
Accumulate and Hold controls.
Moreover, a set of analog and digital
auxiliary inputs allow you to display
configurable information on the
screen such as center frequency, refer-
ence level, scan time, and so on (see
Figure 1). Lastly, an RS-232 port
dumps hard copies of the screen to a
host computer.

As you can see in Figure 2, the XY-
Plotter’s overall architecture is sim-
plistic: it contains nothing more than
a PIC18F252, a few MCP6022 analog
amplifiers, a low-cost LCD, and sever-
al other low-cost components. I built
an integrated power supply using a
MCP1541 precision voltage reference.

LCD TIMING REQUIREMENTS
I used an FTN reflective Epson

ECM-A0635-2 LCD with a 240 ×
320 pixel black and white screen (see
Figure 3). The display is extremely
dumb, and it should be supplied in
real time with the required pixels.
The host controller must send a new
frame every 15 ms. Each frame
includes 240 lines, and each line
includes 320 pixels grouped into 4-bit
nibbles.

In addition to the 4-bit data input
port, the controller must also supply
three clocks: frame, line, and nibble.
One new nibble must be delivered
every 780 ns, which I arrived at via the
following equation: 15 ms/240/(320/4).
Note that for this project I used the
display turned by 90° in Portrait mode

42 Issue 158 September 2003 CIRCUIT CELLAR® www.circuitcellar.com

Implementing a graphical LCD is an
excellent way to drastically change
the look and feel of a project. You can
transition from a classic technician-
oriented, two-lined text LCD to a
user-friendlier device. Unfortunately,
graphic LCDs are resource-hungry
devices, both in terms of memory and
CPU power. So, you’re forced to
either create lovely minimalist
designs with an intelligent LCD (with
on-board LCD controller, processor,
and memory, as described by Jeff
Bachiochi in Circuit Cellar 150) or
swap the usual microcontroller for a
classic microprocessor, memory, dis-
play controller set.

Both options are expensive, and
there doesn’t seem to be another solu-
tion. For instance, the 240 × 320 pixel
display used in this project eats one 4-
bit nibble every 780 ns, and it needs a
minimum of 10 KB of RAM just to
store the displayed bitmap. Thus, it’s

The XY-Plotter

Robert spent nearly 100 hours building his high-performance, LCD-based XY-Plotter. Now
that he has written about the process, it should take you much less time to construct your
own. Follow along as he shows you how to maximize your time and money when driving
graphic LCD panels.

impossible to drive it directly with a
high-end PIC controller providing a
100-ns cycle when clocked at 40 MHz
and 1536 bytes of RAM, right?
Nothing useful can be done in less
than seven assembly instructions per
nibble, correct?

As you probably expect, this project
proves that the impossible is possible
with an optimized firmware design.
You’ll even learn that it’s possible to
use this minimalist concept for some-
thing useful!

PLOTTER BASICS
I got the idea for the XY-Plotter from

an old spectrum analyzer sleeping in
my garage. Despite the fact that the
heavy analyzer’s CRT display was dead,
the radio parts worked well. So, from
time to time, I used it with an oscillo-
scope as an output device. The arrange-
ment was cumbersome and uncomfort-
able to implement. Consequently, I
decided to repackage the analyzer in a
smaller, prettier enclosure and design
an LCD alternative to the CRT dis-
play. Because I wanted the ability to
reuse the design, I chose to develop a
generic display subsystem, the XY-
Plotter (see Photo 1).

The XY-Plotter is an autonomous
analog-like display with two main x
and y inputs. Continuously scanning
the two inputs, the plotter displays
them on a real-time x-y graph by way
of configurable modes (i.e., Sample,
Maximum, Peaks, or Average) with

FEATURE ARTICLE by Robert Lacoste

CONTEST WINNER

Drive High-Resolution LCDs For Less

Photo 1—The large 240 × 320 LCD is affixed to the
PCB. The three control push buttons and the screen
dump RS-232 connector are along the bottom edge.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 158 September 2003 43

PIC or multiplexed with LCD data
lines (thanks to a firmware reconfigu-
ration on the fly).

