
Homework 10: Software Design Considerations
Due: Friday, March 31, at NOON

Team Code Name: ____J-Team _________________________________ Group No. __10__

Team Member Completing This Homework: _____Jonathan Chen_____________________

E-mail Address of Report Author: ____________jjchen_________________ @ purdue.edu

NOTE: This is the last in a series of four “design component” homework assignments, each of
which is to be completed by one team member. The completed homework will count for 10%
of the team member’s individual grade.

Evaluation:

Component/Criterion Score Multiplier Points

Introduction & Summary 0 1 2 3 4 5 6 7 8 9 10 X 1

Software Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 3

Software Design Narrative 0 1 2 3 4 5 6 7 8 9 10 X 3

List of References 0 1 2 3 4 5 6 7 8 9 10 X 1

Appendices 0 1 2 3 4 5 6 7 8 9 10 X 1

Technical Writing Style 0 1 2 3 4 5 6 7 8 9 10 X 1

 TOTAL

Comments:

__

__

__

__

__

ECE 477 Digital Systems Senior Design Project Spring 2006

1.0 Introduction

 The RFID Xpr3ss system aims at improving the overall efficiency of the modern
supermarket checkout system. The main goal is to eventually replace the UPC barcodes with
RFID tags to reduce scanning time of each item and greatly simplify the checkout process by
introducing solely electronic payment options. This system makes use of five significant
hardware components, including a Freescale 9S12NE64 microcontroller [1], and is highly
software intensive. While one of our main concerns is to keep check out time to a minimum, the
visible portion of the software design (e.g. graphics displayed on LCD [2]) will also be an
important factor in the overall appeal of the entire checkout process. The software will be a state
machine at its core and will be controlled by a main polling loop, which will check flags set by
simple interrupt handlers.

2.0 Software Design Considerations

2.1 Memory Mapping:

 $0000-$03FF Register Space
 $03FF-$1FFF RAM (7k) (inaccessible)
 $2000-$3FFF RAM (8k)
 >$2000-$2FFF Variables (heap)*
 >$3000-$3FFF Stack (SP starts at $4000)*
 $4000-$FF00 Flash EEPROM (<48k)
 >$4000-$AFFF Main code*
 $FF00-$FFFF Interrupt Vectors

* Approximations

2.2 External Interface mapping:

 Port: Address:
 Keypad: Port H (0:3) $0258 (0:3)
 Port PAD (0:3) $008F (0:3)

 LCD: Port T (4:6) $0240 (4:6)
 Port G (0:6) $0250 (0:6)

 Port H (4) $0258 (4)

 Printer: SCI0 Tx $00CF (SCI0_DRL)

 RFID reader: SCI1 Rx $00D7 (SCI1_DRL)

 Ethernet: EPHY (RxN, RxP, Multiple Ports*

 TxN, TxP)

 -1-

ECE 477 Digital Systems Senior Design Project Spring 2006

*Ethernet communication is provided by included libraries which perform many
functions, such as maintaining a FIFO queue of data to be sent, and also placing the data
on the appropriate pins at the appropriate time.

2.3 Utilization of integrated peripherals:

Built-in Ethernet Module (EPHY) – Enables communicating with remote networking
stations, in this case, a remote database that contains customer and item information.

Serial Communications Interface Module (SCI0 and SCI1) [1] – Efficient communication with
the thermal printer [3] and the RFID reader [4].

2.4 Organization of application code:

 Interrupt-Flag-Driven, Polling State Machine (I.F.D.P.S.M)

 State Machine: The state machine will change state based on conditions at the end of
 the main loop. At each state certain flags will be cleared or asserted.
 For example, the keypad polling flag will be cleared if the keypad is
 not needed. Without a state machine, multiple timer channel interrupts
 would be needed, and that totally defeats the purpose of having a main
 polling, flag driven loop.

 Polling: The microcontroller communicates with the keypad by polling. The
main loop calls a function that polls the keypad if a keypress is
expected in that state. Polling is the best way to communicate with the
keypad because of the fact that the main loop is flag driven.

 Flag driven: The main loop will be a giant IF structure, each IF statement checks
 for assertion of a flag. If a flag is set, then the related events will be
 handled, and required actions performed.

 Interrupt routine: This is the interrupt service routine called when an SCI interrupt alerts
the processor that data is being written to the port. Using the interrupt
to only set a flag is the most ideal for our application, as fair attention
should be given to other peripherals that may require handling as well.
In this way, the interrupt service routine will not consume large
amounts of time and delay the main loop.

2.5 Flowchart: (Refer to Appendix A)

2.6 Provisions made for debugging

- BDM
o This header allows us to flash the chip with our code, as well as to have real-

time access to the various registers and other parameters within the processor
during run-time.

