111111001111100011111111111000110000000000000000000000000000",

"00000000000000111111100011100000000000111111100000010000000000000000000000000111001110001100000000000001000000000000000000000001111100011111110000000000000000000000000000100000000000000110000000000000000000000000000",

"0000000000000011111100001100000000000000011100000000110000000000000000000000011100011100111000000000000001001111111110000000000000000000000000011000000000000110000000000000000000000000000",

"0000000000000011111100001100000000000000011100000000110000000000000000000000011100011100111000000000000001001111111110000000000000000000000000011000000000000110000000000000000000000000000",

"00000000000000111110000011000000000000000111000000000010000000000000000000000001110000000000000000000000000000000000000111000000000000000000000000000000000000000111110000000000000000110001111111000000000000000000000100000000000110000000000000000000000000000",

"0000000000000000111000001100000000000000011100000000000111000000000000000000000011100000000000000000000000000000000001111000010000000000000000000000000000000000111100010000000000000011000111111100000000000011000000000110000000000000000000000000000",

"0000000000000000111000001100000000000000011100000000000111000000000000000000000011100000000000000000000000000000000001111000010000000000000000000000000000000000111100010000000000000011000111111100000000000011000000000110000000000000000000000000000",

"00000000000000001110000011000000000000000111000000000000111000000000000000001111111111111111100000000000000000011111111111111111000000000011111111100000000000011111111111000100000001111111100000000000001000111111100000100000000110000111111110000000000000000",

"00000000000000001110000011000000000000000111000000000000001110000000000000011111111111111111111100000000000000011111111111111111011000011111111111111000000000011111111111111111101111111111111100000001111110000000000000000000000000000000000001111111111000000000000000111111111100000000000000111111111111111100111111111111111110000000000000000000000000000000000000110000000111111111111111100000000000000",

"0000000000000000111100001100000000000000011100000000000000000100000000000111111111111111111111111100000000000001110000000111111111111111111111111111111111111000111111111110000000000000000000000000000111111111111111111000000000001111111111111100000011100000000000000000000011111111111111111100000111111111111111110000000000000",

"0000000000000000111100001100000000000000011100000000000000000100000000000111111111111111111111111100000000000001110000000111111111111111111111111111111111111000111111111110000000000000000000000000000111111111111111111000000000001111111111111100000011100000000000000000000011111111111111111100000111111111111111110000000000000",

"000000000000000011110000000000000000000001110000000000000000011000000000111111111111111111111111111110000000000110000001100000000000000000000000001111111111111111111111100000000011100000000000000000000011111111111111111100000111111111111111110000000000000",

"000000000000000011110000000000000000000001110000000000000000000110000011111111111110110000111111111110000000000110000000111000000000000001000000000111111111111111111111111110000000111111111111111111111111111111111110000000000000000111111111100000000000000000000011111111111111111100000111111111111111100000000000000",

"000000000000000011110000000000000000000001110000000000000000000110000011111111111110110000111111111110000000000110000000111000000000000001000000000111111111111111111111111110000000111111111111111111111111111111111110000000000000000111111111100000000000000000000011111111111111111100000111111111111111100000000000000",

"00000000000000001111000000000000000000001111000000000000000000000111001111111111000000100000011111111000000000000001111111111111111111111110000111111111100000000001111111111111111111001111111111111100001111111100000000000000000000000111111111101111110111111111100000000111111111111111111111000011111111100000000000000000111111100000000000000000000010000001111111111100000111111111111000000000000000000",

"00000000000000001111000000000000000000001111000000000000000000000011101111111110000000011000001111111110000000000000000001111111111111100000000111111111100000000000111111111111111111000111111111110000000111111100000000000000110000011111111100000111000011111111110000000000111111111111111110000000111111100000000000000000111111100000000000000000000000000000011111111100000001111100000000000000000000000",

"00000000000000001111100000000000000000111111000000000000000000000000111111111110000000000000001111111000000000000000000001111111111110011100000111111111100000000000001111111111111101000000111111110000000001111100000000000000000000011111110000000000000000111111110000001000111111111111111000000000011111100000000000000000111111110000000000000000000000000000000111111100000001111100000000000000000000000",

"00000000000000001111100000000000000000111111000000000000000000000000111111111110000000000000001111111000000000000000000001111111111110011100000111111111100000000000001111111111111101000000111111110000000001111100000000000000000000011111110000000000000000111111110000001000111111111111111000000000011111100000000000000000111111110000000000000000000000000000000111111100000001111100000000000000000000000",

"00000000000000001111100000011100000111111111000000000000000000000000011111111000000000000000001111111110000000000000000000111111111110001110000111111111100000000000000111111111110000110000011111110000000001111100000000000000001000111111100000000000000000011111111100000000011111111111110000000000000111110000000000000111111111110000000000011000000000000000000111111100000001111100000000000000000000000",

"00000000000000001111111111111111111111111111100000000000000000000000000011110000000000000000001111111001100000000000000000111111111100000011000111111111100000000000000011111111110000110000011111110000000000111100000000000000001000111111100000000000000000011111111100110000011111111111100000000000000111110000000000000111111111110000000000100000000000000000000011111111101111111111000000000000000000000",

"00000000000000001111111111111111111111111111100000000000000000000000000011110000000000000000001111111001100000000000000000111111111100000011000111111111100000000000000011111111110000110000011111110000000000111100000000000000001000111111100000000000000000011111111100110000011111111111100000000000000111110000000000000111111111110000000000100000000000000000000011111111101111111111000000000000000000000",

"0000000000000000111111111100111110000111111110001111111000111000000000000000111111100000000001000000011100000000000000000000111111110000001000011111100000000000111100000000000000000110111111000000000000000000000111111100110000000111111100000000000000000111100000000000111100011111100000000011000000000000000000000011111111111111110111100000000000000000000",

"00000000000000001111100000000000000000111111111000000000000000000000000000001000000000000000011111111000000111000000000000111111100000000000110000000111100000000000000000111111100000001000000111100000000000111100000000000000000111111111000000000000000000000111111101000000000111111100000000000000000111100000000001111000011111110000000111000000000000000000000000111111111111000011100000000000000000000",

"000000000000000011110000000000000000000011111111000111111111111000000011100000000000111111100000000000111000000000110000000000000000111111100000000110000111000000000000111100000000000000000001111100000000000000000000000011111101000000000111110000000000000000000111100000000111100000011111110000000100000000000000000000000000001111111110000000111000000000000000000",

"000000000000000011110000000000000000000011111111000111111111111000000011100000000000111111100000000000111000000000110000000000000000111111100000000110000111000000000000111100000000000000000001111100000000000000000000000011111101000000000111110000000000000000000111100000000111100000011111110000000100000000000000000000000000001111111110000000111000000000000000000",

"00000100000000111111000000000000000000000111111100000000000000000000000000001111111111111111111111111000000000111100000000111111000000000000111000000000011110000000000000111110000000000001000111000000000000111100000000000000000001111100000000000000000000000011111110000000000111100000000000000000011111100000001110000000011111100000001000000000000000000000000000000011111000000000011100000000000000000",

"00000001100000001110000000000000000000000111100110000000000000000000000011111111111111111111111111111000000000001110000000111111000000000000001110000000000011100000000000111110000000000001000111000000000000111000000000000000000001111000000000001000000000000011111110000000000111100000000000000000111111100000111000000000011111100000110000000000000000000000000000011111111000000000000110000000000000000",

"00000001100000001110000000000000000000000111100110000000000000000000000011111111111111111111111111111000000000001110000000111111000000000000001110000000000011100000000000111110000000000001000111000000000000111000000000000000000001111000000000001000000000000011111110000000000111100000000000000000111111100000111000000000011111100000110000000000000000000000000000011111111000000000000110000000000000000",

"00000000010000111110000000000000000000000011100011100000000000000111101111111111111111000000000011111000000000000011110000111111100000000000000111000000000001111000000000111110000000000000100111000000000000111000000000000000000001111000000000001000000000000011111110000000011111100000000000000011000111100001110000000000011110000001000000000000000000000000000111111111110000000000000011100000000000000",

"00000000000010111110000000000000000000000011100001110000001000000000001111111111110000000000000011111000000000000000011000001111100000000000000001100000000000001110000000111110000000000000011111000000000000111000000000000000000001111100000000010000000000000011111100000000011111100000000000000100000111100011000000000000011110000111000000000000000000000001111000011111111000000000000001110000000000000",

"00000000000001001110000000000010000000000011100001110000000000000000011111110000000000000000000011111000000000000000001111001111000000000000000000100000000000000111110000111110000000000000011111000000000000111000000000000000000001111100000000010000000000000011111100000000011111100000000000001000000111111110000000000000011110001110000000000000000000111110000000011111111110000000000000001100000000000",

"00000000000001001110000000000010000000000011100001110000000000000000011111110000000000000000000011111000000000000000001111001111000000000000000000100000000000000111110000111110000000000000011111000000000000111000000000000000000001111100000000010000000000000011111100000000011111100000000000001000000111111110000000000000011110001110000000000000000000111110000000011111111110000000000000001100000000000",

"00000000000000111110000000000000000000000011100000011100000000000000111111100000000000000000001111111000000000000000000001111111000000000000000000111000000000000000111000111110000000110000000111000000000000111000000000000000000001111100000001110000000000000111111100000000011111100000000000000000000111110000000000000000011110011000000000000000001110000000000000111111111111000000000000000010000000000",

"00000000000000001110000000000001100000000111100000001110000000000000111110000000000000000000011111111000000000000000000000111111000000000000000000011000000000000000001100111110000000110000000111000000000000111000000000000000000000111111000001100000000000000111111100000000011111100000000000000000000111100000000000000000011110010000000000000010000000000000000011111110011111110000000000000001000000000",

"00000000000000001110000000000001100000000111100000001110000000000000111110000000000000000000011111111000000000000000000000111111000000000000000000011000000000000000001100111110000000110000000111000000000000111000000000000000000000111111000001100000000000000111111100000000011111100000000000000000000111100000000000000000011110010000000000000010000000000000000011111110011111110000000000000001000000000",

"00000000000000000110000000000000000000000111100000000010000000000000111110000000000000011111101111111000000000000000000000001111000000000000000000000100000000000000000111111110000000000000000111000000000000111000000000000000000000111111000011100000000000011111110000000000011111000000000000000000000111100000000000000000011111100000000000100000000000000000000011111100000111111100000000000000110000000",

"00000000000000000110000000000000010000000111100000000001000000000000111110000000001111000000011111111000000000000000000000001111000000000000000000000111000000000000000011111110000001000000000111100000000000111000000000000000000000111111101110000000000000011111110000000000011111000000000000000000011010000000000000000000011111100000111000000000000000000000000111111100000001111100000000000000001000000",

"00000000000000000110000000000000010000000111100000000001110000000000111110000000000000000001111111111110011111000000000000001111000000000000000000000011000000000000000000111111100001000000000111000000000000111100000000000000000000011111111110000000000000011111100000000000011111100000000000000000100010000000000000000000011111100000000000000000000000000000011111110000000000111111000000000000000110000",

"00000000000000000110000000000000010000000111100000000001110000000000111110000000000000000001111111111110011111000000000000001111000000000000000000000011000000000000000000111111100001000000000111000000000000111100000000000000000000011111111110000000000000011111100000000000011111100000000000000000100010000000000000000000011111100000000000000000000000000000011111110000000000111111000000000000000110000",

"00000000000000001110000000000000001000000111100000000000110000000000011111100000000000000111111111111111111111000000000000111111111000000000000000000000100000000000000111111111110000000000011111010000000001111100000000000000000000011111111110000001000000111111100000000000111111100000000000000011000111100000000000000000111111110000000000000000000000000000111111110000000000111111100000000000000001000",

"00000000000000001110000000000000001000001111100000000000001000000000001111111110000000011111111111111111111100111111111111111111111111111111000000000000010000001111111111111111111111110000011111001100000111111111000000000000000000011111111111100000111111111110000000000111111111111100000000000100011111110001111111111111111111111111111011111000000000000111111111110000000001111111111000000000000000100",

"00000000000000001110000000000000001000001111100000000000001000000000001111111110000000011111111111111111111100111111111111111111111111111111000000000000010000001111111111111111111111110000011111001100000111111111000000000000000000011111111111100000111111111110000000000111111111111100000000000100011111110001111111111111111111111111111011111000000000000111111111110000000001111111111000000000000000100",

"0000000000000011111110000000000000011011111111111000000000011000000000001111111111111111111111000111111111100011111111111111111111111111111111000000000000000111111111111111111111111111100011111110000000111111111110000000001111111100011111111111011111111111111000001111111111111111111110000000111000000011111111111111110000000001111111111111110000000000011",

"00000000001111111111111111000000001111111111111111100000000000000000000001111111111111111100000000001111111000111111111111111111111111111111110000000000001111111111111111111111111111111000111111100000001111111111111111110000000000000011111111111111111111111011110001111111111111111111100000111000001111111111111111110000000001111111111111110000000000000",