Lastly, the ubiquitous MAX232 does
what it’s intended to do. It should be
noted that I included an in-circuit pro-
gramming header just in case; howev-
er, I haven’t had to use it thanks to
Microchip’s boot loader firmware. All
of the programming was accomplished
though the serial port.

POWER SUPPLIES
The power supply is a significant

part of the design (see Figure 5). First, I
needed a clean 5 V. I was already
using all of the PIC’s analog inputs,
so I couldn’t configure its ADC in
external-reference mode. I still need-
ed a stable reference for the analog-
to-digital conversions. After experi-
encing a few headaches, I decided to
use the PIC in its 0- to 5-V reference
mode and to provide a well-stabilized
5 V. I implemented a high-precision
MCP1541 voltage reference and built
a discrete power supply around a
low-drift LMC6462 op-amp. The sec-
ond part of the op-amp is used to get
the 0.6-V reference drawn on by the
offset circuitry.

The LCD was hard to deal with
because it needed both a –24-VDC
input (for the display itself) and a 100-
VAC power for the EL backlight. To
limit the number of power inputs, I
went with a small 5- to ±12-VDC con-

rail-to-rail op-amp. Two 20-turn trim-
mers per input give you the ability to
easily adjust the full-scale deviation as
well as the DC offset for each channel.
One of the channels, AUX2, even
includes two inputs summed by the
analog amplifier.

The values of the resistors used for
each amplifier stage can be adjusted
for each specific application to accom-
modate different input ranges and
adjustment precision. It is not obvious
how to design an amplifier stage with
positive and negative offset adjust-
ment without a negative
power supply. Here’s my
trick: A fixed positive volt-
age, which is derived from a
0.6-V reference, is first sub-
tracted from the input signal,
and then a variable positive
voltage is added to it, provid-
ing an offset that’s either pos-
itive or negative. I used Excel
to calculate the resistors.

The PIC is clocked by a 10-
MHz crystal up-converted to
40 MHz thanks to the on-
board PLL. The LCD is
directly connected to the PIC
I/O lines, whereas the auxil-
iary digital inputs, which are
used to dynamically select
the text for the screen, are
either direct inputs of the

(320 pixels high, 240 wide), so the
scan lines are vertical.

MICRO OF CHOICE
I chose the PIC18F252 microcon-

troller on the basis of certain project-
specific criteria. First, I needed speed.
The more instructions in these bloody
780-ns nibbles the better. I also want-
ed a significant amount of RAM. I did-
n’t store the full bitmap but chose
instead to store minimum, maximum,
and sample values for each column
already requiring 768 bytes. In addi-
tion, I needed a precision A/D con-
verter and a large program memory for
amassing the huge tables used in the
design (including character bitmaps).
Lastly, flash memory was necessary
for configuring the display for each
application.

One or two years ago, these require-
ments probably would have been
impossible to fulfill, but, thanks to sup-
pliers like Microchip, they are now eas-
ily satisfied, with the PIC18Fxx2 prod-
uct line in particular. The PIC18F252,
for instance, has 1.5 KB of RAM and
plenty of flash memory (32 KB).

GRASPING THE SCHEMATICS
Figures 4 and 5 are schematics of

the XY-Plotter. Each analog input (X,
Y, AUX1, and AUX2) is conditioned
thanks to half of an MCP6022 dual

X

Y

AUX1

AUX2

2×MCP6022

DA1

DA2

DA3

DA4

PIC18F252

MAX232

240 × 320
LCD

Display mode

Accumulate

Hold

Figure 2—The XY-Plotter’s hardware design is simple. The
PIC18F252 manages everything including LCD pixel generation in
real time. A couple of Microchip MCP6022 rail-to-rail op-amps were
used to scale the analog inputs.