- Debug Mode
o This is a mode that aids in the identification and troubleshooting of problems

with the system. It cycles through the use of the required modules and

 -2-

ECE 477 Digital Systems Senior Design Project Spring 2006

attempts to display status information on the LCD in both character and
graphical mode. It also writes to the printer in case the LCD is not
functioning properly. There will be added functionality as development
progresses and potential pitfalls are identified.

3.0 Software Design Narrative (Refer to Appendix B for hierarchical diagram)

• Main ()

o Processor init ()
 This is the first function called before the main polling loop begins. It initializes all

necessary register values for use in the design. These include Data Direction
registers, Pull Device registers, EPHY registers, and SCI configuration registers.
Most of the initialization values were either created by the code development IDE
(Metrowerks CodeWarrior for HC12) [5], or taken from demo code provided with the
processor evaluation kit [6].

 Completion Status: Constantly under development. Needs to be designed as other
functionality is implemented.

o LCD init ()
 This module initializes all of the registers necessary for the LCD [2]. The LCD will be

operated in both graphical and character modes, and hence this module has two sub-
modules to initialize them separately as needed. The LCD is configured by writing to
it with the RS signal asserted to select a configuration register in the LCD’s RAM,
and then subsequently writing to the LCD with the RS signal negated to write a
specific value to those registers. The LCD will be transmitted to using various
control signals, and an 8 bit data bus. The data bus needs to be split between 2 ports,
Port G and Port H, since Port G only has 7 accessible pins in the 80 pin package of
the Freescale MC9S12NE64 microcontroller [1]. The control signals will be provided
by Port T on the microcontroller, since only 3 pins are needed (LCDreset, RS, and
Enable).

 Completion Status: Sub-module successfully ported and tested. Pin reassignment and
integration still needed.

o E-mail ()
 This module processes e-mail sending through the built-in Ethernet module. The

algorithms involved are still in the design stage, as it was discovered that SMTP
protocol is not ideal for a highly-portable solution. Not all institutions intended to use
this product have access to an SMTP server, and hence, it has recently been decided
that a proprietary protocol, paired with a customizable software application is a better
fit for the design. This method of communication is still under development.

 Completion Status: Still under development. Algorithm recently redesigned due to
difficulties in development and unreasonable portability concerns.

 -3-

ECE 477 Digital Systems Senior Design Project Spring 2006

o Handle RFID ()
 This module is called by the main polling loop when the RFID interrupt flag has been

asserted by its corresponding interrupt service routine. It retrieves data, in the form of
a serial number, sent by the RFID reader [4] and takes appropriate action depending on
the state of the system. If an RFID scan is irrelevant to the current state, the data is
ignored, and the receive buffer is cleared. In certain situations, where administrative
assistance is required, an administrator may swipe his keyfob and invoke this special
mode, which will allow them to input a price for a faulting item, or to perform other
special tasks.

 Completion Status: Base code successfully written and tested, some functionality still
needs to be added.

o Print ()
 This module is called when a printed receipt is desired, or if an attempt at emailing

the receipt was unsuccessful. It sends data to the thermal printer through the serial
port, and acts quite a bit like the RFID handle module, except that it transmits instead
of reading. The printer [3] is configured manually using timed button presses, and
only needs to receive what characters to print, which almost entirely conform to
ASCII standards.

 Completion Status: Successfully coded and tested. Ready for integration.

o Compare PIN ()
 This module is called during the appropriate state in the main state machine. It will

store the 4 key presses following a customer’s keyfob being scanned, and once 4 have
been entered, it will compare them against the 4-digit customer PIN which was read
into SRAM when the keyfob was first scanned. It will report to the main loop when
all keypresses have been captured, as to whether or not the PINs matched.

 Completion Status: Successfully coded and tested. More keypad functions needed for
other functions before integration.

o DB check ()
 This module handles the queries to the external database. It sends the RFID serial

number to the external software, and it processes the data received from the database
for user and item identification and verification. It also manipulates the data and
stores it in appropriate data structures in SRAM.

 Completion Status: Still in development. Will be written when the Ethernet code is
finished.

 -4-

http://shay.ecn.purdue.edu/%7E477grp10/Codes/general_doxygen/_r_f_i_d-_printer_8c-source.html
http://shay.ecn.purdue.edu/%7E477grp10/Codes/general_doxygen/_r_s232_8c-source.html
http://shay.ecn.purdue.edu/%7E477grp10/Codes/general_doxygen/_keypad_01_polling_01_code_01w-_p_i_n_8c-source.html

ECE 477 Digital Systems Senior Design Project Spring 2006

o LCD_Main.c (Update LCD)
 Contains all functions needed to communicate with LCD.
 Completion Status: Mostly tested and completed. Advanced graphics will require

additional functions.
 Void LCD_graphic_ini () (Graphical mode init)
• This module initializes required registers for graphical mode. It sets the display

address and cursor address and clears the whole RAM to prepare for graphics
information. It also sets the number of bits to be displayed on each 8-pixel block.