"00000001111111111111111111000000000001111111111111100000000000000000000000000111111111111000000000000111000000011111111111111111111111111111000000000000000001111111111111111111111111110000000000000000000111111111100000000000000000000000111111111111111111100000000000000111111111110000000000001111011111111111000000000111111111111111111111100000001111111111111111000000000001111111111111110000000000000",

"00000001111111111111111111000000000001111111111111100000000000000000000000000111111111111000000000000111000000011111111111111111111111111111000000000000000001111111111111111111111111110000000000000000000111111111100000000000000000000000111111111111111111100000000000000111111111110000000000001111011111111111000000000111111111111111111111100000001111111111111111000000000001111111111111110000000000000",

"0000011110111000110000000000000000000000000000000000111001111110000000000000000000000100000000000000000000000",

"11100111000",

"11100111000",

"0011000");

begin

Output_Control : process (clk, vcount, hcount, reset, state, barmap_white, score, hit_status_white, hit_status_black)

begin

if reset = '0' then

color_code <= C_BLACK;

elsif (clk'event and clk='1') then

-- Start Screen

if state = start then

color_code <= C_BLACK;

if vcount < 251 then

color_code <= C_BLACK;

elsif vcount < 349 then

if hcount < 200 then

color_code <= C_BLACK;

elsif hcount > 600 then

color_code <= C_BLACK;

else

-- Print "Hooked On Harmonix"

if hooked(conv_integer(vcount - 250))(conv_integer(hcount - 200)) = '0' then

color_code <= C_BLACK;

else

color_code <= C_HOH_BLUE;

end if;

end if;

elsif vcount < 500 then

color_code <= C_BLACK;

elsif vcount < 512 then

if hcount < 300 then

color_code <= C_BLACK;

elsif hcount > 500 then

color_code <= C_BLACK;

else

-- Print "Please press middle c to continue"

if any_key(conv_integer(vcount - 500))(conv_integer(hcount - 300)) = '0' then

color_code <= C_BLACK;

else

color_code <= C_HOH_BLUE;

end if;

end if;

else

color_code <= C_BLACK;

end if;

-- Song List Screen

elsif state = songlist then

-- Print "Song List"

if vcount > 264 and vcount < 290 then

if hcount >= 300 and hcount < 412 then

if C_SONGLIST(conv_integer(vcount - 265))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

-- Song #1

elsif (vcount < 317 and vcount > 300) then

if hcount < 280 then

color_code <= C_BLACK;

elsif hcount < 300 then

if (C_ARROW(conv_integer(vcount - 301))(conv_integer(hcount - 280)) = '1' and arrow_pos = "000") then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

elsif hcount > 400 then

color_code <= C_BLACK;

else

if C_EXISTENTIALISM(conv_integer(vcount - 301))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

end if;

-- Song #2

elsif (vcount < 339 and vcount > 322) then

if hcount < 280 then

color_code <= C_BLACK;

elsif hcount < 300 then

if (C_ARROW(conv_integer(vcount - 323))(conv_integer(hcount - 280)) = '1' and arrow_pos = "001") then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

elsif hcount > 372 then

color_code <= C_BLACK;

else

if C_100_YEARS(conv_integer(vcount - 323))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

end if;

-- Song #3

elsif (vcount < 361 and vcount > 344) then

if hcount < 280 then

color_code <= C_BLACK;

elsif hcount < 300 then

if (C_ARROW(conv_integer(vcount - 345))(conv_integer(hcount - 282)) = '1' and arrow_pos = "010") then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

elsif hcount > 334 then

color_code <= C_BLACK;

else

if C_BELLS(conv_integer(vcount - 345))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

end if;

-- Song #4

elsif (vcount < 383 and vcount > 366) then

if hcount < 280 then

color_code <= C_BLACK;

elsif hcount < 300 then

if (C_ARROW(conv_integer(vcount - 367))(conv_integer(hcount - 280)) = '1' and arrow_pos = "011") then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

elsif hcount > 371 then

color_code <= C_BLACK;

else

if C_SIMPSONS(conv_integer(vcount - 367))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

end if;

-- Song #5

elsif (vcount < 405 and vcount > 388) then

if hcount < 280 then

color_code <= C_BLACK;

elsif hcount < 300 then

if (C_ARROW(conv_integer(vcount - 389))(conv_integer(hcount - 280)) = '1' and arrow_pos = "100") then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

elsif hcount > 341 then

color_code <= C_BLACK;

else

if C_TETRIS(conv_integer(vcount - 389))(conv_integer(hcount - 300)) = '1' then

color_code <= C_GOLD;

else

color_code <= C_BLACK;

end if;

end if;

elsif (vcount < 590 and vcount > 553) then

if (hcount > 635 and hcount < 790) then

if C_INSTRUCTIONS(conv_integer(vcount - 554))(conv_integer(hcount - 636)) = '1' then

color_code <= C_GRAY;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

-- Gameplay Screen

elsif state = gameplay then

-- Area above the keys

if vcount < 465 then

-- check white key barmap to output blue bars

if barmap_white(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4))) = '1' then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

-- check black key barmap to output left half of dark blue bars

if hcount(3 downto 0) > "1011" then

if barmap_black(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4))) = '1' then

color_code <= C_DARK_BLUE;

else

if barmap_white(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4))) = '1' then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

end if;

-- Print outline of scorebar on right most part of screen

elsif hcount = 785 or hcount = 795 then

if score < 155 then

color_code <= C_GREEN;

elsif score >= 155 and score <= 310 then

color_code <= C_YELLOW;

else

color_code <= C_RED;

end if;

-- Print contents of scorebar

elsif (hcount > 785 and hcount < 795) then

if score < 155 then

if vcount = 0 or vcount = 464 then

color_code <= C_GREEN;

elsif vcount > score then

color_code <= C_GREEN;

else

color_code <= C_BLACK;

end if;

elsif score >= 155 and score <= 310 then

if vcount = 0 or vcount = 464 then

color_code <= C_YELLOW;

elsif vcount > score then

color_code <= C_YELLOW;

else

color_code <= C_BLACK;

end if;

else

if vcount = 0 or vcount = 464 then

color_code <= C_RED;

elsif vcount > score then

color_code <= C_RED;

else

color_code <= C_BLACK;

end if;

end if;

-- check black key barmap to output right half of dark blue bars

elsif hcount(3 downto 0) < "0101" then

if barmap_black(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4)-1)) = '1' then

color_code <= C_DARK_BLUE;

-- Prints gray lines where the black keys would be to help track bars

elsif hcount = 16 or hcount = 32 or hcount = 64 or hcount = 80 or hcount = 96

or hcount = 128 or hcount = 144 or hcount = 176 or hcount = 192 or hcount = 208

or hcount = 240 or hcount = 256 or hcount = 288 or hcount = 304 or hcount = 320

or hcount = 352 or hcount = 368 or hcount = 400 or hcount = 416 or hcount = 432

or hcount = 464 or hcount = 480 or hcount = 512 or hcount = 528 or hcount = 544

or hcount = 576 or hcount = 592 or hcount = 624 or hcount = 640 or hcount = 656

or hcount = 688 or hcount = 704 or hcount = 736 or hcount = 752 or hcount = 768 then

color_code <= C_GRAY;

else

if barmap_white(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4))) = '1' then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

end if;

else

if barmap_white(conv_integer(vcount(10 downto 2)))(conv_integer(hcount(10 downto 4))) = '1' then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

end if;

-- Print keys

elsif vcount < 540 then

-- Print black lines in between keys

if hcount > 784 then

color_code <= C_BLACK;

-- in region of black keys

elsif vcount < 515 and ((hcount(3 downto 0) > "1011") or (hcount(3 downto 0) < "0101")) then

-- paint over the two places per octave where there is not a black key

if (hcount < 5) or (hcount > 43 and hcount < 53) or (hcount > 107 and hcount < 117) or (hcount > 155 and hcount < 165)

or (hcount > 219 and hcount < 229) or (hcount > 267 and hcount < 277) or (hcount > 331 and hcount < 341)

or (hcount > 379 and hcount < 389) or (hcount > 443 and hcount < 453) or (hcount > 491 and hcount < 501)

or (hcount > 555 and hcount < 565) or (hcount > 603 and hcount < 613) or (hcount > 667 and hcount < 677)

or (hcount > 715 and hcount < 725) or (hcount > 779) then

if hcount = 48 or hcount = 112 or hcount = 160 or hcount = 224 or hcount = 272 or hcount = 336

or hcount = 384 or hcount = 448 or hcount = 496 or hcount = 560 or hcount = 608 or hcount = 672

or hcount = 720 or hcount = 784 then

color_code <= C_BLACK;

elsif hit_status_white = C_MISS then

color_code <= C_RED;

elsif hit_status_white = C_GOOD then

color_code <= C_GREEN;

elsif hit_status_white = C_MISS_NO_PRESS then

color_code <= C_ORANGE;

else

color_code <= C_WHITE;

end if;

else

-- Print black keys

if hit_status_black = C_MISS then

color_code <= C_DARK_RED;

elsif hit_status_black = C_GOOD then

color_code <= C_DARK_GREEN;

elsif hit_status_black = C_MISS_NO_PRESS then

color_code <= C_DARK_ORANGE;

else

color_code <= C_BLACK;

end if;

end if;

-- Print top of white keys

elsif vcount < 515 then

if hit_status_white = C_MISS then

color_code <= C_RED;

elsif hit_status_white = C_GOOD then

color_code <= C_GREEN;

elsif hit_status_white = C_MISS_NO_PRESS then

color_code <= C_ORANGE;

else

color_code <= C_WHITE;

end if;

else

-- Print black lines between keys as well as bottom of white keys

if hcount = 16 or hcount = 32 or hcount = 48 or hcount = 64 or hcount = 80 or hcount = 96 or hcount = 112

or hcount = 128 or hcount = 144 or hcount = 160 or hcount = 176 or hcount = 192 or hcount = 208 or hcount = 224

or hcount = 240 or hcount = 256 or hcount = 272 or hcount = 288 or hcount = 304 or hcount = 320 or hcount = 336

or hcount = 352 or hcount = 368 or hcount = 384 or hcount = 400 or hcount = 416 or hcount = 432 or hcount = 448

or hcount = 464 or hcount = 480 or hcount = 496 or hcount = 512 or hcount = 528 or hcount = 544 or hcount = 560

or hcount = 576 or hcount = 592 or hcount = 608 or hcount = 624 or hcount = 640 or hcount = 656 or hcount = 672

or hcount = 688 or hcount = 704 or hcount = 720 or hcount = 736 or hcount = 752 or hcount = 768 or hcount = 784 then

color_code <= C_BLACK;

elsif hit_status_white = C_MISS then

color_code <= C_RED;

elsif hit_status_white = C_GOOD then

color_code <= C_GREEN;

elsif hit_status_white = C_MISS_NO_PRESS then

color_code <= C_ORANGE;

else

color_code <= C_WHITE;

end if;

end if;

elsif vcount >= 550 and vcount <= 560 then

-- INSERT SONG INFO TEXT

if hcount = 15 or (hcount = (song_length + song_length + 15)) then

color_code <= C_BLUE;

elsif hcount > 15 and (hcount < (song_length + song_length + 15)) then

if vcount = 550 or vcount = 560 then

color_code <= C_BLUE;

elsif (hcount - 15) < song_time then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

-- Endsong screen

else

if (vcount >= 200 and vcount < 218) then

if (hcount >= 290 and hcount < 510) then

if C_SONGCOMPLETE(conv_integer(vcount - 200))(conv_integer(hcount - 290)) = '1' then

color_code <= C_BLUE;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

elsif (vcount >= 300 and vcount < 366) then

if (hcount >= 366 and hcount < 434) then

if score < 93 then

if C_A(conv_integer(vcount - 300))(conv_integer(hcount - 368)) = '1' then

color_code <= C_GREEN;

else

color_code <= C_BLACK;

end if;

elsif score < 187 then

if C_B(conv_integer(vcount - 300))(conv_integer(hcount - 368)) = '1' then

color_code <= C_YELLOW;

else

color_code <= C_BLACK;

end if;

elsif score < 280 then

if C_C(conv_integer(vcount - 300))(conv_integer(hcount - 368)) = '1' then

color_code <= C_YELLOW;

else

color_code <= C_BLACK;

end if;

elsif score < 373 then

if C_D(conv_integer(vcount - 300))(conv_integer(hcount - 368)) = '1' then

color_code <= C_RED;

else

color_code <= C_BLACK;

end if;

else

if C_F(conv_integer(vcount - 300))(conv_integer(hcount - 368)) = '1' then

color_code <= C_RED;

else

color_code <= C_BLACK;

end if;

end if;

else

color_code <= C_BLACK;

end if;

else

color_code <= C_BLACK;

end if;

end if;

else

color_code <= color_code;

end if;

end process;

nxtstate : process (clk, reset, nextstate)

begin

if reset = '0' then

state <= start;

elsif (clk'event and clk='1') then

state <= nextstate;

end if;

end process;