F R E Q = 1 2 3 4 M H Z R E F = – 9 6 D B M

S C A N 2 0 0 K / D V E R = 1 0 D B /

R E S L = 1 K H Z P E A C C L T

T D

K A F H D

One of 16
fixed text strings,

depending
on digital inputs

DA1[0..3]

One of eight
fixed text strings,

depending
on digital inputs

DA2[0..2]

Current display
mode indicator

(Sample, Maximum,
Peaks, or Mean)

Immediate value of
analog input AUX1

Immediate value of
analog input AUX2

One of two fixed text strings,
depending on digital input DA3

One of
two fixed text

strings,
depending on

digital input DA4

Accumulate
mode indicator

Hold mode
indicator

Figure 1—The XY-Plotter screen displays a real-time x-y graph as well as three lines of configurable textual status
information and real-time measurements.

44 Issue 158 September 2003 CIRCUIT CELLAR® www.circuitcellar.com

the overall architecture. In order to
comply with the requirement of seven
instructions per nibble, I didn’t use an

verter to generate the –24 V switched
by two transistors under PIC control. I
couldn’t find a ready-made DC/AC
converter for the backlight in time,
but it wasn’t an issue. I built a pretty
one with a small 220/12-V transformer
driven by a NE555 timer. Done.

PROTOTYPE ASSEMBLY
I built a simple PCB for this project

(see Photo 2). All the components fit
easily because I wanted the size of the
PCB to be identical to the LCD. Note
that the front panel components,
including the push buttons and RS-
232 connector, are soldered on the bot-
tom. All of the trimmers are easily
accessible with a screwdriver, because
they are laterally shifted from one to
the other.

FIRMWARE DESIGN
The hardware side of this project

was straightforward, so if you’re imag-
ing that the firmware was more diffi-
cult, you’re right. Figure 6 illustrates

interrupt. I built a fully sequential
program flow.

A main loop is executed every

Figure 4—The XY-Plotter’s power supply isn’t included in this schematic. An MCP6022 analog amplifier, with scale and offset controls, scales each analog input. Some of the
microcontroller’s I/O lines are multiplexed to limit the I/O count requirement.

Y Dr

number 1

Di

Do
80

Y Dr

number 2

Di

Do

80

Y Dr

number 3

Di

Do

80

LCD pannel
240 × 320

AC pulse
generator

X Dr

EI EO

Number 1

X Dr

EI EO

Number 2

X Dr

EI EO

Number 3

X Dr

EI EO

Number 4

Contrast circuit

(FR)

80 80 80 80

VLCD
(V0) LP XSCL D0~D3*DISP OFF DIN VDD VSS VEE

Figure 3—The EPSON ECM-A0635-2 display doesn’t include anything more than lines, columns, registers, and
drivers. The host controller must send pixels with strict timing requirements and supply frame, as well as line and
pixel clock signals.

www.circuitcellar.com CIRCUIT CELLAR®
Issue 158 September 2003 45

15.8 ms. It starts with a
frame-batch routine that
manages the push buttons,
and more importantly reads
the auxiliary inputs (analog
and digital) and generates the
text that will be displayed in
the first lines. The text is
stored as ASCII characters in
RAM using 90 bytes (3 × 30).

If you want to study the
binary-to-decimal conversion
routine, which I found on
the ’Net, refer to the
Resources section at the end
of this article. The frame-
batch routine also manages
the UART by way of a sim-
ple protocol. Then a loop is
executed for each of the 240
columns in the display. At
each iteration, a line-batch
routine is first executed.
This routine reads and man-
ages the x and y analog values (storing
y minimum, maximum, and sample
values for each x value in three 256-
byte RAM areas). The display blank-
ing (i.e., y is not stored when x is
reducing) is also managed.

The last step is tricky. For each line,
the firmware must generate the nibbles
to send the LCD on the fly. It must
first send the nibbles corresponding to
the graphic area (the back of the screen
depicted in Figure 1) and then the
ones for the three text lines at the top.
Now let’s discuss the details.