• Completion Status: Successfully coded and tested. Ready for integration.
 Void LCD_char_ini () (Character mode init)
• This module initializes required registers for character mode. It sets the display

address and cursor address and clears the whole RAM to prepare for text display,
as well as character pitch, character spacing and number of characters in a row.

• Completion Status: Successfully coded and tested. Ready for integration.
 Void LCD_write_data (int data) (Write graphical data)
• This module simply writes one byte into the LCD RAM. Input can be in integer or

hexadecimal format for a better representation of the graphical perspective of the
data.

• Completion Status: Successfully coded and tested. Ready for integration.
 Void LCD_print_string (char *str) (Write character data)
• This module converts a string and sends it byte-by-byte to the LCD. It writes the

data similarly to LCD_write_data, but the data is limited to binary representation
of ASCII values of characters. Since on any data write the LCD automatically
increments the cursor address by one, there is no need to reset the cursor address
every time a byte of data is written.

• Completion Status: Successfully coded and tested. Ready for integration.
• RFID interrupt ()

o This routine sets a flag which will be used by the main loop to call the Handle RFID
module. This is ideal, as it will take very little time to actually service the interrupt, and
it will allow the flow control to be maintained within the main polling loop. The actual
reading of the data and storing in memory will take place within the Handle RFID
module.

o Completion Status: Successfully coded and tested. Ready for integration.

4.0 Summary

 The RFID Xpress system is a very software intensive design. While a single file program
might provide space efficiency and run slightly faster, the heavily modular design used in the
RFID Xpress system allows for extensive debugging of each separate part, resulting in a much
smoother transition from development to integration. This paper described how the Interrupt-
Flag-Driven, Polling State Machine algorithm is used to efficiently control the operation of the
Keypad, LCD, Printer and RFID Reader, while optimizing portability, modularity, and CPU
utilization.

 -5-

http://shay.ecn.purdue.edu/%7E477grp10/Codes/LCDcode_doxygen/_main_8c.html
http://shay.ecn.purdue.edu/~477grp10/Codes/LCDcode_doxygen/_main_8c.html#3228036fabf0bef03df28a714aa085fb
http://shay.ecn.purdue.edu/~477grp10/Codes/LCDcode_doxygen/_main_8c.html#220d8f76207678143942781e9a00dcfd
http://shay.ecn.purdue.edu/~477grp10/Codes/LCDcode_doxygen/_main_8c.html#854e46c85b8dbb256dd2dcb5bf7ab45a
http://shay.ecn.purdue.edu/~477grp10/Codes/LCDcode_doxygen/_main_8c.html#a8ca79173df264d03643bb3a0a2506e2

ECE 477 Digital Systems Senior Design Project Spring 2006

List of References

[1] Freescale MC9S12NE64 Microcontroller
 http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12NE64V1.pdf

[2] CrystalFontz CFAG240128D Graphic LCD
 http://www.crystalfontz.com/products/240128d/CFAG240128DFMIT.pdf

[3] Star Micronics NP-211 Thermal Kiosk Receipt Printer
http://www.starmicronics.com/printers/printers_pages/support/manuals/NP_manuals/NP211
SM.pdf

[4] Intersoft Corp WM-RO-MR2 Medium Range RFID Reader
 http://www.intersoft-us.com/dnload/WMROMR2.pdf

[5] Metrowerks CodeWarrior Development Studio
 http://www.freescale.com/files/soft_dev_tools/doc/data_sheet/950-00081.pdf

[6] Freescale DEMO9S12NE64 evaluation kit
 http://www.freescale.com/files/microcontrollers/doc/user_guide/DEMO9S12NE64UM.pdf

 -6-

http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC9S12NE64V1.pdf
http://www.crystalfontz.com/products/240128d/CFAG240128DFMIT.pdf
http://www.starmicronics.com/printers/printers_pages/support/manuals/NP_manuals/NP211SM.pdf
http://www.starmicronics.com/printers/printers_pages/support/manuals/NP_manuals/NP211SM.pdf
http://www.intersoft-us.com/dnload/WMROMR2.pdf
http://www.freescale.com/files/soft_dev_tools/doc/data_sheet/950-00081.pdf
http://www.freescale.com/files/microcontrollers/doc/user_guide/DEMO9S12NE64UM.pdf

ECE 477 Digital Systems Senior Design Project Spring 2006

Appendix A: Flowchart/Pseudo-code for Main Program

 -7-

ECE 477 Digital Systems Senior Design Project Spring 2006

Appendix B: Hierarchical Block Diagram of Code Organization

*Boxes for completed code are hot-linked to source

 -8-

http://shay.ecn.purdue.edu/~477grp10/Codes/LCDcode_doxygen/_main_8c.html

	TOTAL