-- Next state logic for game screen state machine

nsl : process (state, arrow_pos, ff1_midcsharp, ff2_midcsharp, ff1_midc, ff2_midc, blackkeys_pressed, whitekeys_pressed, nextstate, song_time, song_length)

begin

go <= '0';

arrow_pos_next <= arrow_pos;

case state is

when start =>

arrow_pos_next <= "000";

gameplay_flag <= '0';

if (ff1_midc = '1' and ff2_midc = '0') then

nextstate <= songlist;

else

nextstate <= start;

end if;

when songlist =>

gameplay_flag <= '0';

if arrow_pos >= "101" then

arrow_pos_next <= "000";

elsif (ff1_midcsharp = '1' and ff2_midcsharp = '0') then

arrow_pos_next <= arrow_pos + 1;

else

arrow_pos_next <= arrow_pos;

end if;

if (ff1_midc = '1' and ff2_midc = '0') then

nextstate <= gameclear;

else

nextstate <= songlist;

end if;

when gameclear =>

gameplay_flag <= '1';

go <= '1';

nextstate <= gameplay;

when gameplay =>

go <= '1';

gameplay_flag <= '0';

if song_time = (song_length + song_length + 12) then

nextstate <= endsong;

else

nextstate <= gameplay;

end if;

when endsong =>

gameplay_flag <= '0';

if (ff1_midc = '1' and ff2_midc = '0') then

nextstate <= songlist;

else

nextstate <= endsong;

end if;

end case;

end process;

next_arrow : process(clk, reset, arrow_pos_next)

begin

if reset = '0' then

arrow_pos <= "000";

elsif clk'event and clk='1' then

arrow_pos <= arrow_pos_next;

end if;

end process;

propagation_cntr : process(clk, reset, propagate)

begin

if reset = '0' then

propagate <= (others => '0');

elsif propagate = 800001 then

propagate <= (others => '0');

elsif clk'event and clk='1' then

propagate <= propagate + 1;

else

propagate <= propagate;

end if;

end process;

-- Propagate black and white barmaps on count of 800000 clock cycles

prop_white_and_black : process(clk, reset, propagate, state, barmap_white, barmap_black)

begin

if reset = '0' then

barmap_white(0) <= (others => '0');

barmap_black(0) <= (others => '0');

for loop_count in 1 to 118 loop

barmap_white(loop_count) <= (others => '0');

barmap_black(loop_count) <= (others => '0');

end loop;

elsif clk'event and clk = '1' then

if (propagate = 800000 and state = gameplay) then

for loop_count in 118 downto 1 loop

barmap_white(loop_count) <= barmap_white(loop_count - 1);

barmap_black(loop_count) <= barmap_black(loop_count - 1);

end loop;

barmap_white(0)(0) <= First32(0);

barmap_black(0)(0) <= First32(1);

barmap_white(0)(1) <= First32(2);

barmap_black(0)(1) <= First32(3);

barmap_white(0)(2) <= First32(4);

barmap_black(0)(2) <= '0';

barmap_white(0)(3) <= First32(5);

barmap_black(0)(3) <= First32(6);

barmap_white(0)(4) <= First32(7);

barmap_black(0)(4) <= First32(8);

barmap_white(0)(5) <= First32(9);

barmap_black(0)(5) <= First32(10);

barmap_white(0)(6) <= First32(11);

barmap_black(0)(6) <= '0';

barmap_white(0)(7) <= First32(12);

barmap_black(0)(7) <= First32(13);

barmap_white(0)(8) <= First32(14);

barmap_black(0)(8) <= First32(15);

barmap_white(0)(9) <= First32(16);

barmap_black(0)(9) <= '0';

barmap_white(0)(10) <= First32(17);

barmap_black(0)(10) <= First32(18);

barmap_white(0)(11) <= First32(19);

barmap_black(0)(11) <= First32(20);

barmap_white(0)(12) <= First32(21);

barmap_black(0)(12) <= First32(22);

barmap_white(0)(13) <= First32(23);

barmap_black(0)(13) <= '0';

barmap_white(0)(14) <= First32(24);

barmap_black(0)(14) <= First32(25);

barmap_white(0)(15) <= First32(26);

barmap_black(0)(15) <= First32(27);

barmap_white(0)(16) <= First32(28);

barmap_black(0)(16) <= '0';

barmap_white(0)(17) <= First32(29);

barmap_black(0)(17) <= First32(30);

barmap_white(0)(18) <= First32(31);

barmap_black(0)(18) <= Second32(0);

barmap_white(0)(19) <= Second32(1);

barmap_black(0)(19) <= Second32(2);

barmap_white(0)(20) <= Second32(3);

barmap_black(0)(20) <= '0';

barmap_white(0)(21) <= Second32(4);

barmap_black(0)(21) <= Second32(5);

barmap_white(0)(22) <= Second32(6);

barmap_black(0)(22) <= Second32(7);

barmap_white(0)(23) <= Second32(8);

barmap_black(0)(23) <= '0';

barmap_white(0)(24) <= Second32(9);

barmap_black(0)(24) <= Second32(10);

barmap_white(0)(25) <= Second32(11);

barmap_black(0)(25) <= Second32(12);

barmap_white(0)(26) <= Second32(13);

barmap_black(0)(26) <= Second32(14);

barmap_white(0)(27) <= Second32(15);

barmap_black(0)(27) <= '0';

barmap_white(0)(28) <= Second32(16);

barmap_black(0)(28) <= Second32(17);

barmap_white(0)(29) <= Second32(18);

barmap_black(0)(29) <= Second32(19);

barmap_white(0)(30) <= Second32(20);

barmap_black(0)(30) <= '0';

barmap_white(0)(31) <= Second32(21);

barmap_black(0)(31) <= Second32(22);

barmap_white(0)(32) <= Second32(23);

barmap_black(0)(32) <= Second32(24);

barmap_white(0)(33) <= Second32(25);

barmap_black(0)(33) <= Second32(26);

barmap_white(0)(34) <= Second32(27);

barmap_black(0)(34) <= '0';

barmap_white(0)(35) <= Second32(28);

barmap_black(0)(35) <= Second32(29);

barmap_white(0)(36) <= Second32(30);

barmap_black(0)(36) <= Second32(31);

barmap_white(0)(37) <= Last20(0);

barmap_black(0)(37) <= '0';

barmap_white(0)(38) <= Last20(1);

barmap_black(0)(38) <= Last20(2);

barmap_white(0)(39) <= Last20(3);

barmap_black(0)(39) <= Last20(4);

barmap_white(0)(40) <= Last20(5);

barmap_black(0)(40) <= Last20(6);

barmap_white(0)(41) <= Last20(7);

barmap_black(0)(41) <= '0';

barmap_white(0)(42) <= Last20(8);

barmap_black(0)(42) <= Last20(9);

barmap_white(0)(43) <= Last20(10);

barmap_black(0)(43) <= Last20(11);

barmap_white(0)(44) <= Last20(12);

barmap_black(0)(44) <= '0';

barmap_white(0)(45) <= Last20(13);

barmap_black(0)(45) <= Last20(14);

barmap_white(0)(46) <= Last20(15);

barmap_black(0)(46) <= Last20(16);

barmap_white(0)(47) <= Last20(17);

barmap_black(0)(47) <= Last20(18);

barmap_white(0)(48) <= Last20(19);

barmap_black(0)(48) <= '0';

else

barmap_white(1 to 118) <= barmap_white(1 to 118);

barmap_black(1 to 118) <= barmap_black(1 to 118);

barmap_white(0)(0) <= First32(0) and barmap_white(0)(0);

barmap_black(0)(0) <= First32(1) and barmap_black(0)(0);

barmap_white(0)(1) <= First32(2) and barmap_white(0)(1);

barmap_black(0)(1) <= First32(3) and barmap_black(0)(1);

barmap_white(0)(2) <= First32(4) and barmap_white(0)(2);

barmap_black(0)(2) <= '0';

barmap_white(0)(3) <= First32(5) and barmap_white(0)(3);

barmap_black(0)(3) <= First32(6) and barmap_black(0)(3);

barmap_white(0)(4) <= First32(7) and barmap_white(0)(4);

barmap_black(0)(4) <= First32(8) and barmap_black(0)(4);

barmap_white(0)(5) <= First32(9) and barmap_white(0)(5);

barmap_black(0)(5) <= First32(10) and barmap_black(0)(5);

barmap_white(0)(6) <= First32(11) and barmap_white(0)(6);

barmap_black(0)(6) <= '0';

barmap_white(0)(7) <= First32(12) and barmap_white(0)(7);

barmap_black(0)(7) <= First32(13) and barmap_black(0)(7);

barmap_white(0)(8) <= First32(14) and barmap_white(0)(8);

barmap_black(0)(8) <= First32(15) and barmap_black(0)(8);

barmap_white(0)(9) <= First32(16) and barmap_white(0)(9);

barmap_black(0)(9) <= '0';

barmap_white(0)(10) <= First32(17) and barmap_white(0)(10);

barmap_black(0)(10) <= First32(18) and barmap_black(0)(10);

barmap_white(0)(11) <= First32(19) and barmap_white(0)(11);

barmap_black(0)(11) <= First32(20) and barmap_black(0)(11);

barmap_white(0)(12) <= First32(21) and barmap_white(0)(12);

barmap_black(0)(12) <= First32(22) and barmap_black(0)(12);

barmap_white(0)(13) <= First32(23) and barmap_white(0)(13);

barmap_black(0)(13) <= '0';

barmap_white(0)(14) <= First32(24) and barmap_white(0)(14);

barmap_black(0)(14) <= First32(25) and barmap_black(0)(14);

barmap_white(0)(15) <= First32(26) and barmap_white(0)(15);

barmap_black(0)(15) <= First32(27) and barmap_black(0)(15);

barmap_white(0)(16) <= First32(28) and barmap_white(0)(16);

barmap_black(0)(16) <= '0';

barmap_white(0)(17) <= First32(29) and barmap_white(0)(17);

barmap_black(0)(17) <= First32(30) and barmap_black(0)(17);

barmap_white(0)(18) <= First32(31) and barmap_white(0)(18);

barmap_black(0)(18) <= Second32(0) and barmap_black(0)(18);

barmap_white(0)(19) <= Second32(1) and barmap_white(0)(19);

barmap_black(0)(19) <= Second32(2) and barmap_black(0)(19);

barmap_white(0)(20) <= Second32(3) and barmap_white(0)(20);

barmap_black(0)(20) <= '0';

barmap_white(0)(21) <= Second32(4) and barmap_white(0)(21);

barmap_black(0)(21) <= Second32(5) and barmap_black(0)(21);

barmap_white(0)(22) <= Second32(6) and barmap_white(0)(22);

barmap_black(0)(22) <= Second32(7) and barmap_black(0)(22);

barmap_white(0)(23) <= Second32(8) and barmap_white(0)(23);

barmap_black(0)(23) <= '0';

barmap_white(0)(24) <= Second32(9) and barmap_white(0)(24);

barmap_black(0)(24) <= Second32(10) and barmap_black(0)(24);

barmap_white(0)(25) <= Second32(11) and barmap_white(0)(25);

barmap_black(0)(25) <= Second32(12) and barmap_black(0)(25);

barmap_white(0)(26) <= Second32(13) and barmap_white(0)(26);

barmap_black(0)(26) <= Second32(14) and barmap_black(0)(26);

barmap_white(0)(27) <= Second32(15) and barmap_white(0)(27);

barmap_black(0)(27) <= '0';

barmap_white(0)(28) <= Second32(16) and barmap_white(0)(28);

barmap_black(0)(28) <= Second32(17) and barmap_black(0)(28);

barmap_white(0)(29) <= Second32(18) and barmap_white(0)(29);

barmap_black(0)(29) <= Second32(19) and barmap_black(0)(29);

barmap_white(0)(30) <= Second32(20) and barmap_white(0)(30);

barmap_black(0)(30) <= '0';

barmap_white(0)(31) <= Second32(21) and barmap_white(0)(31);

barmap_black(0)(31) <= Second32(22) and barmap_black(0)(31);

barmap_white(0)(32) <= Second32(23) and barmap_white(0)(32);

barmap_black(0)(32) <= Second32(24) and barmap_black(0)(32);

barmap_white(0)(33) <= Second32(25) and barmap_white(0)(33);

barmap_black(0)(33) <= Second32(26) and barmap_black(0)(33);

barmap_white(0)(34) <= Second32(27) and barmap_white(0)(34);

barmap_black(0)(34) <= '0';

barmap_white(0)(35) <= Second32(28) and barmap_white(0)(35);

barmap_black(0)(35) <= Second32(29) and barmap_black(0)(35);

barmap_white(0)(36) <= Second32(30) and barmap_white(0)(36);

barmap_black(0)(36) <= Second32(31) and barmap_black(0)(36);

barmap_white(0)(37) <= Last20(0) and barmap_white(0)(37);

barmap_black(0)(37) <= '0';

barmap_white(0)(38) <= Last20(1) and barmap_white(0)(38);

barmap_black(0)(38) <= Last20(2) and barmap_black(0)(38);

barmap_white(0)(39) <= Last20(3) and barmap_white(0)(39);

barmap_black(0)(39) <= Last20(4) and barmap_black(0)(39);

barmap_white(0)(40) <= Last20(5) and barmap_white(0)(40);

barmap_black(0)(40) <= Last20(6) and barmap_black(0)(40);

barmap_white(0)(41) <= Last20(7) and barmap_white(0)(41);

barmap_black(0)(41) <= '0';

barmap_white(0)(42) <= Last20(8) and barmap_white(0)(42);

barmap_black(0)(42) <= Last20(9) and barmap_black(0)(42);

barmap_white(0)(43) <= Last20(10) and barmap_white(0)(43);

barmap_black(0)(43) <= Last20(11) and barmap_black(0)(43);

barmap_white(0)(44) <= Last20(12) and barmap_white(0)(44);

barmap_black(0)(44) <= '0';

barmap_white(0)(45) <= Last20(13) and barmap_white(0)(45);

barmap_black(0)(45) <= Last20(14) and barmap_black(0)(45);

barmap_white(0)(46) <= Last20(15) and barmap_white(0)(46);

barmap_black(0)(46) <= Last20(16) and barmap_black(0)(46);

barmap_white(0)(47) <= Last20(17) and barmap_white(0)(47);

barmap_black(0)(47) <= Last20(18) and barmap_black(0)(47);

barmap_white(0)(48) <= Last20(19) and barmap_white(0)(48);

barmap_black(0)(48) <= '0';

end if;

end if;

end process;