GRAPHIC DISPLAY
How can you generate the graphic

display on the fly? The fixed parts
(e.g., borders and scales) are easily sent
to the LCD with the proper timing.
The graph is built in real time from
the minimum, maximum, and sample
values. It also depends on the display
mode (see Figure 7).

The LCD is used in Vertical mode
(320 pixels high), so the scan is verti-
cal, too. Thus, the successive nibbles
sent to the LCD correspond to succes-
sive vertical blocks of four pixels. In

order to generate them, an
optimized algorithm is
implemented based on
another trick: For each col-
umn, there is only one
black line surrounded by
whites. First, the black
line’s two extremities
(ystart and ystop) are cal-
culated based on the oper-
ating mode. Then, a loop
sends an optimal number
of fully blank nibbles fol-
lowed by (depending on
the ystart and ystop val-
ues) precalculated bitmaps
that correspond to the dif-
ferent situation and are
stored in a precalculated
table as well as full black

or full white nibbles in good quantity.
For reasons of efficiency, the flash
memory-based table is cached at start-
up in a RAM page. Figure 8 provides
visual description of the algorithm.

TEXT DISPLAY
The three text lines are also gener-

ated on the fly based on the ASCII
characters that are stored in RAM. For
this purpose, a specific character
bitmap was precalculated and stored
in flash memory. The table gives the
successive nibbles to send to the dis-

Figure 5—The power supply includes four independent subsystems, one of which is the main 5-V regulator, which I built using a
high-precision Microchip MCP1541 reference. I used a 5- to –24-V converter for the LCD. A homemade converter supplies the
backlight voltage (100-V AC). Lastly, note that a 0.6-V reference is provided for offset control.

YMAX

YSAMP

YMINInput y signal
for the same

value of x
Sample Maximum Mean Peak

Display mode

Figure 7—Four display modes are supported by the
XY-Plotter. Sample mode simply plots the first y value
acquired for each x value. The Maximum mode plots
the highest y for a given x. The Mean mode isn’t in fact
a true mean; it simply displays the midpoint of the mini-
mum and maximum values. Last but not least is Peak
mode, which displays a line showing all of the y values
measured for a given x.

Initializations

Main loop

Execute frame batch (one time each 10 frames)
 Read push buttons, manage Display mode
 Read auxiliary inputs, update textual display in RAM
 Manage UART

Lines loop (executed 240 times)

Execute line batch
 Sequentially read x and y through ADC
 Store measurements, calculate min/max, manage
 blanking

Display graphic area (284 pixels, 71 nibbles to send)
 Generate drawing on the fly based on Display
 mode (peak, etc.)

Display text area (3 × 12 pixels, nine nibbles to send)
 Generate bitmap on the fly based on ASCII
 characters in RAM

O
ve

ra
ll

re
fr

es
h

pe
rio

d
15

.8
 m

s

3
to

 8
 µ

s
25

 to
 3

0
µs

12
 to

 2
8

µs

24
0

×
 6

5
µs

20
0

µs

Figure 6—The most critical section of this chart, which shows the archi-
tecture and timing of the firmware, is the graphic display routine.
Basically, 71 nibbles must be sent in 30 µs, giving 422 ns per nibble or
four PIC instructions per nibble (even at 40 MHz).

46 Issue 158 September 2003 CIRCUIT CELLAR® www.circuitcellar.com

play for each character (from back to
top and from left to right). Each char-
acter is encoded in an 8 × 12 pixel
bitmap, giving 30 (240/8) characters
per line.

A significant overhead is needed at
the start of each character (first scan
line out of the eight) in order to pre-
calculate the different pointers. I built
this unusual character bitmap table in
Excel, starting with a standard 8 × 12
bitmap I found on the Internet.

LINE-BATCH ROUTINE
The line-batch routine manages

the acquisition of the x and y analog
values as well as the storage of the
minimum, maximum, and sample
values in RAM. I built the routine as
a five-stage step machine (see Figure
9). Each step corresponds to a differ-
ent acquisition sequence.

You can’t lose time with this
architecture. A full pair of x and y
values is acquired every 260 µs (4 ×
65µs), which produces a satisfactory
3.8-kHz update rate. Depending on
the scan rate you apply (i.e., the fre-
quency of the saw-tooth applied on
the x input), two modes are auto-

matically executed. If the scan rate
is lower than 15 Hz (3.8 kHz/256) or
the scan time is higher than 7 ms
per division (1/15 × 10) using the
usual scope vocabulary, then more
than one y value is acquired for each
x value per scan, enabling function-
ality such as minimum, maximum,
and peaks.

If the scan speed is higher (up to

500 Hz), an equivalent time-sampled
display is generated, and minimum,
maximum, and peak measurements
are only available in Accumulate
mode (i.e., no resetting of the mini-
mum and maximum between scans).

OPTIMIZATION TIPS
Optimizing the firmware’s cycle

count requires a huge effort. For
instance, one of its basic tasks is to
send N pulses to the LCD’s nibble
clock input. A loop already needs
five cycles to do this, but remember
that you have time for less than
seven instructions per nibble, and
the firmware has more to do than
simply send clock pulses! So, you’ll
need additional optimization tech-
niques like code expansion and the
calculated goto procedure (see
Listing 1).

I used the calculated goto tech-
nique extensively. Basically, I was
manually unrolling the code like an
optimized compiler does (or tries to
do). For instance, I used a long calcu-
lated goto table to select the specific
line-generation algorithm for each col-
umn in the display (e.g., graduations,
plain line, ordinary curve column,
etc.). The result is a strange assembly
listing to read but an interesting one
to write!

Another tip is to copy, at startup,
the combined pixel table from flash
memory and paste it in RAM. An indi-
rect access to RAM is quicker than a

table read from flash memory.

MEMORY REQUIREMENTS
The aforementioned firmware

optimizations are memory hungry.
Fortunately, with 32 KB of flash
memory it’s not an issue. My
firmware currently uses only 10 KB.

I used the PIC18F252’s entire
RAM. Three pages at 256 bytes each
were used to store the respective
minimum, maximum, and sampled
y value for each x value. One page
was devoted to the storage of the
ASCII text, although only 90 bytes
were actually needed. One last 256-
byte page was used to store the
bitmap patterns. That left 256 bytes
for general-purpose variables. All in
all, that’s 1536 bytes.

Start = 10/Stop = 22

Finish the screen with full whites

Send one combined three black/one white nibble

Send two full black nibbles

Send one combined two white/two black nibble

Send two full white nibbles

Finish the screen with full whites

Send one double-combined
one white/two black/one white

Send three full white nibbles

Send one combined two
 white/two black nibble

Start = 13/Stop = 14
S

ca
n

di
re

ct
io

n

S
ca

n
di

re
ct

io
n

Figure 8—The 4-bit nibbles are generated in real time for each of the LCD’s scan lines based on the position of the
first and last black pixel on that column. The firmware first calculates how many 0000s must be sent, and then two
things can happen: If all the black pixels to draw are in the same nibble, then a combined white/black/white nibble
is extracted from a table and sent to the display (on the right). Otherwise, one white/black transition nibble is sent,
followed by the required number of full black nibbles, and followed by one black/white transition nibble (on the left).

Initial

0

1

2

3

4

Configure ADC for channel x

Read y from ADC
Store y in array, indexed by last x read
Configure ADC for channel x

Launch A/D conversion for channel x

Read x from ADC
If > than previous x, reset Min/Max (x)
If < than previous x, then blanking mode
If not blanking mode, configure ADC for
channel y

Launch A/D conversion for channel y

B
la

nk
in

g
N

ot
 b

la
nk

in
g

Figure 9—The acquisition of the x and y analog values is
managed thanks to a five-state machine executed each time
the line-batch routine is called (each 65 µs). This allows you
to comply with the PIC ADC timing (precharge, conversion,
and then read) without losing any time.