-- Determine accuracy of keypress for white keys

error_check_white : process(reset, state, whitekeys_pressed, hcount, barmap_white)

begin

if reset = '0' then

hit_status_white <= C_NONE;

elsif state = gameplay then

if (whitekeys_pressed(conv_integer(hcount(10 downto 4))) = '1') and

(barmap_white(113)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_white(114)(conv_integer(hcount(10 downto 4))) = '1' or barmap_white(115)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_white(116)(conv_integer(hcount(10 downto 4))) = '1' or barmap_white(117)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_white(118)(conv_integer(hcount(10 downto 4))) = '1') then

hit_status_white <= C_GOOD;

elsif whitekeys_pressed(conv_integer(hcount(10 downto 4))) = '1' then

hit_status_white <= C_MISS;

elsif barmap_white(118)(conv_integer(hcount(10 downto 4))) = '1' then

hit_status_white <= C_MISS_NO_PRESS;

else

hit_status_white <= C_NONE;

end if;

else

hit_status_white <= C_NONE;

end if;

end process;

-- Determine accuracy of keypress for black keys

error_check_black : process(clk, reset, state, blackkeys_pressed, hcount, score_cnt)

begin

if reset = '0' then

hit_status_black <= C_NONE;

elsif state = gameplay then

if hcount(3 downto 0) > "1011" then

if (blackkeys_pressed(conv_integer(hcount(10 downto 4))) = '1') and

(barmap_black(113)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_black(114)(conv_integer(hcount(10 downto 4))) = '1' or barmap_black(115)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_black(116)(conv_integer(hcount(10 downto 4))) = '1' or barmap_black(117)(conv_integer(hcount(10 downto 4))) = '1'

or barmap_black(118)(conv_integer(hcount(10 downto 4))) = '1') then

hit_status_black <= C_GOOD;

elsif blackkeys_pressed(conv_integer(hcount(10 downto 4))) = '1' then

hit_status_black <= C_MISS;

elsif barmap_black(118)(conv_integer(hcount(10 downto 4))) = '1' then

hit_status_black <= C_MISS_NO_PRESS;

else

hit_status_black <= C_NONE;

end if;

elsif hcount(3 downto 0) < "0101" then

if (blackkeys_pressed(conv_integer(hcount(10 downto 4)-1)) = '1') and

(barmap_black(113)(conv_integer(hcount(10 downto 4)-1)) = '1'

or barmap_black(114)(conv_integer(hcount(10 downto 4)-1)) = '1' or barmap_black(115)(conv_integer(hcount(10 downto 4)-1)) = '1'

or barmap_black(116)(conv_integer(hcount(10 downto 4)-1)) = '1' or barmap_black(117)(conv_integer(hcount(10 downto 4)-1)) = '1'

or barmap_black(118)(conv_integer(hcount(10 downto 4)-1)) = '1') then

hit_status_black <= C_GOOD;

elsif blackkeys_pressed(conv_integer(hcount(10 downto 4)-1)) = '1' then

hit_status_black <= C_MISS;

elsif barmap_black(118)(conv_integer(hcount(10 downto 4)-1)) = '1' then

hit_status_black <= C_MISS_NO_PRESS;

else

hit_status_black <= C_NONE;

end if;

else

hit_status_black <= C_NONE;

end if;

else

hit_status_black <= C_NONE;

end if;

end process;

-- Update score bar appropriately

score_update : process(clk, reset, hit_status_black, hit_status_white, state, score, vcount, score_cnt)

begin

if reset = '0' then

nextscore <= "00011101000";

elsif (hit_status_black = C_MISS or hit_status_white = C_MISS or hit_status_black = C_MISS_NO_PRESS or hit_status_white = C_MISS_NO_PRESS) and state = gameplay and score < 464 and vcount = 525 and score_cnt = 60 then

nextscore <= score + 1;

elsif (hit_status_black = C_GOOD or hit_status_white = C_GOOD) and state = gameplay and score > 0 and vcount = 525 and score_cnt = 60 then

nextscore <= score - 1;

elsif state = gameplay or state = endsong then

nextscore <= score;

else

nextscore <= "00011101000";

end if;

end process;

nextscore_logic : process(clk, nextscore)

begin

if clk'event and clk='1' then

score <= nextscore;

end if;

end process;

ff1_middle_c : process(clk, reset, whitekeys_pressed(21), blackkeys_pressed(21))

begin

if reset = '0' then

ff1_midc <= '0';

ff1_midcsharp <= '0';

elsif clk'event and clk='1' then

ff1_midc <= whitekeys_pressed(21);

ff1_midcsharp <= blackkeys_pressed(21);

end if;

end process;

ff2_middle_c : process(clk, reset, ff1_midc, ff1_midcsharp)

begin

if reset = '0' then

ff2_midc <= '0';

ff2_midcsharp <= '0';

elsif clk'event and clk='1' then

ff2_midc <= ff1_midc;

ff2_midcsharp <= ff1_midcsharp;

end if;

end process;

scorecounter : process(clk, reset, score_cnt, vcount, state)

begin

if reset = '0' then

score_cnt <= (others => '0');

elsif state /= gameplay then

score_cnt <= (others => '0');

elsif score_cnt = 61 then

score_cnt <= (others => '0');

elsif clk'event and clk='1' then

if vcount = 525 then

score_cnt <= score_cnt + 1;

else

score_cnt <= score_cnt;

end if;

else

score_cnt <= score_cnt;

end if;

end process;

songlengthcounter : process(reset, song_time, song_length, state, second_cnt)

begin

if reset = '0' then

next_song_time <= (others => '0');

elsif state /= gameplay then

next_song_time <= (others => '0');

elsif song_time = (song_length + song_length + 12) then

next_song_time <= song_time;

elsif second_cnt = 40000000 then

next_song_time <= song_time + 2;

else

next_song_time <= song_time;

end if;

end process;

process(clk, next_song_time)

begin

if clk'event and clk='1' then

song_time <= next_song_time;

end if;

end process;

secondcounter : process(clk, reset, state, second_cnt)

begin

if reset = '0' then

second_cnt <= (others => '0');

elsif state /= gameplay then

second_cnt <= (others => '0');

elsif second_cnt = 40000001 then

second_cnt <= (others => '0');

elsif clk'event and clk='1' then

second_cnt <= second_cnt + 1;

else

second_cnt <= second_cnt;

end if;

end process;

song_chosen <= arrow_pos;

--
song_length <= "010110100";

color_code_out <= color_code;

end synt;

-- File: MIDI_rcvr

-- Author: Tom Bottonari

-- Class: ECE477

-- Function: This code accepts serial MIDI input and interprets the note pressed as well as whether it is a note-on or note-off

-- event. The data packets can occur in 19-bit packets or 29-packets. Therefore, there are two state machines that

-- look for either format. If the data pattern is deviated from, the state machine returns back to its idle state

-- and continues to look for new packets. This key-pressed information is kept track of in two arrays (one for black

-- keys and one for white keys). These arrays are then passed to the Output_ctrl.vhd file where it is used to determine

-- key-press accuracy, and display the correct key color to the screen.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity MIDI_rcvr is

port(clk, reset : in std_logic;

MIDI : in std_logic;

gameplay_flag : in std_logic;

blackkeys : out std_logic_vector(0 to 48);

whitekeys : out std_logic_vector(0 to 48)

);

end MIDI_rcvr;

architecture synt of MIDI_rcvr is

signal sample_count, next_sample_count : std_logic_vector(11 downto 0);

signal ff1_midi, ff2_midi : std_logic;

type state_type29 is (idle29, state29_0, state29_00, state29_000, state29_0000,

state29_00000, state29_000001, state29_0000010, state29_00000100,

state29_000001001, state29_0000010011,

state29_rcvnote_1, state29_rcvnote_2, state29_rcvnote_3, state29_rcvnote_4,

state29_rcvnote_5, state29_rcvnote_6, state29_rcvnote_7, state29_rcvnote_8,

state29_buf1, state29_buf2, state29_vel1, state29_vel2, state29_vel3, state29_vel4,

state29_vel5, state29_vel6, state29_vel7, state29_vel8);

signal state29, nextstate29 : state_type29;

type state_type19 is (idle19, state19_rcvnote_1, state19_rcvnote_2, state19_rcvnote_3, state19_rcvnote_4,

state19_rcvnote_5, state19_rcvnote_6, state19_rcvnote_7, state19_rcvnote_8,

state19_buf1, state19_buf2, state19_vel1, state19_vel2, state19_vel3,

state19_vel4, state19_vel5, state19_vel6, state19_vel7, state19_vel8);

signal state19, nextstate19 : state_type19;

signal note29, nextnote29, note19, nextnote19 : std_logic_vector(7 downto 0);

signal keys, nextkeys : std_logic_vector(0 to 83);

signal velocity19, nextvelocity19, velocity29, nextvelocity29 : std_logic_vector(6 downto 0);

begin

nxtstate19 : process (clk, nextstate19)

begin

if (clk'event and clk='1') then

state19 <= nextstate19;

end if;

end process;

nxtstate29 : process (clk, nextstate29)

begin

if (clk'event and clk='1') then

state29 <= nextstate29;

end if;

end process;

sample_next : process(clk, next_sample_count)

begin

if clk'event and clk='1' then

sample_count <= next_sample_count;

end if;

end process;

sample_cntr : process(reset, ff1_midi, ff2_midi, sample_count)

begin

if reset = '0' then

next_sample_count <= (others => '0');

elsif sample_count = 1280 then

next_sample_count <= (others => '0');

elsif ff1_midi /= ff2_midi then

next_sample_count <= "001010000000";

else

next_sample_count <= sample_count + 1;

end if;

end process;

midi_ff1 : process(clk, reset, MIDI)

begin

if reset = '0' then

ff1_midi <= '1';

elsif clk'event and clk='1' then

ff1_midi <= MIDI;

end if;

end process;

midi_ff2 : process(clk, reset, ff1_midi)

begin

if reset = '0' then

ff2_midi <= '1';

elsif clk'event and clk='1' then

ff2_midi <= ff1_midi;

end if;

end process;

midi_rcvr19 : process(state19, sample_count, MIDI, note19, velocity19, state29)

begin

nextnote19 <= (others => '0');

nextvelocity19 <= (others => '0');

case state19 is

when idle19 =>

if sample_count = 1280 and MIDI = '0' and (state29 = idle29 or state29 = state29_0) then

nextstate19 <= state19_rcvnote_1;

else

nextstate19 <= idle19;

end if;

when state19_rcvnote_1 =>

if sample_count = 1280 then

nextnote19(0) <= MIDI;

nextstate19 <= state19_rcvnote_2;

else

nextstate19 <= state19_rcvnote_1;

end if;

when state19_rcvnote_2 =>

nextnote19(0) <= note19(0);

if sample_count = 1280 then

nextnote19(1) <= MIDI;

nextstate19 <= state19_rcvnote_3;

else

nextstate19 <= state19_rcvnote_2;

end if;

when state19_rcvnote_3 =>

nextnote19(1 downto 0) <= note19(1 downto 0);

if sample_count = 1280 then

nextnote19(2) <= MIDI;

nextstate19 <= state19_rcvnote_4;

else

nextstate19 <= state19_rcvnote_3;

end if;

when state19_rcvnote_4 =>

nextnote19(2 downto 0) <= note19(2 downto 0);

if sample_count = 1280 then

nextnote19(3) <= MIDI;

nextstate19 <= state19_rcvnote_5;

else

nextstate19 <= state19_rcvnote_4;

end if;

when state19_rcvnote_5 =>

nextnote19(3 downto 0) <= note19(3 downto 0);

if sample_count = 1280 then

nextnote19(4) <= MIDI;

nextstate19 <= state19_rcvnote_6;

else

nextstate19 <= state19_rcvnote_5;

end if;

when state19_rcvnote_6 =>

nextnote19(4 downto 0) <= note19(4 downto 0);

if sample_count = 1280 then

nextnote19(5) <= MIDI;

nextstate19 <= state19_rcvnote_7;

else

nextstate19 <= state19_rcvnote_6;

end if;

when state19_rcvnote_7 =>

nextnote19(5 downto 0) <= note19(5 downto 0);

if sample_count = 1280 then

nextnote19(6) <= MIDI;

nextstate19 <= state19_rcvnote_8;

else

nextstate19 <= state19_rcvnote_7;

end if;

when state19_rcvnote_8 =>

nextnote19(6 downto 0) <= note19(6 downto 0);

if sample_count = 1280 and MIDI = '0' then

nextnote19(7) <= MIDI;

nextstate19 <= state19_buf1;

elsif sample_count = 1280 then

nextstate19 <= idle19;

else

nextstate19 <= state19_rcvnote_8;

end if;

when state19_buf1 =>

nextnote19 <= note19;

if sample_count = 1280 and MIDI = '1' then

nextstate19 <= state19_buf2;

elsif sample_count = 1280 then

nextstate19 <= idle19;

else

nextstate19 <= state19_buf1;

end if;

when state19_buf2 =>

nextnote19 <= note19;

if sample_count = 1280 and MIDI = '0' then

nextstate19 <= state19_vel1;

elsif sample_count = 1280 then

nextstate19 <= idle19;

else

nextstate19 <= state19_buf2;

end if;

when state19_vel1 =>

nextnote19 <= note19;

if sample_count = 1280 then

nextvelocity19(0) <= MIDI;

nextstate19 <= state19_vel2;

else

nextstate19 <= state19_vel1;

end if;

when state19_vel2 =>

nextnote19 <= note19;

nextvelocity19(0) <= velocity19(0);

if sample_count = 1280 then

nextvelocity19(1) <= MIDI;

nextstate19 <= state19_vel3;

else

nextstate19 <= state19_vel2;

end if;

when state19_vel3 =>

nextnote19 <= note19;

nextvelocity19(1 downto 0) <= velocity19(1 downto 0);

if sample_count = 1280 then

nextvelocity19(2) <= MIDI;

nextstate19 <= state19_vel4;

else

nextstate19 <= state19_vel3;

end if;

when state19_vel4 =>

nextnote19 <= note19;

nextvelocity19(2 downto 0) <= velocity19(2 downto 0);

if sample_count = 1280 then

nextvelocity19(3) <= MIDI;

nextstate19 <= state19_vel5;

else

nextstate19 <= state19_vel4;

end if;

when state19_vel5 =>

nextnote19 <= note19;

nextvelocity19(3 downto 0) <= velocity19(3 downto 0);

if sample_count = 1280 then

nextvelocity19(4) <= MIDI;

nextstate19 <= state19_vel6;

else

nextstate19 <= state19_vel5;

end if;

when state19_vel6 =>

nextnote19 <= note19;

nextvelocity19(4 downto 0) <= velocity19(4 downto 0);

if sample_count = 1280 then

nextvelocity19(5) <= MIDI;

nextstate19 <= state19_vel7;

else

nextstate19 <= state19_vel6;

end if;

when state19_vel7 =>

nextnote19 <= note19;

nextvelocity19(5 downto 0) <= velocity19(5 downto 0);

if sample_count = 1280 then

nextvelocity19(6) <= MIDI;

nextstate19 <= state19_vel8;

else

nextstate19 <= state19_vel7;

end if;

when state19_vel8 =>

nextnote19 <= note19;

nextvelocity19 <= velocity19;

if sample_count = 1280 then

nextstate19 <= idle19;

else

nextstate19 <= state19_vel8;

end if;

end case;

end process;

nxtvelocity19 : process(clk, nextvelocity19)

begin

if clk'event and clk='1' then

velocity19 <= nextvelocity19;

end if;

end process;

midi_rcvr29 : process(state29, sample_count, MIDI, note29, velocity29)

begin

nextnote29 <= (others => '0');

nextvelocity29 <= (others => '0');

case state29 is

when idle29 =>

nextnote29 <= note29;

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_0;

else

nextstate29 <= idle29;

end if;

when state29_0 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_00;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_0;

end if;

when state29_00 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_000;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_00;

end if;

when state29_000 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_0000;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_000;

end if;

when state29_0000 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_00000;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_0000;

end if;

when state29_00000 =>

if sample_count = 1280 and MIDI = '1' then

nextstate29 <= state29_000001;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_00000;

end if;

when state29_000001 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_0000010;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_000001;

end if;

when state29_0000010 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_00000100;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_0000010;

end if;

when state29_00000100 =>

if sample_count = 1280 and MIDI = '1' then

nextstate29 <= state29_000001001;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_00000100;

end if;

when state29_000001001 =>

if sample_count = 1280 and MIDI = '1' then

nextstate29 <= state29_0000010011;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_000001001;

end if;

when state29_0000010011 =>

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_rcvnote_1;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_0000010011;

end if;

when state29_rcvnote_1 =>

if sample_count = 1280 then

nextnote29(0) <= MIDI;

nextstate29 <= state29_rcvnote_2;

else

nextstate29 <= state29_rcvnote_1;

end if;

when state29_rcvnote_2 =>

nextnote29(0) <= note29(0);

if sample_count = 1280 then

nextnote29(1) <= MIDI;

nextstate29 <= state29_rcvnote_3;

else

nextstate29 <= state29_rcvnote_2;

end if;

when state29_rcvnote_3 =>

nextnote29(1 downto 0) <= note29(1 downto 0);

if sample_count = 1280 then

nextnote29(2) <= MIDI;

nextstate29 <= state29_rcvnote_4;

else

nextstate29 <= state29_rcvnote_3;

end if;

when state29_rcvnote_4 =>

nextnote29(2 downto 0) <= note29(2 downto 0);

if sample_count = 1280 then

nextnote29(3) <= MIDI;

nextstate29 <= state29_rcvnote_5;

else

nextstate29 <= state29_rcvnote_4;

end if;

when state29_rcvnote_5 =>

nextnote29(3 downto 0) <= note29(3 downto 0);

if sample_count = 1280 then

nextnote29(4) <= MIDI;

nextstate29 <= state29_rcvnote_6;

else

nextstate29 <= state29_rcvnote_5;

end if;

when state29_rcvnote_6 =>

nextnote29(4 downto 0) <= note29(4 downto 0);

if sample_count = 1280 then

nextnote29(5) <= MIDI;

nextstate29 <= state29_rcvnote_7;

else

nextstate29 <= state29_rcvnote_6;

end if;

when state29_rcvnote_7 =>

nextnote29(5 downto 0) <= note29(5 downto 0);

if sample_count = 1280 then

nextnote29(6) <= MIDI;

nextstate29 <= state29_rcvnote_8;

else

nextstate29 <= state29_rcvnote_7;

end if;

when state29_rcvnote_8 =>

nextnote29(6 downto 0) <= note29(6 downto 0);

if sample_count = 1280 then

nextnote29(7) <= MIDI;

nextstate29 <= state29_buf1;

else

nextstate29 <= state29_rcvnote_8;

end if;

when state29_buf1 =>

nextnote29 <= note29;

if sample_count = 1280 and MIDI = '1' then

nextstate29 <= state29_buf2;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_buf1;

end if;

when state29_buf2 =>

nextnote29 <= note29;

if sample_count = 1280 and MIDI = '0' then

nextstate29 <= state29_vel1;

elsif sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_buf2;

end if;

when state29_vel1 =>

nextnote29 <= note29;

if sample_count = 1280 then

nextvelocity29(0) <= MIDI;

nextstate29 <= state29_vel2;

else

nextstate29 <= state29_vel1;

end if;

when state29_vel2 =>

nextnote29 <= note29;

nextvelocity29(0) <= velocity29(0);

if sample_count = 1280 then

nextvelocity29(1) <= MIDI;

nextstate29 <= state29_vel3;

else

nextstate29 <= state29_vel2;

end if;

when state29_vel3 =>

nextnote29 <= note29;

nextvelocity29(1 downto 0) <= velocity29(1 downto 0);

if sample_count = 1280 then

nextvelocity29(2) <= MIDI;

nextstate29 <= state29_vel4;

else

nextstate29 <= state29_vel3;

end if;

when state29_vel4 =>

nextnote29 <= note29;

nextvelocity29(2 downto 0) <= velocity29(2 downto 0);

if sample_count = 1280 then

nextvelocity29(3) <= MIDI;

nextstate29 <= state29_vel5;

else

nextstate29 <= state29_vel4;

end if;

when state29_vel5 =>

nextnote29 <= note29;

nextvelocity29(3 downto 0) <= velocity29(3 downto 0);

if sample_count = 1280 then

nextvelocity29(4) <= MIDI;

nextstate29 <= state29_vel6;

else

nextstate29 <= state29_vel5;

end if;

when state29_vel6 =>

nextnote29 <= note29;

nextvelocity29(4 downto 0) <= velocity29(4 downto 0);

if sample_count = 1280 then

nextvelocity29(5) <= MIDI;

nextstate29 <= state29_vel7;

else

nextstate29 <= state29_vel6;

end if;

when state29_vel7 =>

nextnote29 <= note29;

nextvelocity29(5 downto 0) <= velocity29(5 downto 0);

if sample_count = 1280 then

nextvelocity29(6) <= MIDI;

nextstate29 <= state29_vel8;

else

nextstate29 <= state29_vel7;

end if;

when state29_vel8 =>

nextnote29 <= note29;

nextvelocity29 <= velocity29;

if sample_count = 1280 then

nextstate29 <= idle29;

else

nextstate29 <= state29_vel8;

end if;

when others =>

nextstate29 <= idle29;

end case;

end process;

nxtvelocity29 : process(clk, nextvelocity29)

begin

if clk'event and clk='1' then

velocity29 <= nextvelocity29;

end if;

end process;

nxtnote29 : process(clk, nextnote29)

begin

if clk'event and clk='1' then

note29 <= nextnote29;

end if;

end process;

nxtnote19 : process(clk, nextnote19)

begin

if clk'event and clk='1' then

note19 <= nextnote19;

end if;

end process;

nxtkeys : process(clk, nextkeys)

begin

if clk'event and clk='1' then

keys <= nextkeys;

end if;

end process;

nxtkeylogic : process(keys, state29, note29, reset, state19, note19, velocity19, velocity29)

begin

nextkeys <= keys;

if reset = '0' then

nextkeys <= (others => '0');

elsif gameplay_flag = '1' then

nextkeys <= (others => '0');

elsif ((state29 = state29_vel8) and (velocity29 = 0)) then

nextkeys(conv_integer(note29 - 24)) <= '0';

elsif ((state29 = state29_vel8) and (velocity29 /= 0)) then

nextkeys(conv_integer(note29 - 24)) <= '1';

elsif ((state19 = state19_vel8) and (velocity19 = 0)) then

nextkeys(conv_integer(note19 - 24)) <= '0';

elsif state19 = state19_vel8 then

nextkeys(conv_integer(note19 - 24)) <= '1';

else

nextkeys <= keys;

end if;

end process;

-- Octave #1

whitekeys(0) <= keys(0);

blackkeys(0) <= keys(1);

whitekeys(1) <= keys(2);

blackkeys(1) <= keys(3);

whitekeys(2) <= keys(4);

blackkeys(2) <= '0';

whitekeys(3) <= keys(5);

blackkeys(3) <= keys(6);

whitekeys(4) <= keys(7);

blackkeys(4) <= keys(8);

whitekeys(5) <= keys(9);

blackkeys(5) <= keys(10);

whitekeys(6) <= keys(11);

blackkeys(6) <= '0';

-- Octave #2

whitekeys(7) <= keys(12);

blackkeys(7) <= keys(13);

whitekeys(8) <= keys(14);

blackkeys(8) <= keys(15);

whitekeys(9) <= keys(16);

blackkeys(9) <= '0';

whitekeys(10) <= keys(17);

blackkeys(10) <= keys(18);

whitekeys(11) <= keys(19);

blackkeys(11) <= keys(20);

whitekeys(12) <= keys(21);

blackkeys(12) <= keys(22);

whitekeys(13) <= keys(23);

blackkeys(13) <= '0';

-- Octave #3

whitekeys(14) <= keys(24);

blackkeys(14) <= keys(25);

whitekeys(15) <= keys(26);

blackkeys(15) <= keys(27);

whitekeys(16) <= keys(28);

blackkeys(16) <= '0';

whitekeys(17) <= keys(29);

blackkeys(17) <= keys(30);

whitekeys(18) <= keys(31);

blackkeys(18) <= keys(32);

whitekeys(19) <= keys(33);

blackkeys(19) <= keys(34);

whitekeys(20) <= keys(35);

blackkeys(20) <= '0';