48 Issue 158 September 2003 CIRCUIT CELLAR® www.circuitcellar.com

DEVELOPMENT PROCESS
The project was developed with the

MPLAB environment and simulator. I
also used Microchip’s boot loader
firmware (AN851) to burn flash mem-
ory, which is an interesting feature
even if firmware improvements are
welcome. In particular, no on-chip
debug facility is currently provided
(e.g., breakpoints), but I’m sure they’ll
be in the next version.

Also note that the AN851 boot
loader doesn’t provide an automatic
reentry facility. As soon as an applica-
tion firmware is downloaded and acti-
vated, there’s no way to reactivate the
bootloader without specific user-sup-
plied application code (like simultane-
ously pressing the three keys at
power-up). This is well documented in
the literature but more secure solu-
tions exist (e.g., timeout).

I wasn’t lucky enough to have a
full-featured ICE for the processor, so I
wanted to avoid hundreds of burn and
test cycles. I started by developing the
critical code (e.g., the pixel generation
algorithm) on a PC in C—just to vali-

date the algorithm itself. Then, I
developed the full firmware with
MPLAB, keeping a structured
approach to facilitate the validation.

Later, I implemented a bottom-up
approach. I simulated 100% of the
software with small stub routines in
an effort to execute each routine indi-
vidually. Note that I was still using

MPLAB and didn’t have a target sys-
tem at that point. I even kept a source
listing and ticked all of the assembly
lines to be sure to go across each of
them.

I used the MPLAB stopwatch to ver-
ify the timings. When everything
seemed fine under the simulation
framework, I went to the target
processor. That approach proved suc-
cessful. My first burned firmware was
not free from bugs, but I got a work-
ing display with the first burned file!

The RS-232 helped a great deal dur-
ing the final debugging steps. In fact,
rather than having to develop a specif-
ic protocol for each project, I used an
easy and powerful method.

First, the UART firmware dumps
the RAM’s content on the RS-232 port
per the host’s request. Following this,
software on the PC side is able to grab
interesting information based on the
RAM content (e.g., rebuilding some-
thing like a screen hard copy). But the
most interesting point is that the
same feature is invaluable during the
debugging steps!

Photo 2—The analog front end is on the upper left with
its nine trimmers, the power supplies are on the top
right, and the PIC is in the middle. The PCB has plenty
of empty space because the LCD’s dimensions dictat-
ed its size.

PROBLEMS SOLVED
Strangely, my firmware generated a

serious problem: some of the LCD’s
columns were darker than others, and
it was dependent on the operating
mode and input signals. It took me
several nights of thinking before I
realized that this was because of the
slightly different CPU time spent
between columns. Because the LCD is
dumb, its buffers had stayed open
longer on the columns, and they gave
a darker display.

As always, when you can clearly
define a problem, the solution tends
to be straightforward. For this particu-
lar problem, I simply configured one
of the on-board timers and waited
until precisely 65 µs had been spent
on each column. Problem solved.

IMPROVEMENTS TO COME
The fully operational XY-Plotter

prototype demonstrates that the con-
cept actually works. The screen is
refreshed 70 times per second and
doesn’t flicker. The A/D management,
graph generation, and textual display

50 Issue 158 September 2003 CIRCUIT CELLAR® www.circuitcellar.com

Listing 1—I used this coding technique to meet the strict timing requirements of the project. The routine
sends a configurable number of pulses to the LCD clock input with less than three PIC instructions per pulse
on average! Try to do it with a classic loop.