-- Octave #4

whitekeys(21) <= keys(36);

blackkeys(21) <= keys(37);

whitekeys(22) <= keys(38);

blackkeys(22) <= keys(39);

whitekeys(23) <= keys(40);

blackkeys(23) <= '0';

whitekeys(24) <= keys(41);

blackkeys(24) <= keys(42);

whitekeys(25) <= keys(43);

blackkeys(25) <= keys(44);

whitekeys(26) <= keys(45);

blackkeys(26) <= keys(46);

whitekeys(27) <= keys(47);

blackkeys(27) <= '0';

-- Octave #5

whitekeys(28) <= keys(48);

blackkeys(28) <= keys(49);

whitekeys(29) <= keys(50);

blackkeys(29) <= keys(51);

whitekeys(30) <= keys(52);

blackkeys(30) <= '0';

whitekeys(31) <= keys(53);

blackkeys(31) <= keys(54);

whitekeys(32) <= keys(55);

blackkeys(32) <= keys(56);

whitekeys(33) <= keys(57);

blackkeys(33) <= keys(58);

whitekeys(34) <= keys(59);

blackkeys(34) <= '0';

-- Octave #6

whitekeys(35) <= keys(60);

blackkeys(35) <= keys(61);

whitekeys(36) <= keys(62);

blackkeys(36) <= keys(63);

whitekeys(37) <= keys(64);

blackkeys(37) <= '0';

whitekeys(38) <= keys(65);

blackkeys(38) <= keys(66);

whitekeys(39) <= keys(67);

blackkeys(39) <= keys(68);

whitekeys(40) <= keys(69);

blackkeys(40) <= keys(70);

whitekeys(41) <= keys(71);

blackkeys(41) <= '0';

-- Octave #7

whitekeys(42) <= keys(72);

blackkeys(42) <= keys(73);

whitekeys(43) <= keys(74);

blackkeys(43) <= keys(75);

whitekeys(44) <= keys(76);

blackkeys(44) <= '0';

whitekeys(45) <= keys(77);

blackkeys(45) <= keys(78);

whitekeys(46) <= keys(79);

blackkeys(46) <= keys(80);

whitekeys(47) <= keys(81);

blackkeys(47) <= keys(82);

whitekeys(48) <= keys(83);

blackkeys(48) <= '0';

end synt;

-- File: VGA_out.vhd

-- Author: Tom Bottonari

-- Class: ECE477

-- Function: This file is the VGA controller for our whole design. It accepts the color_code value from the Output_ctrl.vhd

-- file and assigns the appropriate RGB values that will be sent to the DAC. In order to achieve 800 x 600 pixel

-- resolution, this needs to be changed on a 40 MHz clock, a horizontal sync signal of specified width needs to be

-- output after each row, a vertical sync signal of specified width needs to be output after each screen refresh,

-- and the blanking signal needs to tell the DAC when to set output to black (during front/back porch and sync signals).

-- the monitor refreshes 60 times every second.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity VGA_out is

port(clk, reset : in std_logic;

r, g, b : out std_logic_vector(7 downto 0);

color_code : in std_logic_vector(3 downto 0);

hsync, vsync : out std_logic;

BLANK : out std_logic;

hcount_out, vcount_out : out std_logic_vector(10 downto 0)

);

end VGA_out;

architecture synt of VGA_out is

signal videov, videoh : std_logic;

signal red, green, blue : std_logic_vector(7 downto 0);

signal hcount, vcount : std_logic_vector(10 downto 0);

-- 800 x 600

constant C_VERT_NUM_PIXELS : integer := 599;

constant C_VERT_SYNC_START : integer := 600;

constant C_VERT_SYNC_END : integer := 604;

constant C_VERT_TOTAL_COUNT : integer := 627;

constant C_HORZ_NUM_PIXELS : integer := 799;

constant C_HORZ_SYNC_START : integer := 842;

constant C_HORZ_SYNC_END : integer := 970;

constant C_HORZ_TOTAL_COUNT : integer := 1055;

begin

hcounter: process (clk, reset)

begin

if reset='0' then

hcount <= (others => '0');

else

if (clk'event and clk='1') then

if hcount=C_HORZ_TOTAL_COUNT then

hcount <= (others => '0');

else

hcount <= hcount + 1;

end if;

end if;

end if;

end process;

process (hcount)

begin

if hcount>C_HORZ_NUM_PIXELS then

videoh <= '0';

else

videoh <= '1';

end if;

end process;

vcounter: process (clk, reset)

begin

if reset='0' then

vcount <= (others => '0');

else

if (clk'event and clk='1') then

if hcount=C_HORZ_TOTAL_COUNT then

if vcount=C_VERT_TOTAL_COUNT then

vcount <= (others => '0');

else

vcount <= vcount + 1;

end if;

end if;

end if;

end if;

end process;

process (vcount)

begin

if vcount>C_VERT_NUM_PIXELS then

videov <= '0';

else

videov <= '1';

end if;

end process;

sync: process (clk, reset)

begin

if reset='0' then

hsync <= '0';

vsync <= '0';

else

if (clk'event and clk='1') then

if (hcount<=C_HORZ_SYNC_END and hcount>=C_HORZ_SYNC_START) then

hsync <= '0';

else

hsync <= '1';

end if;

if (vcount<=C_VERT_SYNC_END and vcount>=C_VERT_SYNC_START) then

vsync <= '0';

else

vsync <= '1';

end if;

end if;

end if;

end process;

lookup: process (reset, color_code)

begin

if reset = '0' then

r <= (others => '0');

g <= (others => '0');

b <= (others => '0');

else

case color_code is

when "0000" => -- BLACK

r <= "00000000";

g <= "00000000";

b <= "00000000";

when "0001" =>
-- RED

r <= "11111111";

g <= "00000000";

b <= "00000000";

when "0010" => -- GREEN

r <= "00000000";

g <= "11111111";

b <= "00000000";

when "0011" => -- BLUE

r <= "00000000";

g <= "00000000";

b <= "11111111";

when "0100" => -- DARK BLUE

r <= "00000000";

g <= "00000000";

b <= "10001101";

when "0101" => -- WHITE

r <= "11111111";

g <= "11111111";

b <= "11111111";

when "0110" => -- GRAY

r <= "01101001";

g <= "01101001";

b <= "01101001";

when "0111" => -- Hooked BLUE

r <= "00001111";

g <= "01011111";

b <= "10100110";

when "1000" => -- DARK RED

r <= "10001101";

g <= "00000000";

b <= "00000000";

when "1001" => -- DARK GREEN

r <= "00000000";

g <= "10001101";

b <= "00000000";

when "1010" => -- YELLOW

r <= "11111111";

g <= "11111111";

b <= "00000000";

when "1011" => -- GOLD

r <= "11111111";

g <= "11010111";

b <= "00000000";

when "1100" => -- ORANGE

r <= "11111111";

g <= "10100101";

b <= "00000000";

when "1101" => -- DARK ORANGE

r <= "11101110";

g <= "01110110";

b <= "00000000";

when others =>

r <= "00000000";

g <= "00000000";

b <= "00000000";

end case;

end if;

end process;

BLANK <= videoh and videov;

hcount_out <= hcount;

vcount_out <= vcount;

end synt;

/***

 * Hooked on Harmonix C code

 *

 * Program Overview:

 * This program sends all necessary game information to the hardware,

 * which in turn updates the game play display. This program begins by

 * initializing the MIDI LSI chip to prepare it for audio output. Then

 * the program opens the flash memory device where MIDI files are stored.

 * The program waits for song selection, and then reads in the song from

 * it's location in memory. The program parses the MIDI file into an

 * array of Note structs called NotesArray. This array of notes contains

 * all of the necessary information used to generate both the audio

 * output and the video. After parsing through the MIDI file, the song

 * length is sent to the hardware and the play_notes function begins.

 * This function steps through the NotesArray and plays the notes audibly

 * and sends the appropriate messages to the hardware to generate the

 * falling bars. After the song is completed the software loops back to

 * the beginning and awaits the next song selection.

 *

 **/

#include "alt_types.h"

#include "altera_avalon_pio_regs.h"

#include "sys/alt_irq.h"

#include "sys/alt_flash.h"

#include "system.h"

#include "altera_avalon_spi.h"

#include "altera_avalon_spi_regs.h"

#include "sys/alt_timestamp.h"

#include <stdio.h>

#include <string.h>

#include <stddef.h>

#include <stdlib.h>

#include <unistd.h>

#include <malloc.h>

#define WORD_SIZE (516)

#define NOTE_ON 1

#define NOTE_OFF 2

typedef struct {

 int delta_t;

 int key;

 int velocity;

 unsigned char nop;

 unsigned char tone;

 unsigned char track;

 unsigned char lsi_delta_t;

} Note;

volatile unsigned int time;

unsigned int read_header_info(alt_flash_fd *fd, int*, int*,int*, unsigned int);

Note *read_tracks(alt_flash_fd *fd, int nTracks, int offset, int *nNotes, int dtPerQNote, int *song_length);

void play_notes(Note *NotesArray, int nNotes);

void send_note_FIFO(Note *NotesArray, int n);

void MIDI_LSI_init();

void spi_send(unsigned char address, unsigned char data);

alt_u8 spi_read(unsigned char address);

void MIDI_LSI_start();

int main(void)

{

 alt_flash_fd* fd;

 unsigned int offset = 0x0140000; // starting at block 20 in memory

 int FileFormat;

 int nTracks;

 int dtPerQNote;

 int nNotes;

 Note *NotesArray;

 int song_length;

 unsigned int song_number;

 while(1){

 while(IORD_ALTERA_AVALON_PIO_DATA(PIO_GO_BASE)!=0){

 }

 MIDI_LSI_init();

 fd = alt_flash_open_dev("/dev/epcs_controller");

 while(IORD_ALTERA_AVALON_PIO_DATA(PIO_GO_BASE)!=1){

 }

 song_number = IORD_ALTERA_AVALON_PIO_DATA(PIO_SONG_SEL_BASE);

 if(song_number < 5){

 offset = 0x0140000 + song_number*0x020000;

 }

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_SONG_LENGTH_BASE,30);

 offset = read_header_info(fd, &FileFormat, &nTracks, &dtPerQNote, offset);

 NotesArray = read_tracks(fd, nTracks, offset, &nNotes, dtPerQNote, &song_length);

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_SONG_LENGTH_BASE,song_length);

 play_notes(NotesArray, nNotes);

 alt_flash_close_dev(fd);

 free(NotesArray);

 }

 return 0;

}

void MIDI_LSI_init(){

 unsigned char address;

 unsigned char data;

 // RESET SEQUENCE

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_NRST_BASE,0);

 IOWR_ALTERA_AVALON_PIO_DATA(MCLK_ENABLE_BASE,0);

 // Wait for at least 10ms (actually waiting 100ms)

 usleep(100000);

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_NRST_BASE,1);

 IOWR_ALTERA_AVALON_PIO_DATA(MCLK_ENABLE_BASE,1);

 // Wait for 1265 cycles of MCLK

 usleep(80);

 //COMMON SETUP - 16 sound sources, SI/O input only, B format, Stereo, Muted

 address = 0x00;

 data = 0x0D;

 spi_send(address,data);

 //TOTAL VOLUME SETTINGS - MIDI volume set to max

 address = 0x01;

 data = 0xFF;

 spi_send(address,data);

 //TIME SETTINGS - Set divider for 16.6667 MHz MCLK

 address = 0x0C;

 data = 0x7D;

 spi_send(address,data);

 address = 0x0D;

 data = 0x6B;

 spi_send(address,data);

 //FIFO CONTROL SETTINGS - 1/16th nearly full and 1/2 nearly empty

 address = 0x08;

 data = 0x81;

 spi_send(address,data);

 //FIRMWARE RESET

 address = 0x07;

 data = 0x80;

 spi_send(address,data);

 /* Set Delta Time for performance data */

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFE);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

}

void spi_send(unsigned char address, unsigned char data){

 alt_u8 xmitted = 0;

 alt_u16 write_data;

 alt_u32 slave = 0;

 alt_u32 status;

 alt_u32 flags = ALT_AVALON_SPI_COMMAND_TOGGLE_SS_N;

 write_data = (((address<<1)+0x01)<<8) + data;

 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_BASE, 1 << slave);

 /* Set the SSO bit (force chipselect) only if the toggle flag is not set */

 if ((flags & ALT_AVALON_SPI_COMMAND_TOGGLE_SS_N) == 0) {

 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_BASE, ALTERA_AVALON_SPI_CONTROL_SSO_MSK);

 }

 /* Discard any stale data present in the RXDATA register */

 IORD_ALTERA_AVALON_SPI_RXDATA(SPI_BASE);

 /* Keep clocking until all the data has been processed. */

 for (; ;){

 do{

 status = IORD_ALTERA_AVALON_SPI_STATUS(SPI_BASE);

 }while (((status & ALTERA_AVALON_SPI_STATUS_TRDY_MSK) == 0) &&

 (status & ALTERA_AVALON_SPI_STATUS_RRDY_MSK) == 0);

 if ((status & ALTERA_AVALON_SPI_STATUS_TRDY_MSK) != 0){

 if (xmitted == 0){

 IOWR_ALTERA_AVALON_SPI_TXDATA(SPI_BASE, write_data);

 usleep(10);

 xmitted = 1;

 }

 };

 if ((status & ALTERA_AVALON_SPI_STATUS_RRDY_MSK) != 0){

 IORD_ALTERA_AVALON_SPI_RXDATA(SPI_BASE);

 break;

 }

 }

 /* Wait until the interface has finished transmitting */

 do{

 status = IORD_ALTERA_AVALON_SPI_STATUS(SPI_BASE);

 }while ((status & ALTERA_AVALON_SPI_STATUS_TMT_MSK) == 0);

 /* Clear SSO (release chipselect) unless the caller is going to keep using this chip */

 if ((flags & ALT_AVALON_SPI_COMMAND_MERGE) == 0)

 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_BASE, 0);

}

alt_u8 spi_read(unsigned char address){

 alt_u8 read_data;

 alt_u8 xmitted = 0;

 alt_u16 write_data;

 alt_u32 slave = 0;

 alt_u32 status;

 alt_u32 flags = ALT_AVALON_SPI_COMMAND_TOGGLE_SS_N;

 write_data = (((alt_u16)(address<<1))<<8);

 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_BASE, 1 << slave);

 /* Set the SSO bit (force chipselect) only if the toggle flag is not set */

 if ((flags & ALT_AVALON_SPI_COMMAND_TOGGLE_SS_N) == 0) {

 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_BASE, ALTERA_AVALON_SPI_CONTROL_SSO_MSK);

 }

 /* Discard any stale data present in the RXDATA register */

 IORD_ALTERA_AVALON_SPI_RXDATA(SPI_BASE);

 /* Keep clocking until all the data has been processed. */

 for (; ;){

 do{

 status = IORD_ALTERA_AVALON_SPI_STATUS(SPI_BASE);

 }while (((status & ALTERA_AVALON_SPI_STATUS_TRDY_MSK) == 0) &&

 (IORD_ALTERA_AVALON_SPI_STATUS(SPI_BASE) & ALTERA_AVALON_SPI_STATUS_RRDY_MSK) == 0);

 if ((status & ALTERA_AVALON_SPI_STATUS_TRDY_MSK) != 0){

 if (xmitted == 0){

 IOWR_ALTERA_AVALON_SPI_TXDATA(SPI_BASE, write_data);

 xmitted = 1;

 }

 };

 if ((status & ALTERA_AVALON_SPI_STATUS_RRDY_MSK) != 0){

 alt_u32 rxdata = IORD_ALTERA_AVALON_SPI_RXDATA(SPI_BASE);

 read_data = (alt_u8)rxdata;

 break;

 }

 }

 /* Wait until the interface has finished transmitting */

 do{

 status = IORD_ALTERA_AVALON_SPI_STATUS(SPI_BASE);

 }while ((status & ALTERA_AVALON_SPI_STATUS_TMT_MSK) == 0);

 /* Clear SSO (release chipselect) unless the caller is going to keep using this chip */

 if ((flags & ALT_AVALON_SPI_COMMAND_MERGE) == 0)

 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_BASE, 0);

 return read_data;

}

void play_notes(Note *NotesArray, int nNotes){

 int n, a=0,i,error=0;

 alt_u8 read_data;

 alt_u32 pio1_reg = 0x00, pio1_oldreg = 0x00;

 alt_u32 pio2_reg = 0x00, pio2_oldreg = 0x00;

 alt_u32 pio3_reg = 0x00, pio3_oldreg = 0x00;

 // add initial delay

 for (i=0;i<9;i++){

 spi_send(0x0A,0xFF);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 }

 spi_send(0x0A,0x19);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 // Fill FIFO

 for (a=0;a<40;a++){

 if(NotesArray[a].nop==0){

 send_note_FIFO(NotesArray,a);

 } else if(NotesArray[a].key==0){

 spi_send(0x0A,0xFF);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 } else if(NotesArray[a].key==1){

 spi_send(0x0A,NotesArray[n].lsi_delta_t);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 }

 }

 // Start MIDI output sequence

 MIDI_LSI_start();

 for (n=0;n<nNotes;n++){

 if(NotesArray[n].key != 0){

 alt_timestamp_start();

 if(NotesArray[n].delta_t != 0){

 /**** block must last for NotesArray[n].delta_t usecs ****/

 read_data = spi_read(0x04); // get MIDI FIFO status register

 if ((read_data & 0x40) == 0x40){ // MIDI FIFO Nearly Empty

 while(((read_data & 0x20) == 0)&&(alt_timestamp()<(NotesArray[n].delta_t*40-40000-error))){ // while not nearly full

 spi_send(0x04,0xF1);

 if(a<nNotes){

 if(NotesArray[a].nop==0){

 send_note_FIFO(NotesArray,a);

 } else if(NotesArray[a].key==0){

 spi_send(0x0A,0xFF);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 } else if(NotesArray[a].key==1){

 spi_send(0x0A,NotesArray[n].lsi_delta_t);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x80);

 spi_send(0x0A,0xFD);

 spi_send(0x0A,0x00);

 spi_send(0x0A,0x00);

 }

 a++;

 }

 read_data = spi_read(0x04);

 }

 spi_send(0x04,0xF1);

 }

 while (alt_timestamp()<NotesArray[n].delta_t*40-error-6000){} // adjust for clock speed

 }

 /***/

 if(NotesArray[n].velocity>0){

 //set key bit to 1

 if ((NotesArray[n].key-24)<32){

 pio1_reg = 0x000000001 << (NotesArray[n].key-24);

 pio1_reg = pio1_reg|pio1_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_32_BASE,pio1_reg);

 } else if ((NotesArray[n].key-24)<64){

 pio2_reg = 0x000000001 << (NotesArray[n].key-56);

 pio2_reg = pio2_reg|pio2_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_2_32_BASE,pio2_reg);

 } else if ((NotesArray[n].key-24)<84){

 pio3_reg = 0x000000001 << (NotesArray[n].key-76);

 pio3_reg = pio3_reg|pio3_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_3_20_BASE,pio3_reg);

 }

 } else if (NotesArray[n].velocity==0){

 //set key bit to 0

 if ((NotesArray[n].key-24)<32){

 pio1_reg = 0x000000001 << (NotesArray[n].key-24);

 pio1_reg = (~pio1_reg)&pio1_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_1_32_BASE,pio1_reg);

 } else if ((NotesArray[n].key-24)<64){

 pio2_reg = 0x000000001 << (NotesArray[n].key-56);

 pio2_reg = (~pio2_reg)&pio2_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_2_32_BASE,pio2_reg);

 } else if ((NotesArray[n].key-24)<87){

 pio3_reg = 0x000000001 << (NotesArray[n].key-76);

 pio3_reg = (~pio3_reg)&pio3_oldreg;

 IOWR_ALTERA_AVALON_PIO_DATA(PIO_3_20_BASE,pio3_reg);

 }

 }

 pio1_oldreg = pio1_reg;

 pio2_oldreg = pio2_reg;

 pio3_oldreg = pio3_reg;

 }

 error += alt_timestamp() - NotesArray[n].delta_t*40;

 }

}

void send_note_FIFO(Note *NotesArray, int n){

 if(NotesArray[n].velocity>0){

 //send on message to FIFO register

 spi_send(0x0A,NotesArray[n].lsi_delta_t);

 spi_send(0x0A,NotesArray[n].track<<2);

 spi_send(0x0A,0x80|(unsigned char)(NotesArray[n].key-21));

 spi_send(0x0A,NotesArray[n].tone);

 spi_send(0x0A,NotesArray[n].velocity);

 spi_send(0x0A,NotesArray[n].velocity);

 } else if (NotesArray[n].velocity==0){

 spi_send(0x0A,NotesArray[n].lsi_delta_t);

 spi_send(0x0A,NotesArray[n].track<<2);

 spi_send(0x0A,0x7F&(unsigned char)(NotesArray[n].key-21));

 }

}

void MIDI_LSI_start(){

 //clear INTs

 spi_send(0x04,0xF0);

 //cancel total mute

 spi_send(0x00,0x0C); // write 0 to bit[0] of 0x00 keep others the same

 //start MIDI sequence

 spi_send(0x04,0x01);

}

unsigned int read_header_info(alt_flash_fd *fd, int *FileFormat, int *nTracks, int *dtPerQNote, unsigned int offset){

 unsigned char header[14];

 int ret_code;

 ret_code = alt_read_flash(fd, offset, header, 14);

 *FileFormat = (int)header[9];

 *nTracks = (((int)header[10])<<8) + (int)header[11];

 *dtPerQNote = (((int)header[12])<<8) + (int)header[13];

 offset+=14;

 return offset;

}

Note *read_tracks(alt_flash_fd *fd, int nTracks, int offset, int *nNotes, int dtPerQNote, int *song_length){

 unsigned char *track, track_header[8];

 int track_length, i, j, t, k, n=0, ret_code, text_length;

 int current_cmd = 0; // NOTE_ON 1, NOTE_OFF 2

 int old_track_length = 0;

 int time_stamp;

 int delta_t;

 unsigned int time_sum_track=0, time_sum=0, old_time_sum=0;

 int key;

 int tfactor = 1000;

 unsigned int tempo = 500000;

 unsigned int lsi_long;

 unsigned char tone = 0;

 int velocity;

 float length;

 Note* NotesArray;

 *nNotes = 0;

 NotesArray = (Note*) malloc(sizeof(Note));

 for (t = 0; t < nTracks; t++){

 time_sum_track = 0;

 // Read the track header to determine the track length

 ret_code = alt_read_flash(fd, offset, track_header, 8);

 // Parse the track header to find the track length and

 // increment the offset to account for track_header

 track_length = (((int)track_header[4])<<24) + (((int)track_header[5])<<16)

 + (((int)track_header[6])<<8) + (int)track_header[7];

 offset += 8;

 // Allocate memory for the track;

 track = (unsigned char*) malloc(sizeof(unsigned char)*track_length);

 // Reallocate memory for the Notes Array (More memory will be allocated than is necessary)

 NotesArray = (Note*) realloc(NotesArray, 2*sizeof(int)*track_length + 2*sizeof(int)*old_track_length);

 old_track_length = track_length;

 // Using track length, read rest of track

 ret_code = alt_read_flash(fd, offset, track, track_length);

 for (i = 0; i < track_length;){

 // First byte(s) of command will always be a delta_t

 // (delta_t is a variable length)

 time_stamp = 0;

 if((int)track[i]>=128){

 time_stamp = (int)track[i]-0x80;

 i++;

 if((int)track[i]>=128){

 time_stamp = (time_stamp<<7) + (int)track[i]-0x80;

 i++;

 if((int)track[i]>=128){

 time_stamp = (time_stamp<<7) + (int)track[i]-0x80;

 i++;

 }

 }

 }

 time_stamp = (time_stamp<<7) + (int)track[i];

 i++;

 // Now that time stamp has been read, there are three options

 // for the next byte: Meta event, MIDI command event, or

 // running MIDI event (command information for previous command)

 // DETECT META EVENT (only text event and tempo important at this point)

 if ((int)track[i] == 255){

 i++;

 // Detect text event

 // 01 - Any text

 // 02 - Copyright Info

 // 03 - Sequence or Track name

 // 04 - Track instrument name

 // 05 - Lyric

 // 06 - Marker

 // 07 - Cue Point

 if (((int)track[i] > 0)&&((int)track[i] < 7)){

 text_length = (int)track[++i];

 i++;

 for (j = i; j < text_length+i; j++){

 }

 i = j;

 }

 // Detect set tempo event

 else if ((int)track[i]==81){

 i+=2;

 tempo = (((unsigned int)track[i])<<16) + (((unsigned int)track[i+1])<<8)

 + ((unsigned int)track[i+2]);

 i+=3;

 } else {

 i += track[i+1] + 2;

 }

 }

 // DETECT MIDI EVENT COMMAND

 // 8x nn vv - Note off (key is released)

 // 9x nn vv - Note on (key is pressed)

 // Ax nn vv - Key after-touch

 // Bx cc vv - Control Change

 // Cx pp - Program (patch) change

 // Dx cc - Channel after-touch

 // Ex bb tt - Pitch wheel change

 else if ((int)track[i] >= 128){

 // Detect Note on command

 if (((int)track[i] >= 0x90)&&((int)track[i] <= 0x9F)){

 current_cmd = NOTE_ON;

 // Get delta_t

 delta_t = time_stamp*(tempo/dtPerQNote);

 i++;

 // Get key

 key = (int)track[i];

 i++;

 // Get volume (velocity)

 velocity = (int)track[i];

 i++;

 // add note to the notes array

 time_sum=0;

 old_time_sum=0;

 time_sum_track+=delta_t;

 for (n=0;n<*nNotes;n++){

 time_sum += NotesArray[n].delta_t;

 if(time_sum_track<time_sum){

 //shift Notes Array to make room for new note

 for (k=*nNotes-1;k>=n;k--){

 NotesArray[k+1]=NotesArray[k];

 }

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = time_sum_track-old_time_sum;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].nop = 0;

 //Adjust following note's time to reflect inserted note timing

 NotesArray[n+1].delta_t = NotesArray[n+1].delta_t-NotesArray[n].delta_t;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 break;