;Send W pulses to the XSCK line (W = 0 to 60). Execution duration: 100
;ns × (2xW + 20) for W < 60. Average with W = 20 (worst case) giving
;three instructions/pulse (300 ns).
**
send_upto60_pulses ;Limited to 60 because of page boundary
input in tmp_send_w_pulses

movf tmp_send_w_pulses,W
sublw .60 ;Calculate 2 × (60 � w)
rlncf WREG
rlncf WREG
movwf tmp_send_w_pulses
goto pulsesaligned

pulsesnotaligned
org (1 + high pulsesnotaligned)*.256

;Must start on a page boundary
pulsesaligned

movlw high pulsesaligned
movwf PCLATH ;High byte of new PC should be defined

movf tmp_send_w_pulses,W
addwf PCL,F ;Jump to next instruction if W = 0 (60 pulses)
bsf PORTB,RB_LCDXSCL_BIT ;pulse 60
bcf PORTB,RB_LCDXSCL_BIT
bsf PORTB,RB_LCDXSCL_BIT ;pulse 59
bcf PORTB,RB_LCDXSCL_BIT
bsf PORTB,RB_LCDXSCL_BIT ;pulse 58
bcf PORTB,RB_LCDXSCL_BIT

;etc�
bsf PORTB,RB_LCDXSCL_BIT ;pulse 02
bcf PORTB,RB_LCDXSCL_BIT
bsf PORTB,RB_LCDXSCL_BIT ;pulse 01
bcf PORTB,RB_LCDXSCL_BIT
retlw 0 ;Must be in the same page as the first one

www.circuitcellar.com CIRCUIT CELLAR® Issue 158 September 2003 51

SOURCES
ECM-A0635-2 LCD
Epson Europe Electronics

are perfect in every mode.
It took me roughly 100 h to com-

plete this project. I still have a couple
of bugs to correct but nothing too
critical. A few more nights of work,
and the plotter will be embedded in
my new spectrum analyzer.

This project clearly demonstrated
the power of low-cost microcon-
trollers. In addition, it proved that
efficient debugging requires a good
simulator. I also learned that LCD
backlight high-voltage generators are
harmful, but that’s another story.

I have a long list of future improve-
ments, one of which is PC-based con-
figuration software to customize the
display for new applications (e.g.,
modification of the textual informa-
tion). That will be easy thanks to the
flash memory-based PIC I used.

Developing this useful project was
extremely fun. I hope reading about it
was fun too! I

Robert Lacoste lives near Paris,
France. He has 15 years of experience
working on innovative real-time soft-
ware and embedded systems.
Specialized in cost-optimized mixed-
signal designs, he has won over a
dozen international design contests.
Robert currently manages his own
design and consulting company. You
can reach him at rlacoste@alciom.com
or www.alciom.com.

PROJECT FILES
To download the code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2003/158.

RESOURCES
8 × 12 Character set, www.sxlist.com/
techref/datafile/charset/8x12.htm.

Epsom A0635-2 LCD Preliminary
specification, www.supelec-rennes.fr
/ren/fi/elec/ftp/lcd/a0635.pdf.

R. Fosler and R. Richey, A FLASH
Bootloader for PIC16 and PIC18
Devices, AN851, Microchip
Technology, Inc., 2002.

D. Jones, “Binary to Decimal Conver-

sion in Limited Precision,” The
University of Iowa, www.cs.uiowa.
edu/~jones/bcd/decimal.html, 1999.

Microchip Technology, Inc.,
PIC18FXX2 Data Sheet: High
Performance, Enhanced FLASH
Microcontrollers with 10-Bit A/D,
DS39564B, 2002.

+49 89 14005-0
www.epson-electronics.de

MCP1541 Voltage reference,
MCP6022 analog amplifier,
PIC18F252 microcontroller
Microchip Technology, Inc.
(480) 786-7200
www.microchip.com

LMC6462 Op-amp
National Semiconductor Corp.
(800) 272-9959
www.national.com

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2003/158/
http://www.sxlist.com/techref/datafile/charset/8x12.htm
http://www.supelec-rennes.fr/ren/fi/elec/ftp/lcd/a0635.pdf
http://www.cs.uiowa.edu/~jones/bcd/decimal.html
http://www.epson-electronics.de
http://www.epson-electronics.de
http://www.microchip.com
http://www.cs.uiowa.edu/~jones/bcd/decimal.html
http://www.national.com