 } else if(n==*nNotes-1){

 NotesArray[n+1].tone = tone;

 NotesArray[n+1].track = t;

 NotesArray[n+1].delta_t = time_sum_track-time_sum;

 NotesArray[n+1].key = key;

 NotesArray[n+1].velocity = velocity>>1;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 NotesArray[n+1].nop = 0;

 }

 old_time_sum = time_sum;

 }

 if(*nNotes==0){

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = delta_t;

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].nop = 0;

 }

 // add one to the number of note packets in the notes array

 (*nNotes)++;

 n++;

 }

 // Detect Note off command

 else if (((int)track[i] >= 0x80)&&((int)track[i] <= 0x8F)){

 current_cmd = NOTE_OFF;

 // Get delta_t

 delta_t = time_stamp*(tempo/dtPerQNote);

 i++;

 // Get key

 key = (int)track[i];

 i++;

 // Get volume (velocity)

 velocity = 0;

 i++;

 // add note to the notes array

 time_sum=0;

 old_time_sum=0;

 time_sum_track+=delta_t;

 for (n=0;n<*nNotes;n++){

 time_sum += NotesArray[n].delta_t;

 if(time_sum_track<time_sum){

 //shift Notes Array to make room for new note

 for (k=*nNotes-1;k>=n;k--){

 NotesArray[k+1]=NotesArray[k];

 }

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = time_sum_track-old_time_sum;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].nop = 0;

 //Adjust following note's time to reflect inserted note timing

 NotesArray[n+1].delta_t = NotesArray[n+1].delta_t-NotesArray[n].delta_t;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 break;

 } else if(n==*nNotes-1){

 NotesArray[n+1].tone = tone;

 NotesArray[n+1].track = t;

 NotesArray[n+1].delta_t = time_sum_track-time_sum;

 NotesArray[n+1].key = key;

 NotesArray[n+1].velocity = velocity>>1;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 NotesArray[n+1].nop = 0;

 }

 old_time_sum = time_sum;

 }

 if(*nNotes==0){

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = delta_t;

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].nop = 0;

 }

 // add one to the number of note packets in the notes array

 (*nNotes)++;

 n++;

 }

 // Detect other MIDI event commands (Ignore for now)

 else if (((int)track[i] >= 0xA0)&&((int)track[i] <= 0xAF)){

 current_cmd = 3; //AFTER_TOUCH

 i+=3;

 } else if (((int)track[i] >= 0xB0)&&((int)track[i] <= 0xBF)){

 current_cmd = 4; //CONTROL_CHANGE

 i+=3;

 } else if (((int)track[i] >= 0xC0)&&((int)track[i] <= 0xCF)){

 current_cmd = 5; //PROGRAM_CHANGE

 i++;

 tone = (unsigned char)track[i];

 i++;

 } else if (((int)track[i] >= 0xD0)&&((int)track[i] <= 0xDF)){

 current_cmd = 6; //CHANNEL_TOUCH

 i+=2;

 } else if (((int)track[i] >= 0xE0)&&((int)track[i] <= 0xEF)){

 current_cmd = 7; //PITCH_CHANGE

 i+=3;

 }

 if ((current_cmd <= 7)&&(current_cmd >=3)&&(time_stamp>0)){

 // Get delta_t

 delta_t = time_stamp*(tempo/dtPerQNote);

 // add note to the notes array

 time_sum=0;

 old_time_sum=0;

 time_sum_track+=delta_t;

 for (n=0;n<*nNotes;n++){

 time_sum += NotesArray[n].delta_t;

 if(time_sum_track<time_sum){

 //shift Notes Array to make room for new note

 for (k=*nNotes-1;k>=n;k--){

 NotesArray[k+1]=NotesArray[k];

 }

 NotesArray[n].delta_t = time_sum_track-old_time_sum;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].key = 1;

 NotesArray[n].nop = 1;

 //Adjust following note's time to reflect inserted note timing

 NotesArray[n+1].delta_t = NotesArray[n+1].delta_t-NotesArray[n].delta_t;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 break;

 } else if(n==*nNotes-1){

 NotesArray[n+1].delta_t = time_sum_track-time_sum;

 NotesArray[n+1].key = 1;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 NotesArray[n+1].nop = 1;

 }

 old_time_sum = time_sum;

 }

 if(*nNotes==0){

 NotesArray[n].delta_t = delta_t;

 NotesArray[n].key = 1;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].nop = 1;

 }

 // add one to the number of note packets in the notes array

 (*nNotes)++;

 n++;

 }

 }

 // RUNNING MIDI EVENT (use previous commmand)

 else if ((int)track[i]<128){

 if ((current_cmd == NOTE_ON)){

 // Get delta_t

 delta_t = time_stamp*(tempo/dtPerQNote);

 // Get key

 key = (int)track[i];

 i++;

 // Get volume (velocity)

 velocity = (int)track[i];

 i++;

 // add note to the notes array

 time_sum=0;

 old_time_sum=0;

 time_sum_track+=delta_t;

 for (n=0;n<*nNotes;n++){

 time_sum += NotesArray[n].delta_t;

 if(time_sum_track<time_sum){

 //shift Notes Array to make room for new note

 for (k=*nNotes-1;k>=n;k--){

 NotesArray[k+1]=NotesArray[k];

 }

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = time_sum_track-old_time_sum;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].nop = 0;

 //Adjust following note's time to reflect inserted note timing

 NotesArray[n+1].delta_t = NotesArray[n+1].delta_t-NotesArray[n].delta_t;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 break;

 } else if(n==*nNotes-1){

 NotesArray[n+1].tone = tone;

 NotesArray[n+1].track = t;

 NotesArray[n+1].delta_t = time_sum_track-time_sum;

 NotesArray[n+1].key = key;

 NotesArray[n+1].velocity = velocity>>1;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 NotesArray[n+1].nop = 0;

 }

 old_time_sum = time_sum;

 }

 if(*nNotes==0){

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = delta_t;

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].nop = 0;

 }

 // add one to the number of note packets in the notes array

 (*nNotes)++;

 n++;

 } else if ((current_cmd == NOTE_OFF)){

 // Get delta_t

 delta_t = time_stamp*(tempo/dtPerQNote);

 // Get key

 key = (int)track[i];

 i++;

 // Get volume (velocity)

 velocity = 0;

 i++;

 // add note to the notes array

 time_sum=0;

 old_time_sum=0;

 time_sum_track+=delta_t;

 for (n=0;n<*nNotes;n++){

 time_sum += NotesArray[n].delta_t;

 if(time_sum_track<time_sum){

 //shift Notes Array to make room for new note

 for (k=*nNotes-1;k>=n;k--){

 NotesArray[k+1]=NotesArray[k];

 }

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = time_sum_track-old_time_sum;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].nop = 0;

 //Adjust following note's time to reflect inserted note timing

 NotesArray[n+1].delta_t = NotesArray[n+1].delta_t-NotesArray[n].delta_t;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 break;

 } else if(n==*nNotes-1){

 NotesArray[n+1].tone = tone;

 NotesArray[n+1].track = t;

 NotesArray[n+1].delta_t = time_sum_track-time_sum;

 NotesArray[n+1].key = key;

 NotesArray[n+1].velocity = velocity>>1;

 NotesArray[n+1].lsi_delta_t = (unsigned char)((int)(NotesArray[n+1].delta_t/tfactor));

 NotesArray[n+1].nop = 0;

 }

 old_time_sum = time_sum;

 }

 if(*nNotes==0){

 NotesArray[n].tone = tone;

 NotesArray[n].track = t;

 NotesArray[n].delta_t = delta_t;

 NotesArray[n].key = key;

 NotesArray[n].velocity = velocity>>1;

 NotesArray[n].lsi_delta_t = (unsigned char)((int)(NotesArray[n].delta_t/tfactor));

 NotesArray[n].nop = 0;

 }

 // add one to the number of note packets in the notes array

 (*nNotes)++;

 n++;

 // INSERT add note_packet to notes array

 } else if ((current_cmd == 3)||(current_cmd == 4)||(current_cmd == 7)){

 i+=2;

 } else if ((current_cmd == 5)||(current_cmd == 6)){

 i+=1;

 }

 }

 }

 offset += track_length;

 free(track);

 }

 length = 0.;

 for (n=0;n<*nNotes;n++){

 length += (float)(NotesArray[n].delta_t)/1000000.;

 }

 *song_length = length;

 for (n=0;n<*nNotes;n++){

 lsi_long = NotesArray[n].delta_t/tfactor;

 while(lsi_long>0xFF){

 for (k=*nNotes-1;k>=n;k--){ // Shifts NotesArray by tbytes

 NotesArray[k+1]=NotesArray[k];

 }

 (*nNotes) += 1;

 NotesArray[n].nop = 1;

 NotesArray[n].delta_t = 0;

 NotesArray[n].key = 0;

 n++;

 lsi_long -= 0xFF;

 }

 NotesArray[n].lsi_delta_t = lsi_long;

 }

 return NotesArray;

}

Appendix G: FMECA Worksheet

Table 1 – Power Management (Block A)
	Failure No.
	Failure Mode
	Possible Causes
	Failure Effects
	Method of Detection
	Criticality
	Remarks

	A1
	VCC 5V = 0 V

	5V Linear voltage regulator, 9V wall wart, capacitor short
	VCC 3.3V = 0 V

VCC 1.2V = 0 V

Failure to function
	Observation,

measurement at voltage test points
	High
	Operation critical due to zero functionality. Shorted wall wart could pose fire hazard.

	A2
	VCC 5V > 5 V

VCC 3.3V > 3.3 V
	5V Linear voltage regulator, capacitors, 9V wall wart.
	Damage to major components
	Observation, excessive heat
	High
	Higher than expected voltage inputs will cause irreparable damage to system and is design critical.

	A3
	VCC 5V or VCC 3.3V has excessive ripple voltage
	Linear Voltage regulators, 9V wall wart, capacitors
	FPGA output and software operation will be unpredictable
	Observation
	Medium
	The operation will be unpredictable therefore this failure is operation critical.

Table 2 – FPGA and Serial Configuration Device (Block B)
	Failure No.
	Failure Mode
	Possible Causes
	Failure Effects
	Method of Detection
	Criticality
	Remarks

	B1
	FPGA output is incorrect
	Improper configuration loaded, voltage regulators, EPCS, shorted bypass capacitors, software
	Partial or complete loss of functionality, unpredictable output to VGA
	Observation then measurement at headers
	Medium
	FPGA failure is operation critical and will result in incorrect operation

	B2
	Failure to boot at start-up
	EPCS, FPGA, SRAM, software, improper FPGA configuration loaded
	Start menu not displayed, complete loss of functionality
	Observation
	Medium
	Failure to boot properly from the EPCS device is operation critical

Table 3 - MIDI input and MIDI LSI audio output (Block C)

	Failure No.
	Failure Mode
	Possible Causes
	Failure Effects
	Method of Detection
	Criticality
	Remarks

	C1
	No audio output
	MIDI LSI, software, FPGA, capacitors
	Inability to give user audio feedback during gameplay.
	Observation
	Low
	The system can still be used without audio output due to MIDI keyboard built in speakers.

	C2
	Incorrect audio output
	Software, MIDI LSI, capacitors
	Audio does not match expected audio during gameplay
	Observation
	Low
	The system can still be used with incorrect audio output due to MIDI keyboard built in speakers.

	C3
	User input on MIDI keyboard not registered
	Faulty MIDI connection, optoisolator, level translator, FPGA
	Keypresses not registered during gameplay
	Observation
	Medium
	The input from the MIDI keyboard is critical for the game play operation.

Table 4 – Video DAC (Block D)
	Failure No.
	Failure Mode
	Possible Causes
	Failure Effects
	Method of Detection
	Criticality
	Remarks

	D3
	Video displayed improperly
	FPGA, improper VGA cable connection, software (sync signals), capacitors
	Output to VGA monitor will be shifted or unpredictable
	Observation
	Medium
	The VGA monitor is the main game interface for the system. Failure is operation critical.

	D3
	Video not displayed
	FPGA, improper VGA cable connection, software (sync signals), capacitors
	Output to VGA monitor will be blank, no signal message may be displayed
	Observation
	Medium
	The VGA monitor is the main game interface for the system. Failure is operation critical.

Figure 5 – SRAM (Block E)
	Failure No.
	Failure Mode
	Possible Causes
	Failure Effects
	Method of Detection
	Criticality
	Remarks

	A2
	SRAM giving incorrect data
	Memory corrupted, poor connection, timing error, software, FPGA, SRAM, capacitors
	Program will not load properly, or will have limited functionality
	Memory test program run from FPGA on-chip memory
	Medium
	SRAM failure will prevent program from loading and executing properly. Failure is operation critical.

	A3
	SRAM not accessible
	FPGA, improper configuration loaded, software, capacitors
	Program will not load, and will not run.
	Observation
	Medium
	The VGA monitor is the main game interface for the system. Failure is operation critical.

Figure 1 [1]

Curtis Verner

Bryan Hermsen

Tom Bottonari

Vikram Anand

-ii-

